
VISION:Results

Reference Guide
Release 5.0

™

RSREF050.PDF/D01-002-009

This documentation and related computer software program (hereinafter referred to as the "Documentation") is for the end
user's informational purposes only and is subject to change or withdrawal by Computer Associates International, Inc. ("CA")
at any time.

This documentation may not be copied, transferred, reproduced, disclosed or duplicated, in whole or in part, without the
prior written consent of CA. This documentation is proprietary information of CA and protected by the copyright laws of
the United States and international treaties.
Notwithstanding the foregoing, the user may print a reasonable number of copies of this documentation for its own internal
use, provided that all CA copyright notices and legends are affixed to each reproduced copy. Only authorized employees,
consultants, or agents of the user who are bound by the confidentiality provisions of the license for the software of the user
will have access to such copies.

This right to print copies is limited to the period during which the license for the product remains in full force and effect.
Should the license terminate for any reason, it shall be the user's responsibility to return to CA the reproduced copies or to
certify to CA that same have been destroyed.

To the extent permitted by applicable law, CA provides this documentation "as is" without warranty of any kind, including
without limitation, any implied warranties of merchantability, fitness for a particular purpose or noninfringement. In no
event will CA be liable to the end user or any third party for any loss or damage, direct or indirect, from the use of this
documentation, including without limitation, lost profits, business interruption, goodwill, or lost data, even if CA is
expressly advised of such loss or damage.

The use of any product referenced in this documentation and this documentation is governed by the end user's applicable
license agreement.

The manufacturer of this documentation is Computer Associates International, Inc.

Provided with "Restricted Rights" as set forth in 48 C.F.R. Section 12.212, 48 C.F.R. Sections 52.227-19(c)(1) and (2) or DFARS
Section 252.227-7013(c)(1)(ii) or applicable successor provisions.

© 2001 Computer Associates International, Inc. All rights reserved.

All trademarks, trade names, service marks, and logos referenced herein belong to their respective companies.

Contents
Chapter 1: Introduction
Contacting Computer Associates.. 1-2

Chapter 2: Field and Work Area Definitions
Field Definitions .. 2-1

Dataname.. 2-2
Field Length ... 2-3
Starting Location ... 2-3
Redefining a Field ... 2-4
Data Type.. 2-4
Number of Decimals... 2-5
VALUE nnn

|`xxx'|X`nn'|ALL|NULL|LOWVALUES|HIGHVALUES ... 2-5
REINIT .. 2-7

Extended Format ... 2-7
Edit Code .. 2-8
Report Output Field Size.. 2-8
ROUND or ROUNDED.. 2-9
Column Heading... 2-9
LEFT or RIGHT.. 2-10
SUM or NOSUM ... 2-10

Work Areas... 2-11
REDEFINE.. 2-13
Special Fields and Reserved Words.. 2-14

Chapter 3: Syntax Rules
Using Punctuation... 3-1
Continuation Rules ... 3-2
Naming Conventions.. 3-2
Contents iii

Number of Characters per Input Line.. 3-4
Rules for Comparing Fields... 3-4
Rules for Moving Fields ... 3-6
Literals .. 3-8

Chapter 4: Using the OPTION Command
260 Option (VISION:Sixty Users Only).. 4-4
QUIKJOB Option (VISION:Report Users Only) ... 4-4
FILE PRINT Options... 4-5

Module Options... 4-7
Specification of Default FREEZE ddname... 4-8
Free-form COLUMNS Option... 4-8
VERIFY Option.. 4-9
DATA Option ... 4-9
Extended Error Option ... 4-9
Enhanced Error Analysis .. 4-10
Suppress VISION:Results Control Totals Option ... 4-10
Number of Lines per Page Option.. 4-11
OPTLIST and NOOPTLIST ... 4-11
Cross-Reference Option.. 4-11

XREF and XREFA Options... 4-12
DMAP Option.. 4-12

Programming Mode Option .. 4-13
RESTART and RESTORE Options (Multiple Reports)... 4-13
Qualification of Data Name Option ... 4-14
Allocating Memory for Tables and Arrays.. 4-14
Work File Option ... 4-15
Symbolic Unit and File Name Option ... 4-15
REPORTFILE Option ... 4-16
Spooling Option ... 4-16
VISION:Excel OPTION NOEXCEL (VISION:Excel Users Only) ... 4-17
Extended Arithmetic List Option.. 4-17
$$DUMP Option.. 4-17
$$PCB Option .. 4-18
$$KEYLEVEL Option ... 4-18
MSGCSECT Option... 4-18
Print Entry Point Address Option .. 4-18
Null Output File Option... 4-19
Options Useful for Technical Support.. 4-19
iv VISION:Results Reference Guide

Divide by Zero Condition Keyword .. 4-19
Characteristics of VSAM Files ... 4-20
PDS Replace ... 4-20
DYLETIME Format Change... 4-21
Premature Sort Termination Without Abend.. 4-21
CDLOAD Facility ... 4-21
IQBATCH .. 4-22
COBOL II Environment ... 4-22
Match File Attributes for VSE Sequential Files .. 4-22
Currency Symbol Substitution ... 4-23

Four-Digit Year Support .. 4-23
Program Fixes Employed... 4-24
IBM Language Environment (LE) Support ... 4-24
User-Defined Index Fields ... 4-24
System-Determined Block Size Support for OS/390 ... 4-25
IF NUMERIC Test for PD Fields ... 4-25
Modifying IF NUMERIC Test.. 4-26
TABLE or ARRAY Allocation Above the 16M Line ... 4-26
Options for VISION:Interface.. 4-26
Examples .. 4-27

Chapter 5: Data Name Qualification
Qualification Format... 5-2
Qualifying of Keywords and Self-Defining Data Names.. 5-2
Qualifying Work Areas... 5-3
Qualifying with Multiple Reports .. 5-4
MOVE CORRESPONDING and OPTION QLF.. 5-4
Options XREF/XREFA and DMAP with QLF ... 5-5

XREFA Option ... 5-6
DMAP Option.. 5-7

No Qualified Data Names Option .. 5-8
Contents v

Chapter 6: Using the FILE Command
Supported Access Methods .. 6-4

BDAM (or DAM) Files.. 6-5
EXIT Files.. 6-5
ISAM Files .. 6-6
PDS Files ... 6-6
SEQUENTIAL Files... 6-7
SSL Files ... 6-7
VSAM ESDS Files .. 6-7
VSAM KSDS Files ... 6-9
VSAM RRDS Files ... 6-9

Syntax Definitions (General) ... 6-10
Filename ... 6-10
File Organization... 6-11
Input/Output Type... 6-11
Processing Mode ... 6-11
FROM filename.. 6-12
Record Format ... 6-13
Record Size ... 6-13
Block Size.. 6-14
STATUS dataname .. 6-15
LENGTH dataname .. 6-15
COUNT dataname .. 6-17
CARD or CARDS .. 6-17
JCL ... 6-18
INTERPRET ... 6-18
SELECT dataname .. 6-19
INTSEL dataname ... 6-19
BYPASS nn.. 6-19
DUMMY ... 6-20
NULL .. 6-20
DROPERR... 6-20
SYSnnn.. 6-21
Device Specifications .. 6-21
Multiple File Input .. 6-22
ONEBUFF... 6-24
DYNAM.. 6-24
vi VISION:Results Reference Guide

ISAM and VSAM Syntax Definitions ... 6-25
KEYLEN nnn ... 6-25
KEYLOC nnnn... 6-25
STATUS dataname .. 6-25
POSITION dataname.. 6-26
PARTKEY nnn.. 6-26
REUSE... 6-27
ERASE dataname .. 6-27
RELBYTE dataname and RELBYTEX dataname .. 6-29
PASSWORD ‘password’ ... 6-30
PASSWORD dataname... 6-30
CYLOFL nn .. 6-30
EXTENTS nn .. 6-31
MASTER ... 6-31

RETAIN... 6-31
EXIT and MODIFY.. 6-31

MODIFY modulename [nK] .. 6-31
EXIT modulename [nK] ... 6-32
SIZE nnnnn .. 6-34
MODIFY ... 6-34
EXIT... 6-34
PARM (dataname)... 6-34
IOAREA.. 6-35
WORK... 6-35

IOU-Processed Files .. 6-35
Considerations for Processing Variable-Length Records .. 6-36

Record Size ... 6-36
Block Size.. 6-36
Location of Data Within Record.. 6-36
Length of Current Record .. 6-37
Output from Itself ... 6-37
Output from an Input File.. 6-37
File Printing Variable Files ... 6-37
Sorting a Variable File... 6-38
Exceptions to the Above Rules.. 6-38

Considerations for Unblocked ISAM Files .. 6-39
Sequential Read ... 6-39
Sequential Load/Extend .. 6-40
Random Retrieval.. 6-40
Random Update .. 6-40

Considerations for Concatenated Input Files ... 6-41
Contents vii

Chapter 7: Using the IF Command
Comparing and Selecting Data ... 7-1

IF .. 7-2
NOT... 7-2
Relational Operators ... 7-2
Dataname or Literal .. 7-3
True Condition-1 Imperatives ... 7-3
False Condition Imperatives.. 7-4
ENDIF ... 7-4

Range Compares ... 7-4
Series Compares .. 7-5
Combined Range and Series Compares... 7-5
Class or Status Tests .. 7-5

Test for Positive Value .. 7-5
Test for Negative Value .. 7-6
Test for Numeric Value... 7-6
Test for Bits On... 7-7
Test for Bits Mixed... 7-8

Compound Compares .. 7-8
Select or Process if Any of Several Conditions Is True .. 7-9
Select or Process if All of Several Conditions Are True ... 7-10

Combining Compound Compares ... 7-10
Interval and Random Selection of Data .. 7-12

Chapter 8: Structured Programming
Structured Option ... 8-1

Sequence ... 8-1
Selection.. 8-1
Iteration... 8-2

Invoking Structured Mode... 8-3
Restrictions... 8-5
Suggested Coding Standards .. 8-5
Sequence Structure.. 8-8

PERFORM .. 8-8
viii VISION:Results Reference Guide

Selection Structure... 8-9
IF .. 8-9
Placement of ENDIF ... 8-10
Nesting IF ... 8-10
IF Restrictions .. 8-11
CASE ... 8-11
Nesting and CASE .. 8-13
CASE Restrictions ... 8-13
EXITCASE .. 8-13

Iterative Structure.. 8-14
DOWHILE.. 8-14
DOUNTIL... 8-15
Placement of ENDDO... 8-15
Nesting and DOWHILE or DOUNTIL .. 8-15
DOWHILE or DOUNTIL Restrictions ... 8-16
EXITDO... 8-16
ITERATE ... 8-17

Automatic Cycle .. 8-18
Cycle Without SORT ... 8-18
Cycle with SORT ... 8-20

Structured Programming Techniques .. 8-22
Select Records for SORT ... 8-22
ACCEPT.. 8-23
REJECT.. 8-25
GOTO .. 8-25

Structured Programming Examples ... 8-25

Chapter 9: USERDEFAULT Mode Programming
USERDEFAULT Option.. 9-1
Invoking USERDEFAULT Mode... 9-1
FILE ... 9-2

Record Format ... 9-2
Record Size ... 9-2
Block Size.. 9-3

Field Definitions .. 9-3
Size/Length.. 9-3

Procedure Logic... 9-3
LIST ... 9-4
USERDEFAULT Considerations ... 9-5
Examples of Programming in USERDEFAULT Mode... 9-5
Contents ix

Chapter 10: Using the MOVE Command
Move Field to Field ... 10-3
Move Field to Field — Variable Length ... 10-3
Move Literal to Field... 10-4

Move Numeric Literal to a Field... 10-4
Move Character Literal to a Field ... 10-4
Move Hexadecimal Literal to a Field ... 10-5

Move Blanks to Character Field .. 10-6
Move Field or Literal to a Subtotal Field ... 10-6
MOVE NUMERIC... 10-6
MOVE ZONE... 10-7
MOVE with OFFSET... 10-7
COMBINE BITS Using OR... 10-8
AND a Field or Literal with a Field.. 10-9
COMBINE BITS Using EXOR.. 10-10
MOVE CORRESPONDING Qualifier to Qualifier... 10-11
MOVE UNSIGNED|ABSOLUTE|NORMALIZED .. 10-12

Chapter 11: Using Arithmetic Commands
Valid Arithmetic Operators ... 11-1
Indexing.. 11-2
Rounding .. 11-2
Exponentiation... 11-3
Order of Computation .. 11-3
Arithmetic Restrictions... 11-5

Chapter 12: Using the SORT Command
Sorting a File .. 12-2

Filename ... 12-2
nK .. 12-3
USING dataname .. 12-3
USING dataname for Y2K Formats .. 12-4
A or D.. 12-6
WORK n.. 12-7

ON END OF SORTING .. 12-9
SORT A FILE ... UNTIL .. 12-12

UNTIL ... 12-12
UNTIL filename... 12-12
UNTIL dataname .. 12-17
x VISION:Results Reference Guide

Sorting a Dataname ... UNTIL... 12-22
Record Size ... 12-22
USING... 12-23
UNTIL ... 12-23
UNTIL filename... 12-23
UNTIL dataname .. 12-28

RELSORT and RETSORT Commands.. 12-28
Limitations and Constraints .. 12-34
Problem Areas.. 12-35
Sort Considerations... 12-36
OS/390 JCL Requirements... 12-37
VSE JCL Requirements ... 12-37
CMS FILEDEF Requirements .. 12-38

Chapter 13: Using the CALL Command
Subroutine Name .. 13-1
nK .. 13-2
CDLOAD, NOCDLOAD.. 13-2
USING... 13-3
Parameters.. 13-3
Return Code RETCODE... 13-5
External Subroutine Considerations... 13-5
Language Environment Considerations .. 13-5
COBOL Subroutine Considerations ... 13-6
COBOL Problem Areas... 13-9
Assembler Subroutine Considerations .. 13-10
PL/I Subroutine Considerations... 13-12

PL1EXIT Source Program... 13-14
Writing a Modify Module .. 13-15

PARM .. 13-16
SIZE ... 13-16

Writing an EXIT Module .. 13-16
PARM .. 13-17
STATUS... 13-18

Subroutines Link Edited as AMODE(31)... 13-18
Contents xi

Chapter 14: Using Procedural Commands
Commands ... 14-3

GOTO .. 14-3
NEXT... 14-3
ACCEPT.. 14-3
REJECT.. 14-4
STOP.. 14-4
STOPALL .. 14-4
QUIT.. 14-5
QUITALL.. 14-5
PERFORM .. 14-5
READ filename .. 14-7
WRITE filename .. 14-7
CLOSE filename .. 14-7

Procedures .. 14-9
ON ONE, ENDONE.. 14-9
ON END OF INPUT ... 14-10

Indexing.. 14-13
Commands Used with Indexing ... 14-15
Indexing Restrictions .. 14-15

TRANSLATE.. 14-16
Dataname1 FROM... 14-16
INTO dataname2... 14-17
UPPER, LOWER.. 14-17
ASCII, EBCDIC.. 14-18
TRANSLATE dataname1 [INTO dataname2] ... 14-18

EDIT .. 14-18
Non-Standard Edits .. 14-19
Standard Edits.. 14-20

Edit Codes .. 14-21
Dynamic Allocation .. 14-24

Rules for Dynamically Allocating Files ... 14-25
JCL Considerations ... 14-26

Procedural Command Examples .. 14-27
Example 1. The Allocate Facility... 14-27
Example 2. The Allocate Facility and MOVE Command in the OUTJCL Fields 14-28

Other Commands Affected by Dynamic Allocation.. 14-29
PICNSAVE Command.. 14-30
REPORT Statement ... 14-30
LTH Statement ... 14-30
CALL Command... 14-30
Diagnostic Output and Error Messages... 14-31
xii VISION:Results Reference Guide

Chapter 15: Using the COPY or COPYE Command
Formats ... 15-2
Examples .. 15-4
Rules, Limitations, and Constraints ... 15-11
OS/390 COPY or COPYE Command Requirements ... 15-13
OS/390 $DEFAULT Command Requirements ... 15-15
OS/390 JCL Requirements... 15-15
VSE COPY or COPYE Command Requirements ... 15-16
VSE $DEFAULT Command Requirements.. 15-16
VSE JCL Requirements ... 15-16
COPYC Considerations .. 15-17
COPYL Considerations .. 15-17

CA-Librarian OS/390 JCL.. 15-17
CA-Librarian VSE JCL.. 15-17

COPYP Considerations .. 15-18
CA-Panvalet OS/390 JCL... 15-18
CA-Panvalet VSE JCL ... 15-18

Using COBOL Record Descriptions .. 15-18
Replacing of Character Strings.. 15-18
Instream COBOL Facility ... 15-19
Rules for Using COBOL Record Descriptions .. 15-19
COBOL Examples ... 15-20
COBOL Replacing Literal .. 15-22
COBOL Replacing Pseudo-text ... 15-23

Prefixing Data Names... 15-23
Using DB2 Tables .. 15-24

COPYDB2 Requirements ... 15-25
VARCHAR Data Type Support ... 15-27
Generating Null Indicator Fields .. 15-28
COPYDB2 Example... 15-28
JCL DB2 Overrides Example ... 15-29
Contents xiii

Chapter 16: Using Report Statements
Report Statement ... 16-2

OS/390 .. 16-2
VSE .. 16-2
nnn WIDE... 16-3
DELIM... 16-3
nnn LONG.. 16-3
nn BETWEEN .. 16-4
Modulename|ASA ... 16-4
SYS280Rx .. 16-5
HTML ddname .. 16-5
PLUnnn... 16-16
AND .. 16-17

Title and Footing Statements ... 16-18
Tn... 16-18
Title Contents ... 16-18
FIXED.. 16-18
FOOTING ... 16-19
WITH n AFTER.. 16-19
Additional Information .. 16-20

Title or Footing Modification Statement .. 16-21
Tn... 16-21
Alphanumeric Literal ... 16-22
Numeric Literal ... 16-22
Data Names.. 16-23
Reserved Words... 16-23
Additional Information .. 16-23
Limitations and Constraints .. 16-25

LIST Statement... 16-26
LIST ... 16-26
Dataname.. 16-28
Keyword ... 16-28
Dataname.. 16-35
dataname AT dataname2 ... 16-39
Dataname AT dataname2 +n ... 16-40
Literal .. 16-42
TALLY / TALLYn .. 16-44
Column Heading... 16-46

Print Line Spacing ... 16-48
WITH n BEFORE and WITH EJECT BEFORE .. 16-49
WITH n AFTER and WITH EJECT AFTER.. 16-49

Alignment of Data Names and Literals at Detail Time (Multi-line) .. 16-50
Alignment of Data Names and Literals at ON CHANGE IN and ON FINAL Time 16-52
xiv VISION:Results Reference Guide

Fixed Print Position Reporting.. 16-54
dataname .. 16-54
nnn (Print Location).. 16-55

CONTROL or SUBTOTAL Statement ... 16-56
ON CHANGE IN .. 16-57
ON FINAL.. 16-59
Report Examples ... 16-60
Report Print Line Exit — Your Exit Routines.. 16-75

Procedure.. 16-75
Considerations for Writing Your Report Line Exit ... 16-77

Chapter 17: Multiple Reports and Multiple Requests
REPORTnnn Statement .. 17-1

SYS280Rx .. 17-2
USE Statement ... 17-2

STATUS dataname .. 17-3
PICNSAVE Statement ... 17-3

idname .. 17-4
USING dataname .. 17-4
BY nnnnn.. 17-4
SYSnnn.. 17-5
DISK nnnn.. 17-5
TAPE.. 17-5

Multiple Requests.. 17-5
Freezing and Restoring Multiple Reports ... 17-6
Multiple-Report Examples... 17-6

OS/390 .. 17-7
VSE .. 17-15

Chapter 18: File Print Commands
Printing Using the Option Statement... 18-3
Printing Using the Print Immediate Commands.. 18-4

Filename, Dataname, Indexed Dataname, or Literal ... 18-6
LENGTH n or dataname ... 18-6

Other Print Features.. 18-8
Comments .. 18-8
Record Number ... 18-9
Contents xv

Chapter 19: VSAM Processing
Syntax Format.. 19-2
Creating a File .. 19-3

Key Sequence VSAM (KSDS) Create.. 19-4
Entry Sequence VSAM (ESDS) Create ... 19-6
Relative Record VSAM (RRDS) Create .. 19-7

Sequential Read ... 19-8
Key Sequence VSAM (KSDS) Sequential Read... 19-8
Entry Sequence VSAM (ESDS) Sequential Read .. 19-9
Relative Record VSAM (RRDS) Sequential Read ... 19-10

Limited (Skip) Sequential Read... 19-11
Key Sequence VSAM (KSDS) Skip Sequential Read.. 19-12
Entry Sequence VSAM (ESDS) Skip Sequential Read ... 19-16
Relative Record VSAM (RRDS) Skip Sequential Read .. 19-18

Random Read .. 19-20
Key Sequence VSAM (KSDS) Random Read .. 19-21
Entry Sequence VSAM (ESDS) Random Read.. 19-23
Relative Record VSAM (RRDS) Random Read... 19-25

Sequential Update ... 19-27
Key Sequence VSAM (KSDS) Sequential Update... 19-27
Entry Sequence VSAM (ESDS) Sequential Update .. 19-30
Using the RELBYTE or RELBYTEX dataname.. 19-31
Relative Record VSAM (RRDS) Sequential Update ... 19-32

Random Update .. 19-33
Key Sequence VSAM (KSDS) Random Update .. 19-34
Entry Sequence VSAM (ESDS) Random Update.. 19-37
Using the RANDOM/RANDOMX dataname.. 19-39
Relative Record VSAM (RRDS) Random Update .. 19-40

Sequential Insert and Extend... 19-42
Key Sequence VSAM (KSDS) Sequential Insert/Extend... 19-42
Entry Sequence VSAM (ESDS) Sequential Insert/Extend .. 19-43
Relative Record VSAM (RRDS) Sequential Insert/Extend ... 19-44

Considerations for Processing Variable-Length Records .. 19-46
Record Size ... 19-46
Block Size.. 19-46
Location of Data within Record .. 19-46
Length of Current Record .. 19-46
Output from Itself ... 19-46
Output from an Input file .. 19-46
File Printing of Variable Files .. 19-47
Sorting a Variable File... 19-47

Numeric and Packed Key Considerations... 19-47
KSDS Examples ... 19-49
ESDS Examples.. 19-52
xvi VISION:Results Reference Guide

Chapter 20: ISAM Processing
Syntax Format.. 20-1
Creating a File .. 20-2

ISAM Create... 20-2
Sequential Read ... 20-4

ISAM Sequential Read.. 20-4
Skip Sequential Read .. 20-6

ISAM Skip Sequential Read... 20-6
Random Read .. 20-10

ISAM Random Read ... 20-10
Sequential Update ... 20-13

ISAM Sequential Update.. 20-13
Random Update .. 20-17

ISAM Random Update ... 20-17
Sequential Insert or Extend.. 20-20

ISAM Sequential Extend .. 20-21
Considerations for Processing Variable-Length Records .. 20-23

Record Size ... 20-23
Block Size.. 20-23
Location of Data within Record .. 20-23
Length of Current Record .. 20-23
Output from Itself ... 20-23
Output from an Input file .. 20-24
File Printing of Variable Files .. 20-24
Sorting a Variable File... 20-24

Unblocked ISAM Files in VSE Considerations .. 20-25
Sequential or Skip Sequential Read.. 20-25
Sequential Load or Extend... 20-25
Random Retrieval.. 20-26
Random Update .. 20-26

Numeric and Packed Key Considerations... 20-26
ISAM Examples ... 20-27

Chapter 21: BDAM Processing
Syntax Format.. 21-1
Record Addressing Schemes ... 21-2

Relative Track and Actual Key .. 21-2
Relative Track and Actual Record Number... 21-2
Relative Block... 21-3

Access Methods ... 21-3
Sequential Access .. 21-3
Random Access.. 21-3
Contents xvii

I/O Statistics .. 21-4
Random Create .. 21-4

Relative Track Number and Actual Key .. 21-5
Relative Track Number and Actual Record Number... 21-7
Relative Block Number... 21-8

Sequential Create... 21-10
Relative Track Number and Actual Key .. 21-11
Relative Track Number and Actual Record Number... 21-13
Relative Block Number... 21-15

Random Read .. 21-17
Relative Track Number and Actual Key .. 21-18
Relative Track Number and Actual Record Number... 21-20
Relative Block Number... 21-21

Sequential Read ... 21-23
Relative Track Number and Actual Key .. 21-23
Relative Track Number and Actual Record Number... 21-25
Relative Block Number... 21-26

Random Update .. 21-27
Relative Track Number and Actual Key .. 21-28
Relative Track Number and Actual Record Number... 21-30
Relative Block Number... 21-32

Other Considerations.. 21-34
Processing Variable-Length Records .. 21-34
Numeric and Packed Key .. 21-35

BDAM Examples ... 21-37

Chapter 22: Using PDS and SSL Support
Using the PDS Function ... 22-2

FILE filename... 22-2
PDS dataname.. 22-3
MEMBER dataname.. 22-3
STATUS dataname .. 22-4
FB|VB|F|V|U recordsize blocksize ... 22-4
LENGTH dataname .. 22-4
COUNT dataname .. 22-4
NEWNAME dataname... 22-5
INPUT ... 22-5
OUTPUT FROM filename.. 22-5

READMEM and READDIR Commands.. 22-5
xviii VISION:Results Reference Guide

WRITEMEM and WRITEDIR Commands .. 22-6
ADD Keyword... 22-7
ALIAS Keyword .. 22-7
CHANGE Keyword .. 22-7
REPLACE Keyword.. 22-8
SCRATCH Keyword ... 22-9

PDS Examples.. 22-9
PDS Directory Format .. 22-22
Source Statement Library Support ... 22-23

Input to VISION:Results .. 22-23
FILE filename... 22-23
BOOK dataname.. 22-24
STATUS dataname .. 22-24
COUNT dataname .. 22-24
Defining the File .. 22-24
Reading a Book.. 22-24

SSL Examples... 22-25

Chapter 23: Using MATCH and MERGE
General Flow of Execution Diagram .. 23-3
MATCH and MERGE Features ... 23-4
Syntax for the MATCH Operation.. 23-5

SETREAD MASTERUP, COMPAREN, and ORIGINAL ... 23-7
USING DY282MAT... 23-7

Recommendations and Requirements for Matching ... 23-8
Match Conditions in the Procedure Logic ... 23-8

SETREAD MASTERUP .. 23-9
SETREAD COMPAREN ... 23-9
SETREAD ORIGINAL.. 23-9
DY282MAT... 23-9
IF ADVANCED file1 ... 23-12
IF MATCHED .. 23-13
IF MATCHED file1 file2 ... 23-13
IF DUPLICATE file1.. 23-14
IF FIRSTDUP file1 ... 23-16
IF LASTDUP file1.. 23-17

MATCH Examples .. 23-18
MERGE ... 23-23
Syntax for the MERGE Operation... 23-23
Recommendations and Requirements for Merging ... 23-25
Merge Conditions in the Procedure Logic... 23-25

IF REPLICA.. 23-27
Contents xix

Merge Example.. 23-28
Error Analysis During Match and Merge.. 23-29
Writing Your Own MATCH Subroutine .. 23-30

DY282MAT Invocation ... 23-31
The DY282MAT MATCH Subroutine .. 23-31
Generated from Your Special MATCH Logic Statements ... 23-33
ON ONE Logic... 23-36
VISION:Results Cycle For MATCH Run Before Your Statements ... 23-36
User Statements With Other Special MATCH Logic.. 23-37
Parms Passed to DY282MAT ... 23-38

Writing Your Own MERGE Subroutine ... 23-46
MERGE Subroutine... 23-46
MERGE Logic (Automatic Cycle) ... 23-47
ON ONE Logic... 23-48
VISION:Results Cycle for MERGE Run Before Your Statements... 23-48
User Statements with Other Special MERGE Logic... 23-48
Parms Passed to DY282MER ... 23-49

Chapter 24: Using Interval Selection
Defining Interval Selection .. 24-1
Internal Selection Criteria .. 24-2
IF SAMPLING Command.. 24-3
IF SAMPLING Command Examples ... 24-4

Chapter 25: Using Random Selection
Input to VISION:Results .. 25-1
Known Universe.. 25-2
Unknown Universe... 25-3
IF SAMPLING Command.. 25-5
Random Selection Examples ... 25-5

VISION:Results Reserved Words.. 25-7
xx VISION:Results Reference Guide

Chapter 26: Table and Array Handling
Allocating Memory ... 26-1
Working with Tables ... 26-2

Syntax for Defining a Table.. 26-2
RETAIN | NORETAIN... 26-4
Table Entry Field Definition(s) .. 26-4
Loading a Table.. 26-4
Sequential Retrieval .. 26-6
Sequential Search... 26-7
Binary Search ... 26-8
Sorting... 26-9
Random Retrieval.. 26-9
Random Replacement... 26-10
USE Command .. 26-13
Error Return Codes ... 26-13
Table Examples .. 26-13

Working with Arrays .. 26-16
Syntax for Defining an Array .. 26-16
Loading an Array .. 26-17
Retrieving from an Array... 26-18
Deleting an Array.. 26-18
USE Command .. 26-18
Error Return Codes ... 26-19
Array Example... 26-19

Chapter 27: Using Letter Writing
Using the Letter Writing Function .. 27-1
Implementing Letter Writing... 27-2

Input to VISION:Results .. 27-3
LTH Statements and Keywords .. 27-4
LTD Statements and Keywords... 27-8
Additional LTD Statement Information... 27-13
LTD Edit Codes.. 27-15

LETTER Command... 27-18
Laser JCL .. 27-19
Letter Writing Considerations... 27-20
Channel Skipping With Two-up Letter Processing ... 27-21
Optimize and Nooptimize ... 27-22
Letter Writing Examples... 27-23
Contents xxi

Chapter 28: Using Diagrams and Analyses
Defining Scatter Diagrams, Linear Regression Analyses, and Trend Line Analyses 28-1

Scatter Diagram ... 28-1
Linear Regression Analyses... 28-2
Trend Line Analyses ... 28-4
Further Sources of Information ... 28-4

Input into VISION:Results... 28-4
Regression Command... 28-8
Output from VISION:Results .. 28-10

Evaluation of Output .. 28-13

Examples of Linear Regression and Trend Line Analyses .. 28-13
Linear Regression Analysis Example ... 28-13
Trend Line Analysis Example.. 28-15

Appendix A: Reserved Words
Reserved Words.. A-1
Definitions ... A-7

Appendix B: Job Control Language
OS/390 JCL ...B-1
VSE JCL ..B-1
VM/CMS ...B-2

Index
xxii VISION:Results Reference Guide

Chapter
1 I
ntroduction
VISION:Results™ is an information management and report generator tool with
an easy-to-use, English-like programming language that makes it easy to program
on any device that allows VISION:Results characters to be input into it.

This guide comprehensively describes the features of VISION:Results, including
commands, with their syntax, multiple examples, and a description of all their
options.

Consisting of five subsystems, VISION:Results provides:

� Comprehensive information processing features

� Powerful report generation

� Easy document handling

� Convenient utility functions

� Extensive data analysis

VISION:Results supports all IBM® file structures and access methods, and is
available for OS/390® (MVS®), VSE, and VM/CMS operating systems.

Intended for use by both programmers and non-programmers, VISION:Results
accomplishes data processing tasks in a fraction of the time that it would take
employing traditional programming languages such as COBOL or PL/I.

Although VISION:Results has the power and flexibility of a full-function
language, it is a supplementary tool and should not replace an installation's
standard programming language.

See the VISION:Results Getting Started Guide for more information about the basic
features of VISION:Results.
Introduction 1–1

Contacting Computer Associates
Contacting Computer Associates
For technical assistance with this product, contact Computer Associates Technical
Support on the Internet at esupport.ca.com. Technical support is available 24 hours
a day, 7 days a week.
1–2 VISION:Results Reference Guide

Chapter
2 F
ield and Work Area Definitions
Field Definitions
Many of the fields that you reference in your VISION:Results program need to be
defined somewhere, either after the FILE statement of the file that the field resides
in, or in a work area if these fields are not part of a file. Work area fields that you
would be referencing in your program might be constants, arithmetic result fields,
or hold fields.

To define a field, typically you would first give it a data name and then follow it
with its attributes. The field must be defined prior to its being used in a program.
The format of a basic field definition is:

dataname field length [starting location]
[data type] [number of decimals]
[VALUE nnn | ’xxx’ | X’nn’ | ALL ’x’ |
ALL X’nn’ | NULL | LOWVALUES | HIGHVALUES [REINIT]]

Additional items in the definition are discussed later in the chapter. These items
pertain to how the field appears when it is listed in a report.

The following program illustrates how field definitions are set up and referenced.

FILE MSTIN FB 100 1000 STATUS MSTSTAT
ACCNUM 5 4 NU ACCNAME 25
BALANCE 5 PD 2 FILLER 22 ACCCODE 1

FILE VSAMDES KSDS RANDOM FINDKEY F 25
KEYLEN 5 KEYLOC 1 STATUS VSAMSTAT

* RECORD DESCRIPTION
VSAMNUM 5 VSAMDESC 20

WORKAREA
COUNTER1 5 PD 2 VALUE 0 REINIT
COUNTER2 5 PD 2 VALUE 0 REINIT

WORKAREA
ERRORMSG1 13 1 VALUE ’NO REC FOUND’
ERRORACCT 5 14
IF MSTSTAT EQ ’E’ STOP ENDIF
IF ACCCODE EQ 1
MOVE BALANCE TO COUNTER1 GOTO GETDESC ENDIF

IF ACCCODE EQ 2
MOVE BALANCE TO COUNTER2 ENDIF

GETDESC:
MOVE ACCNUM TO FINDKEY
READ VSAMDES
IF VSAMSTAT NE ’Y’

Figure 2-1 WORKAREA Definitions in a Program (Page 1 of 2)
Field and Work Area Definitions 2–1

Field Definitions
In the previous example, an account master file is being read and reported on.
Additionally, a VSAM file containing a description of each account is read
randomly using the Account Number field (ACCNUM) in the master record. The
description obtained from the VSAM file is listed in the report along with some of
the fields from the account master file. If a record is not found on the VSAM file,
an error message is printed and the run is terminated.

The following items make up a field definition:

� Field Length on page 2-3

� Starting Location on page 2-3

� Redefining a Field on page 2-4

� Data Type on page 2-4

� Number of Decimals on page 2-5

� VALUE nnn |`xxx'|X`nn'|ALL|NULL|LOWVALUES|HIGHVALUES on
page 2-5

� REINIT on page 2-7

Dataname
A data name is required. It can be 2 to 50 characters long (installation default is 50
characters), and it must always begin with a letter. It can consist of letters,
numbers, and any of the following characters:

MOVE ACCNUM TO ERRORACCT
PRINT ERRORMSG1 LENGTH 18

STOP ENDIF
LIST ACCNUM (ACCOUNT NUMBER) ACCNAME (ACCOUNT’NAME)
VSAMDESC (ACCOUNT’DESCRIPTION) COUNTER1 (CODE 1’BALANCE)
COUNTER2 (CODE 2’BALANCE)

ON FINAL
LIST ’GRAND TOTAL’ AT VSAMDESC SUM COUNTER1 SUM COUNTER2
WITH 3 BEFORE

Figure 2-1 WORKAREA Definitions in a Program (Page 2 of 2)

Pound sign \ Backslash

$ Dollar sign [Left bracket

% Percent sign] Right bracket

| Solid vertical bar ¢ Cent sign

! Exclamation mark _ Underscore

? Question mark } Right brace

<< Less than sign { Left brace

>> Greater than sign
2–2 VISION:Results Reference Guide

Field Definitions
Characters not allowed are:

Field Length
The field length (in bytes) is required. The valid lengths for the various data types
are as follows:

� 1 to 32767 for character (CH) data

� 1 to 16 for numeric (NU) data

� 1 to 16 for packed (PD) data

� 1 to 4 for binary (BI) data

In Figure 2-1 on page 2-1, ACCNUM is 5 bytes long and ACCNAME is 25 bytes
long.

Starting Location
A starting location entry is optional. The number entered as the starting location
tells where in the record or work area the field starts. The first byte of a record or
work area is location 1.

If no starting location is given and this is the first field entry for the file or work
area, it is assumed that the starting location for the field is position 1. Each
subsequent field definition then defaults to the starting location immediately after
the end of the previously defined field.

In Figure 2-1 on page 2-1, the ACCNUM field’s location is coded as 4 because it
does not start in location 1. If omitted, VISION:Results sets it at 1. You can assign
locations to any or all of the fields in the MSTIN file. Looking at the ACCNAME
field definition, because only a length, not a location is coded, VISION:Results
gives it a starting location of 9, which is the next location in the record after the
ACCNUM field.

Note: A data name is located beyond position 32767 in a work area.

Blank ; Semicolon

^ Not sign : Colon

& Ampersand / Slash

` Back apostrophe , Comma

~ Tilde = Equal sign

| Broken vertical bar (Left parenthesis

. Period * Asterisk

) Right parenthesis @ At sign

- Minus sign + Plus sign

’ Apostrophe “ Quotation mark
Field and Work Area Definitions 2–3

Field Definitions
FILLER Keyword
If the fields that you are defining are not contiguous and you do not want to
calculate starting locations, the keyword FILLER can be used to indicate
unreferenced areas between fields to be referenced. Following the keyword
FILLER, code the number of bytes between the previously defined field and the
next field to be defined.

In Figure 2-1 on page 2-1, FILLER is coded between BALANCE and ACCCODE to
cause the proper starting location to be assigned to ACCCODE without actually
stating it.

The automatic starting location assignment feature of VISION:Results is
particularly useful when you are working with COBOL record descriptions that do
not contain the starting locations of fields.

Redefining a Field
There are times in a record or work area when you need to define the same
locations in several ways. You do this by specifying the starting location of the field
that is redefining another.

FILE ACCTFLE FB 80 800
NAME 20 11
DATE 6 NU
MONTH 2 31 NU
DAY 2 33 NU
YEAR 2 35 NU

The field DATE is being redefined by MONTH, DAY, and YEAR. Because DATE
starts in location 31 after NAME, MONTH will start in 31, DAY in 33, and YEAR
in 35. See Work Areas on page 2-11 and REDEFINE on page 2-13 for a complete
description of redefining fields.

Data Type
Specifying the data type is optional. The default is character data type. Use one of
the following codes to indicate the type of data contained or to be contained in the
field you are defining. The supported codes are:

In Figure 2-1 on page 2-1, ACCNUM is defined as a numeric field (zoned decimal);
ACCNAME is not given a data type, so character is assumed. BALANCE is a
packed decimal field.

blank Character data.

CH Character data.

NU Numeric data (zoned decimal).

PD Packed decimal.

BI Binary data.
2–4 VISION:Results Reference Guide

Field Definitions
Number of Decimals
Coding is optional. The default is zero decimals. Code a value in the range of 0 to
9 to indicate the number of digits to the right of the assumed decimal point in the
field being defined. Character data cannot be given a number of decimals value.

In Figure 2-1, BALANCE is defined as having two decimal positions. COUNTER1
and COUNTER2 in the first work area are also two decimal fields.

VALUE nnn
|`xxx'|X`nn'|ALL|NULL|LOWVALUES|HIGHVALUES

When you are defining a field that is in an output record area or a work area, you
can have VISION:Results set that field to a particular value. For example, the
COUNTER1 and COUNTER2 packed fields defined in the first work area are set
to 0 before execution begins. The character field ERRORMSG1 has been assigned
a value of NO REC FOUND.

Input file fields cannot be assigned values because the area varies depending on
the location of the current record in the file’s buffer or buffers. Also, it would be
meaningless to set a value because the value is that of the field in the record when
it is read. In Figure 2-1, assigning a value of 0 to BALANCE in the input record
would cause an error.

Numeric Values nnn
Numeric values can be expressed with a leading minus sign if negative, commas,
and a decimal point. They can contain a maximum of 16 digits. The total length of
the numeric literal must not exceed 20 bytes. It can be used in field definitions for
numeric (NU), packed (PD), or binary (BI) fields. Zero filling and decimal
alignment are automatic (for example, in Figure 2-1 on page 2-1, the 2-decimal
COUNTER1 field is completely zeroed even though 0 has been given as the value,
not 0000000.00).

MAXAMOUNT 5 PD 2 VALUE 9,999,999.99
NEG 1 PD VALUE -1
ACCOUNT 5 NU VALUE 421

Character Values `xxx'
A character or alphanumeric value, such as ERROR 15 or 317-4275, is expressed by
enclosing it in single or double quotation marks. In Figure 2-1, the ERRORMSG1
field in the work area shows such a value.

A single character value (string of characters) can be up to and including 255 bytes
in length. This value can also consist of several lines (broken into multiple literals),
each enclosed by single quotation marks. Following is an example, TABLE1, in
which the total length is 36 and value (the uppercase alphabet and 10 numbers) is
broken into two literals.

TABLE1 36 VALUE ’ABCDEFGHIJKLMNOPQRSTUVWXYZ’
’0123456789’
Field and Work Area Definitions 2–5

Field Definitions
Above, a 36-byte literal that is used to initialize TABLE1 is being continued to a
second line. If the value you are coding in the field definition is smaller than the
field it is initializing, the literal is left-aligned and padded with blanks. In the
original example, notice that the ERRORMSG1 value is 12 characters but is defined
as 13 bytes in length. VISION:Results will move NO REC FOUND to the field.

Hexadecimal Values X`nn'
When you are initializing a field to a value that cannot be expressed using the
regular alphanumeric or special character representation, you can use
hexadecimal notation. The field to be assigned a value in this manner can be a
maximum of nine characters. It must have a character or binary data type and zero
decimals. The field and value must be the same length.

TABLEX 9 VALUE X’010203040506070809’

A table area is being initialized to binary 01, 02, 03, and so on.

SWITCH 1 VALUE X’FF’

A 1-byte field is being set to high-values (all binary ones).

ALL Values
The keyword ALL propagates a single character throughout a character field. For
example, the following statements initialize each field to the same value:

FIELDA 5 CH VALUE ALL ’*’

FIELDA 5 CH VALUE ’*****’

NULL Values
The keyword NULL initializes character fields to blanks and numeric fields to
zero. For example, these two statements have the same meaning:

FIELD1 5 CH VALUE NULL

FIELD1 5 CH VALUE ’ ’

These two statements have the same meaning:

FIELD2 5 PD VALUE NULL

FIELD2 5 PD VALUE 0

These two statements have the same meaning:

FIELD3 4 BI VALUE NULL

FIELD3 4 BI VALUE 0

These two statements have the same meaning:

FIELD4 5 NU VALUE NULL

FIELD4 5 NU VALUE 0
2–6 VISION:Results Reference Guide

Extended Format
LOWVALUES Values
The keyword LOWVALUES initializes character fields to binary zeros and binary
fields to zero. For example, these two statements have the same meaning:

FIELD1 5 CH VALUE LOWVALUES

FIELD1 5 CH VALUE X’0000000000’

These two statements have the same meaning:

FIELD2 4 BI VALUE LOWVALUES

FIELD2 4 BI VALUE 0

HIGHVALUES Values
The keyword HIGHVALUES initializes character fields to binary X’FF’s. For
example, these two statements have the same meaning:

FIELD1 5 CH VALUE HIGHVALUES

FIELD1 5 CH VALUE X’FFFFFFFFFF’

REINIT
The keyword REINIT coded after your VALUE phrase tells VISION:Results to
reset the value at the beginning of each cycle. This is a very useful feature when
you want to reset areas to zeros or blanks because it saves you the trouble of doing
moves to clear counters, record areas, and so on, before processing a new record
or records.

In Figure 2-1 on page 2-1, the fields COUNTER1 and COUNTER2 in the work area
are set to 0 before each record of the MSTIN file is processed.

REINIT should not be used with fields defined after a SORT statement because the
reinitialization process does not occur as expected. When a program contains the
SORT command, reinitialization occurs during the release (input phase of SORT
only). See Chapter 12, Using the SORT Command for more information about the
SORT command.

Extended Format
The extended format of a field definition looks like this:

dataname field length [starting location]
[data type] [number of decimals] [edit code]

[report output field size] [ROUND or ROUNDED]
[column headings] [LEFT or RIGHT] [SUM or NOSUM]
[VALUE nnn | ’xxx’ | X’nn’ | ALL ’x’ | ALL X’nn’ | NULL |

LOWVALUES | HIGHVALUES [REINIT]]

Field length, starting location, data type, number of decimals, and VALUE are
defined in the previous section.
Field and Work Area Definitions 2–7

Extended Format
Edit Code
Edit coding is optional. This entry can be coded to override the default edited
format of a numeric, packed, or binary field that is being listed in a report. If you
do not supply an edit code, the default edit code (P) does not zero suppress or
insert commas in the printed field. It edits with a decimal point and a minus sign
to the right of the field if negative.

By specifying the edit code, you can cause VISION:Results to place currency signs
and negative signs to the left of the number. Placement of negative signs in front
of numbers is useful when downloading reports created in VISION:Results to a PC
spreadsheet program, most of which require that negative numbers have the
minus sign in front of the number.

In Figure 2-1 on page 2-1, if the 5-byte numeric field ACCNUM has a value of
00123, it will print as 00123 in the report. If the 5-byte, 2-decimal field COUNTER1
contains a value of 999999999, it prints as 009999999.99 (two digits were added
because the field is being SUMmed).

See Edit Codes on page 14-21 for a complete list of VISION:Results edit codes.

Report Output Field Size
This entry is optional. It indicates how many whole number positions and how
many decimal positions are to be printed on the report if the field is printed (not
applicable to character data fields). The format for this entry is x.y, where x
represents the number of digits to the left of the decimal point and y represents the
number of digits to the right of the decimal point. The format can also be x only, or
.y if only the number of decimal positions is being changed.

In Figure 2-1 on page 2-1, COUNTER1 is defined:

COUNTER1 5 PD 2 VALUE 0 REINIT

A 5-byte packed field contains nine digits [(2 x 5)-1]. Because two decimal places
are specified in this example, the field contains seven integers and two decimal
places with the maximum value possible of 9,999,999.99.

Because the field is being totaled (see SUM COUNTER1 in the ON FINAL LIST
statement), VISION:Results adds two integer positions so that up to nine integers
and two decimal places print with a maximum value possible of 999,999,999.99. If
you only want to print six integers and no decimals, you can code the following in
your field definition:

COUNTER1 5 PD 2 6.0 VALUE 0 REINIT

You cannot indicate only 6. Doing so means 6.2, because the default number of
decimal positions to print is 2, the same as the number of decimal positions in the
field.

Computer Associates strongly recommends that the use of the report output field
size be carefully considered for fields defined with edit codes G, J, K, or L. An
insufficient size causes truncation of the minus sign and can result in extraneous
data being printed on the report.
2–8 VISION:Results Reference Guide

Extended Format
If the output print size entry is omitted, VISION:Results calculates the size in the
following manner:

� If the field is not totaled (SUM is not used with the field in a LIST statement),
the number of digits to print is the number of digits in the field. For example, a
4-byte packed field contains seven digits; so if you are printing a 4-byte packed,
2-decimal field, VISION:Results assigns five digits to the left of the decimal
point and two digits to the right for a maximum printable value of 99,999.99.

� If the field is totaled (SUM is used with the field in a LIST statement),
VISION:Results assigns two more digits to the left of the decimal point when
printing to allow for more significance. In the case of a totaled 4-byte, 2-decimal
packed field, VISION:Results provides for seven digits to print to the left of the
decimal point and two digits to the right for a maximum printable value of
9,999,999.99.

� The number of decimal positions printed in the report defaults to the number
in the field.

ROUND or ROUNDED
The keywords ROUND or ROUNDED are optional. Use either of these keywords
when the number of decimals for the field on output is less than the number of
decimals for that field on input, and you want the value to be rounded before it is
truncated. Otherwise, only the truncation occurs.

In Figure 2-1 on page 2-1, if COUNTER1 is defined as follows, the number of
decimal positions is truncated to 0 when the field is printed. With the ROUNDED
option coded, if COUNTER1 has the value of 1234.56, it prints as 1,235.

COUNTER1 5 PD 2 E 7.0 ROUNDED VALUE 0 REINIT

Column Heading
In a VISION:Results report, the default column heading of a field is the data name
of that field unless overridden in the field definition or in the LIST statement. In
the original example, the LIST statement column headings are stated for every
field. The field ACCNUM is given the heading (ACCOUNT NUMBER),
ACCNAME is given the heading (ACCOUNT’NAME), and so on. This can also be
done during the definition of the field:

ACCNUM 5 4 NU (ACCOUNT NUMBER)
ACCNAME 25 (ACCOUNT’NAME)
COUNTER1 5 PD 2 (CODE 1’BALANCE) VALUE 0 REINIT

It is preferable in most cases to indicate the headings in the LIST statement. This
allows you to keep them along with the other field attributes in a library and COPY
them into the program, rather than coding them each time.

Note: A LIST statement column heading takes precedence over one in the field
definition.
Field and Work Area Definitions 2–9

Extended Format
The apostrophe between the column heading is used to stack the column heading.
For example, (ACCOUNT’NAME) is shown as:

ACCOUNT

NAME

A maximum of nine column headings can be stacked. A maximum of 30 characters
is allowed for column headings.

LEFT or RIGHT
The keywords LEFT or RIGHT are optional. Use them to indicate that the column
heading is to be aligned to the LEFT or RIGHT of the column instead of being
centered above it on the report. The keyword applies if the default column heading
(the data name) is used or if the user specifies a column heading as part of the data
name definition or the actual LIST statement.

NAME 25 85 LEFT
BALANCE 5 PD 2 (BALANCE’OWING) RIGHT

SUM or NOSUM
The keywords SUM or NOSUM are optional. They only have meaning if
VISION:Results is running in OPTION USERDEFAULT mode. (See Chapter 9,
USERDEFAULT Mode Programming for a complete discussion of the
USERDEFAULT option.) In the other modes, VISION:Results ignores the
keywords. In OPTION USERDEFAULT mode, VISION:Results automatically
totals all non-character fields specified on a LIST statement. You can specify
NOSUM on the data name definition if you do not want the field totaled.

The keyword SUM on the data name definition indicates that the field is to be
totaled. This keyword is not necessary because this is the default for all
non-character fields. The keywords SUM and NOSUM are ignored if they are
specified for a character field.

TRANS 7 NU NOSUM

BALANCE 5 PD 2 SUM

A data name having the same name as the file is automatically generated by
VISION:Results. It is a 1-byte character field whose location is the first byte of data
in the record.
2–10 VISION:Results Reference Guide

Work Areas
Work Areas
Work areas are fields or areas you can set up in your program to be used however
you want. You can use them to hold some counters or a table area or a record. This
is done by first coding the command WORKAREA and following it with field
definitions.

WORKAREA
COUNTER1 5 PD 2 VALUE 0
COUNTER2 5 PD 2 E 7.0 ROUNDED VALUE 0
SWITCH 1 BI VALUE 0 REINIT
ERRORMSG 15 VALUE ’NO RECORD FOUND’
TABLE1 2000
RECHOLD 80

Work areas can only be named when OPTION QLF is in effect. You can name a
work area by coding:

WORKAREA NAMED workareaname

The work area name can be from one to eight characters and must conform to the
naming conventions for files. (See Chapter 6, Using the FILE Command for a
complete description of the FILE command.) By naming a work area, you can
reference fields within it, which have names that are also defined elsewhere in
your program. For example:

OPTION QLF
.
.

WORKAREA NAMED WORK5
DATE 6
MONTH 2 1 NU
DAY 2 NU
YEAR 2 NU

MOVE 100484 TO WORK5.DATE

Work area fields are defined in the same way as fields defined following FILE
statements. They can have size, location, data type, and number of decimal
attributes. They can be assigned values as well.

If you specify the keyword QLF or QUALIFIERS on the OPTION statement in your
program, you can also use the qualified data name feature. This means that you
can use non-unique data names for your work area field definitions. When you
Field and Work Area Definitions 2–11

Work Areas
reference those fields in your program, the work area name is the qualifier. (See
MOVE CORRESPONDING and OPTION QLF on page 5-4 for details about
OPTION QLF.)

OPTION QUALIFIERS
.
.

WORKAREA NAMED DATE
MONTH 2 NU
DAY 2 NU
YEAR 2 NU

WORKAREA NAMED QDATE
MONTH 2 NU
DAY 2 NU
YEAR 2 NU

MOVE 10 TO DATE.MONTH
MOVE 12 TO QDATE.MONTH

In this example, the non-unique data names MONTH, DAY, and YEAR are being
used. These data names must always be qualified with the named work area name.

Do not use a data name that is defined under another data name. For example, the
following would be invalid because the data name MONTH is defined under the
DATE and QDATE work areas.

MOVE 10 TO MONTH

When you name a work area, VISION:Results automatically generates a data name
with the same name as the named work area. It is a 1-byte character field whose
location is the first byte of the work area.

You can place work area coding almost anywhere in your program, but the fields
must be defined before they can be referenced. The best place to put your work
area definitions is immediately after the FILE statements and their field
definitions.

VISION:Results automatically allocates the work area and initializes the fields you
have defined for it with the proper values before your program begins execution.
If you do not assign values, the fields are blank. The starting location of a work area
is 1. You can assign locations if you like. This is sometimes necessary when you are
redefining a field. The maximum length of a work area definition is 32767. The
maximum total size of all work areas is 288K — 32K for each output file.

WORKAREA
DATE 6 NU
MO 2 1 NU
DA 2 3 NU
YR 2 5 NU

The DATE field is redefined and broken down into month, day, and year fields.
The starting location of MO is 1, DA is 3, and YR is 5. You can omit the starting
locations for DA and YR. VISION:Results assigns them those locations anyway.

Careful assignment of starting locations can prevent problems with successive
fields being improperly assigned started positions.
2–12 VISION:Results Reference Guide

REDEFINE
The following examples show how you can assign the field COUNTER1 with a
starting location of 5, which is also the last 2 bytes of the DATE field.

WORKAREA
DATE 6 NU
YR 2 1 NU
MD 2 3 NU
DA 2 5 NU
COUNTER1 2 5 PD VALUE 0

Preferred method:

WORKAREA
DATE 6 NU
REDEFINE AT DATE
YR 2 NU
MO 2 NU
DA 2 NU

REDEFINE AT DA
COUNTER1 2 PD VALUE 0

You can have multiple work areas. The advantages of doing this are:

� Being able to define work area fields anywhere in your program.

� Causing the starting location for fields in a work area to reset to 1. (The first
field in a work area has the starting location of 1 assigned.)

� Allowing work area coding to be stored in libraries and copied in wherever
they are needed in a program.

� Ensuring that your field is aligned on a doubleword boundary. (Each work area
begins on a doubleword.)

REDEFINE
This keyword allows you to supply additional definitions of previously defined
fields or areas.

The REDEFINE statement looks like this:

[REDEFINE|REDEF] [AT] dataname1

where dataname1 is any field already defined in the current FILE or work area.

REDEFINE is normally used in conjunction with a dataname1 of which exact
location within the record or work area is not known.

WORKAREA
.
.
DATEWK 6

REDEFINE AT DATEWK
MONTHW 2
DAYW 2
YEARW 2
.
.

Field and Work Area Definitions 2–13

Special Fields and Reserved Words
When you do not specify a location in a field definition, that field is assigned a
location immediately adjacent to the previous field. REDEFINE causes the default
next location to be reset to the location of dataname1. In the example above,
MONTHW is assigned the same location as DATEWK, DAYW is 2 beyond that,
and so on.

To define a record that has variable-length trailers, code the following:

FILE ACCTMST
ACCTNO 4 PD
ACCTNAME 20
ACCTTYP 2
.

TRAILERID 1
TR1FLD1 5 NU 2
TR1FLD2 3 PD
TR1FLD3 6
.

REDEF AT TR1FLD1
TR2FLD1 20
FILLER 5
TR2FLD3 7 PD 5
.

RDEF AT TR1FLD1
FILLER 18
TR3FLD4 6 NU
.
.
.

Note that you can reposition at a field other than the one just defined, and that you
can REDEFINE an area as many times as necessary.

Special Fields and Reserved Words
VISION:Results sets up a useful group of special fields. For example, a field called
DYLDATE contains the current date in MM/DD/YY format. You can reference
this field in your program statements:

T1 ’ACCOUNT NUMBER REPORT’
T1+90 DYLDATE

The current date is being put into the title of the report.

MOVE DYLDATE TO DATHOLD

The current date is being moved to another field.

These special fields have been given size, data type, and decimal attributes, the
same as if you had defined them in a FILE statement or work area. The DYLDATE
field is 8 bytes in size and is a character (CH) data type. Another field,
DYLCOUNT1, which is the first of a series of 10 counters (DYLCOUNT1 through
DYLCOUNT10), has a size of 10, a packed data type (PD), and decimal positions
of 0. Additionally, if it is to be listed in a report, the edit code attribute default is A.
2–14 VISION:Results Reference Guide

Special Fields and Reserved Words
You can override certain attributes of these fields by coding a pseudo definition in
a work area. For example, if you want to override the 0 decimal position attribute
of DYLCOUNT1, do the following:

WORKAREA
DYLCOUNT1 2

If you think that you have just set the size to 2, this is not the case. These special
fields cannot have their size, location, or data type changed, so the 2 being coded
in this field definition means the number of decimal positions.

WORKAREA
DYLCOUNT1 2 E (MY COUNTER)
.
.
.
LIST ACCOUNTNUM ACCOUNTCDE DYLCOUNT1

The value in DYLCOUNT1, when listed in the report, is edited in the E format and
the column heading is MY COUNTER.

BLANK or BLANKS
Size 1, type CH. The value is blank. This field can be used to space fill any size
character field because after a value is moved into a character field, it is space filled
to the right.

MOVE BLANKS TO NAME

This field can also be used to compare against a character field.

IF NAME EQ BLANKS GOTO GETNAME ENDIF

DYLCENTRY1
Size 2, type CH. The value of DYLCENTRY1 is assigned by the DYLINSTL
parameters CENTRY1 or set to a specific value by MOVE logic in your program.
Use DYLCENTRY1 to override the DYLINSTL parameters. Values can be any
numeric value from 00 to 99. If no parameters are set by the DYLINSTL macro or
by DYLCENTRY1, VISION:Results defaults to blanks. See the VISION:Results
Installation Guide for details on the DYLINSTL parameters.

MOVE ’19’ TO DYLCENTRY1

DYLCENTRY1 sets up the century number of the output year for the Excel
subroutines DYLDATE, DYLBETDT, DYLFMTJG, and the input year in the “from
date” field for DYLSELDT.

DYLCENTRY2
Size 2, type CH. The value of DYLCENTRY2 is assigned by the DYLINSTL
parameters CENTRY2 or set to a specific value by MOVE logic in your program.
Use DYLCENTRY2 to override the DYLINSTL parameters. Values can be any
Field and Work Area Definitions 2–15

Special Fields and Reserved Words
numeric value from 00 to 99. If no parameters are set by the DYLINSTL macro or
by DYLCENTRY2, VISION:Results defaults to blanks. See the VISION:Results
Installation Guide for details on the DYLINSTL parameters.

MOVE ’20’ TO DYLCENTRY2

DYLCENTRY2 sets up the century year number of the input “to date” year for the
DYLSELDT and DYLBETDT Excel subroutines. This allows you to enter a
two-digit year yet receive a four-digit output.

DYLCNAME1 through DYLCNAME10
Size 20, type CH, and with the initial value of blanks. These are ten 20-byte label
fields that you can set to identify the corresponding DYLCOUNT1 through
DYLCOUNT10 counters when they are printed on the VISION:Results end-of-run
statistics listing. If you do not move your own labels into these fields, default labels
of TOTAL NUMBER 01, TOTAL NUMBER 02, and so on, are printed to the left of
the counters.

ON ONE
MOVE ’RECORD CODE A’ TO DYLCNAME1
MOVE ’RECORD CODE B’ TO DYLCNAME2
MOVE ’RECORD CODE C’ TO DYLCNAME3

ENDONE
IF RECODE EQ ’A’
DYLCOUNT1=DYLCOUNT1+1 GOTO WRTOUT ENDIF

IF RECODE EQ ’B’
DYLCOUNT2=DYLCOUNT2+1 GOTO WRTOUT ENDIF

IF RECODE EQ ’C’
DYLCOUNT3=DYLCOUNT3+1 GOTO WRTOUT ENDIF

.

.

.

Your labels are set for the three counters being incremented.

DYLCOMMON
Size 4, type BI. The value is a memory address. This field contains the address of
the VISION:Results common area, and it is used as a parameter that is passed by a
CALL statement to a user module. You might need this if you had to gain access
to VISION:Results’ DTF/DCBs, for example.

DYLCOMRG
Size 11, type CH. The value is a copy of bytes 12-22 of the VSE partition
communications region. Changing the value in DYLCOMRG has no effect on the
actual value in the communications region.
2–16 VISION:Results Reference Guide

Special Fields and Reserved Words
DYLCOUNT1 through DYLCOUNT10
Size 10, type PD, decimals 0, edit code A if listed in a report, and initial value is 0.
Ten 10-byte packed counters that you can use to maintain your own totals
independent of report writer totaling. If you reference any of these counters, the
series is printed as part of the end-of-run statistics.

IF RETYPE EQ ’A’
DYLCOUNT1=DYLCOUNT1+1 GOTO WRTOUT ENDIF

IF RETYPE EQ ’B’
DYLCOUNT2=DYLCOUNT2+1 GOTO WRTOUT ENDIF

IF RETYPE EQ ’C’
DYLCOUNT3=DYLCOUNT3+1 GOTO WRTOUT ENDIF

.

.

.

Counts of record types A, B, and C are being maintained in the counters. These
counts are printed in the end-of-run statistics.

DYLDATE
Size 8, type CH. The initial value is the current date in the format MM/DD/YY. If
the DYLINSTL parameter EURODAT was selected, the format is DD/MM/YY.

T1 ’REPORT’

T1+1 DYLDATE

The current date is to be placed in title 1, location 1.

DYLDATE4
Size 10, type CH. The initial value is the current date in MM/DD/YYYY format. If
the DYLINSTL parameter EURODAT was selected, the format is DD/MM/YYYY.

DYLDATEPAG
Size 30, type CH. The value is the current date and page number edited and ready
for insertion in report titles.

The format is DATEb/b/MM/DD/YYb/b/b/PAGEb/b/NNNNNNN.

DYLDATEPG4
Size 32, type CH. The value is a four-digit current date and page number edited
and ready for insertion in report titles.

The format is DATEb/b/MM/DD/YYYYb/b/b/PAGEb/b/NNNNNNN.

DYLDLA
Size 4, type BI. The value is a memory address. This field is always passed as the
first parameter in a CALL statement when invoking DYLTDLI (IMS/DL/I
database interface option). DYLDLA should never be modified in your program.
Field and Work Area Definitions 2–17

Special Fields and Reserved Words
DYLETIME
Size 8, type CH. The value is VISION:Results’ execution start time in the format
HH.MM.SS. The format can be changed with the OPTION TIMECOLON
statement or by the DYLINSTL parameter TIMESEP. See the VISION:Results
Installation Guide for details.

T1 ’REPORT’
T1+90 DYLETIME

Above, the execution start time is placed in title 1 of a report.

DYLILDATE
Size 4, type BI. The value is the current date in Lilian format. This is the number of
elapsed days since October 15, 1582 – when the Gregorian calendar was
established.

DYLGREG
Size 4, type PD. The value is the current Gregorian date in packed format. Packed
format is 0MMDDYYs. If the DYLINSTL parameter EURODAT was selected, the
format is 0DDMMYYs. When used in a LIST or TITLE statement, the format is
DD/MM/YY in an 8-byte character format.

DYLGREG4
Size 5, type PD. The value is the current Gregorian date in the four-digit year
format MM/DD/YYYY. When used in a LIST or TITLE statement, the format is
MM/DD/YYYY in a 10-byte character format. If the DYLINSTL parameter
EURODAT was selected, the format is DD/MM/YYYY.

DYLJULIAN
Size 3, type PD. The value is the current Julian date in packed format. The format
is YYDDDs.

IF EXPIRDATE LT DYLJULIAN GOTO LISTDET ENDIF

In the previous example, an expiration date in Julian format is compared to the
current Julian date.

DYLJULIAN4
Size 4, type PD. The value is the current Julian date in the four-digit year format
YYYYDDD.

DYLLINE
Size 2, type PD. In this field, VISION:Results maintains the packed line count of the
current report page.

MOVE 60 to DYLLINE

A high line count is being placed in the DYLLINE field to force a page eject.
2–18 VISION:Results Reference Guide

Special Fields and Reserved Words
Also note that, if neither title, footing statements, nor column headings are
supplied, automatic page ejection (based on the number of lines per page) does not
occur. To override this without using title or footing statements or column
headings, you can supply a title/footing statement with no title contents:

T1

DYLNOTOT
Size 1, type CH. The initial value is blank. This is a control total inhibit switch that
you can set before a detail line 1 LIST statement is issued. Setting this switch to 1
causes the report writer not to add any summed field values to their counters.
DYLNOTOT is reset to blank before leaving the report writer.

IF RETYPE EQ ’A’
MOVE 1 TO DYLNOTOT ENDIF

LIST ACCNUM ACCAMT1 ACCAMT2
ACCEPT
ON CHANGE IN ACCNUM
LIST ACCNUM SUM ACCAMT1 SUM ACCAMT2 ’ACCOUNT TOTAL’

ON FINAL
LIST SUM ACCAMT1 SUM ACCAMT2

Before the detail line is listed, a check is made to see if a field in the record has the
code of A. If so, the DYLNOTOT switch is set to 1. This keeps the report writer
from adding the values in ACCAMT1 and ACCAMT2 to their respective total
counters. When the level 1 break occurs (ON CHANGE IN ACCNUM), the
subtotals reflect all listed records except those with the ’A’ code. The same thing
happens when final totals (ON FINAL) are listed.

DYLNRP
Size 1, type CH. The initial value is blank. DYLNRP is a detail line inhibit switch
that you can set before the first detail line LIST statement is issued. Setting this
switch to 2 causes the report writer to inhibit the printing of detail lines.

CONTROL ACCOUNT

SORT ARFILE USING ACCOUNT
MOVE 2 TO DYLNRP
LIST SUPPRESS ACCOUNT BALANCE

ON CHANGE IN ACCOUNT
LIST ACCOUNT SUM BALANCE ’**TOTAL**’

In this example, a 2 is moved to DYLNRP before the first detail line LIST statement.
This tells the report writer to inhibit the printing of all detail lines. Only the
summary LIST statements are executed. In this example, only the ON CHANGE
IN LIST statement is executed.

DYLONE
Size 1, type PD. The value is 1. This is useful for counting.
Field and Work Area Definitions 2–19

Special Fields and Reserved Words
DYLPAGE
Size 13, type CH. The value is PAGE followed by the edited page number. The
format is PAGEb/b/NNNNNNN. This is useful for placing the report page number
in report titles.

DYLPAGE1 through DYLPAGE7
Size 1 through 7, type CH. DYLPAGE1 is an edited 1-character page number.
DYLPAGE2 is an edited 2-character page number, and so on. This is useful for
including any size page number in your report.

T1 ’REPORT’
T1+130 DYLPAGE2

A 2-digit page number is printed in locations 130 and 131 of title 1.

DYLPARM
Size 60, type CH. This field holds variable data provided by either the PARM
parameter in the EXEC statement (OS/390 only) or the DATA xxxx phrase in the
VISION:Results OPTION statement.

//S001 EXEC PGM=DYL280,
// PARM=’UA=011596,01,02’
.
.
WORKAREA
PARHOLD 12
ACCTNUM 6 1
COMMA1 1
NUM1 2 NU
COMMA2 1
NUM2 2 NU

ON ONE
MOVE DYLPARM TO PARHOLD
ENDONE

.

.

In an OS/390 run, variable data is being introduced by the PARM parameter in the
EXEC statement. To code this, following the PARM=, a ’UA= is coded preceding
the data to be passed to the program. The variable data is terminated by another
single quotation mark. When program logic is entered for the first time, the
variable data resides in the DYLPARM field. The program does a one-time only
move of DYLPARM to PARHOLD. This is being done in order to separate the
variable data into individual fields (ACCTNUM, NUM1, and NUM2) so they can
be referenced. A maximum of 58 bytes can be coded.

OPTION DATA ’011596,01,02’
.
.
.
MOVE DYLPARM TO PARHOLD

This can be done in either an OS/390 or a VSE run to introduce the same variable
data as in the preceding OS/390 example. A maximum of 38 characters can be
coded.
2–20 VISION:Results Reference Guide

Special Fields and Reserved Words
In an OS/390 run, if you use both methods in the same program, the PARM value
in the EXEC statement overrides the OPTION DATA value.

DYLPARMLEN
Size 3, type PD. This field contains the length of the data stored in DYLPARM.

//S001 EXEC PGM=DYL280,PARM=’UA=011596,01,02’

DYLPARMLEN now contains a value of 12.

or

OPTION DATA ’123456789’

DYLPARMLEN now contains a value of 9.

DYLPPAGE
Size 6, type PD. The value is the current report page number. This field is
incremented each time a new page is started. You can reset this field.

DYLPRTCOMM
Size 10, type CH. The initial value is blanks. This field can be set to hold an
identifier to print in a comments area to the left of a record or field being printed
by the print immediate (PRINT, HEXPRINT, and so on) commands. If you do not
move anything in before printing, the file name or data name appears.

MOVE ’MASTER’ TO DYLPRTCOMM

PRINT MSTFLE

The identifier MASTER prints to the left of the MSTFLE record being printed. If
you had not moved anything to DYLPRTCOMM, the file name MSTFLE would
have printed.

If there is more than one data name in your print command, you must move the
data names to DYLPRTCOMM before issuing your print command in order to
have them appear in the comments area.

DYLPRTMAXL
Size 2, type PD. The value is the maximum lines per page to be allowed for file
printing. It has been set either by default or by the LONG keyword of the OPTION
statement. You can vary this during execution.

DYLPRTNUMB
Size 4, type PD. The value is the count of records file printed by VISION:Results.
You can examine this field in the logic to terminate the run after a certain number
of records have been printed.
Field and Work Area Definitions 2–21

Special Fields and Reserved Words
DYLPRTPAGE
Size 3, type PD. The value is the page number for the file print listing.
VISION:Results maintains this field. You can examine this field in the logic to
terminate the run after a certain number of pages have been printed.

DYLREPMAXL
Size 2, type PD. The value is the maximum lines per page to be allowed for the
report. It has been set either by default or by the LONG keyword of the REPORT
statement. You can vary this during execution.

DYLRESET
Size 1, type BI. The initial value is 0. You can set this switch to reset the page
number to 1 on the report. If you move a 1 to DYLRESET, after a level 1 control
break occurs, the next page number is 1. If you move a 2 to DYLRESET, after a level
2 control break occurs, the next page number is 1. You can do this up to and
including a level 6 control break. This switch is not reset to 0 by VISION:Results.

CONTROL ACCNUM
.
.
.
ON CHANGE IN ACCNUM
MOVE 1 TO DYLRESET
LIST ACCNUM SUM ACCAMT1 ’ACCOUNT SUBTOTAL’
WITH 2 BEFORE AND EJECT AFTER

.

.

.
T1 ’ACCOUNT REPORT’ DYLPAGE

A 1 is moved to the reset switch to indicate that after the level 1 control break (ON
CHANGE IN ACCNUM) occurs and the control break line is printed, the next
page printed has the page number of 1 (that is, if you are printing one of the
VISION:Results special page number fields in the title). Specify EJECT AFTER in
the control break’s LIST statement when using DYLRESET.
2–22 VISION:Results Reference Guide

Special Fields and Reserved Words
DYLRETURN
Size 2, type BI. The initial value is a return code of zero. You can set this before your
run terminates to cause either a condition code to be passed to the next step, or an
abend to occur (for VSE, the system must be at Release 2.1 or greater and you must
specify DYLINSTL parameter R15RC). The setting of DYLRETURN does not cause
the run to terminate. Processing continues until all files are at end or you execute
a STOP command. The values you set have the following result:

.

.

.
IF STATUSFLG NE ’Y’
GOTO ERROR2 ENDIF

.

.
ERROR2:
MOVE 502 TO DYLRETURN
STOP

If an error is detected, the ERROR2 logic moves the code of 502 to DYLRETURN
and stops the run. Any report is finished, files are closed, and run information is
printed before the abend occurs.

DYLSYSDATE
VSE only. Size 9, type NU. DYLSYSDATE contains the system date from the
partition communication region (offset X’4F’). The first 6 bytes contain the
Gregorian date (MMDDYY or DDMMYY), and the last 3 bytes contain the Julian
day number (DDD). This date is not affected by the // DATE statement.

DYLSYSPARM
VSE only. Size 8, type CH. DYLSYSPARM contains 0 to 8 bytes of data from the
SYSPARM= statement on your EXEC statement, padded on the right with blanks.
This is release-dependent.

DYLTIME
Size 4, type PD. The edit code is A if listed in the report. The value is the
VISION:Results execution start time. Packed format is 0HHMMSSs.

0 Normal completion.

1-99 Condition code value to be passed.

100-4095 Abend with system dump when processing terminates. VSE
abends with an ILLEGAL SVC 32 and the return code value in
register 0. OS/390 abends with a user completion code that is the
same as what has been set in DYLRETURN.
Field and Work Area Definitions 2–23

Special Fields and Reserved Words
DYLTRAN
Size 1, type CH. DYLTRAN refers to the first byte of a 256-byte translate table. If
you do not want to use the FROM and TO option of the TRANSLATE command,
you can specify your own translate table by moving values to the appropriate
offset from DYLTRAN. Use indexing to do this.

You want to change all ‘.’ (X’4B’) to blanks. You must make the change to the
translate table.

MOVE 75 TO INX
MOVE ’ ’ TO DYLTRAN (INX)
TRANSLATE FIELDABC

This results in all occurrences of ‘.’ in FIELDABC being translated to X’40.’

DYLUPSI
Size 1, type BI. The value is a copy of the VSE UPSI byte. Changing this value has
no effect on the actual UPSI byte.

GETCOM dataname
VSE only. This statement causes from 1 to 256 bytes to be moved from the JCA to
dataname. The number of bytes moved depends on the length of dataname. The
data is moved from left to right.

PUTCOM dataname
VSE only. This statement causes from 1 to 256 bytes to be moved from dataname
to the JCA. The number of bytes moved depends on the length of dataname. The
data is moved from left to right.

SPACE or SPACES
Same as BLANK or BLANKS.
2–24 VISION:Results Reference Guide

Chapter
3 S
yntax Rules
This chapter explains the syntax rules for VISION:Results.

Using Punctuation
Do not use punctuation, such as colons (:) or periods (.), to delimit command
statements, parameter lists, or a list string in an IF statement.

The exception is when you are expressing numeric literals that have commas,
decimal point and negative amount indications, and reference point tagnames that
must be followed by a colon (:).

Asterisks (*) and semicolons (;) are used for comments. The asterisk (*) can only be
used if placed in position 1 (byte 1) of the input record, regardless of whether or
not the OPTION COLUMNS override is used. The asterisk is also used as the
arithmetic symbol for multiplication. Semicolons can appear anywhere (1 to 80) in
the free-form input record.

MOVE FIELDA TO FIELDB

CALL SUBRTN USING PARM1, PARM2, PARM3

IF ACCOUNT EQ 'NA', 'MO', 'PO' THRU
'WO' GOTO CHECK ENDIF

Figure 3-1 Example of an IF Statement

573,624 8,973,361.88
591,324.08 -12
-.01 -637,128.19
LISTDET: WRT:

Figure 3-2 Example of the Use of Colons

*COMMENTS REMARKS
;COMMENTS
MOVE FIELDA TO FIELDB ;DATE TRANS

Figure 3-3 Example of the Use of Asterisks and Semicolons
Syntax Rules 3–1

Continuation Rules
Continuation Rules
Data names, field names, keywords, and commands cannot be split and placed on
separate lines.

Literals can be continued on another line only in TITLE statements (maximum is
132 for VSE, and 204 for OS/390 and VM) and the VALUE keyword (maximum
255) in field definitions. Literals in procedure logic statements (maximum 20) and
literals in a LIST statement (maximum is 30 characters each) cannot be continued
onto separate lines.

Naming Conventions
Data names (field names) can be from 2 to 50 characters long, depending on
installation options, and must start with an alphabetic character. Data names
cannot be the same as a reserved word. See Appendix A, Reserved Words for more
information.

Note: The prefix DYL is reserved for VISION:Results use only.

MOVE FIELDA TO
FIELDB

LIST BALANCE ACCOUNT TRANS
WITH 2 AFTER

WBALANCE = (BALANCE*2.15)/3
IF WBALANCE GE 100 GOTO GOOD ENDIF

Figure 3-4 Example of Continuation Rules

MOVE 'ABCDEFGHIJKL'
TO FIELDC

MOVE FIELDA TO FIELDB MOVE
31257 TO COUNTER

DATANAME1 20 VALUE 'CHECK'
'ING OUT TIME'

DATANAME2 30 VALUE 'TOTA'
'L''S THE SUM OF'

DATANAME2 30 VALUE 'TOTA'
"L'S THE SUM OF"

LIST SUM BALANCE AT TOTAL
'FINAL TOTAL' AT TOTAL+20

Figure 3-5 Example of Literals
3–2 VISION:Results Reference Guide

Naming Conventions
The data name can be alphanumeric, but it must not contain any punctuation or
arithmetic symbols such as:

– + * / , ; : . = @ ()

File names can be from one to eight (seven for VSE) characters long and must start
with an alphabetic character. The file name can be alphanumeric, but it must not
contain punctuation or arithmetic symbols such as:

– + * / , ; : . = @ ()

Tagnames can be from 1 to 10 characters in length and start with an alphabetic
character or a number. Tagnames cannot be the same as reserved words (see
Appendix A, Reserved Words). The tagname can be alphanumeric and must not
contain any punctuation or arithmetic symbols such as:

– + * / , ; : . = @ ()

The exception is the colon (:), when the tagname is shown as the reference point.
The length can be from 2 to 10 characters plus a colon.

MM_DD_YY DATE
TRANSDATE DATES
ACCT_CODE AMT_FLD
DATEMSTR FIELDAMT
X1 Q1

Figure 3-6 Example of Data Names (Field Names)

PAYROLL ARFILE
PAYMSTR APFILE

Figure 3-7 Example of File Names

GOTO LISTDET
GOTO WRT_RECORD
GOTO PROCESS_ID
GOTO FLD_INDIC
GOTO FLAGS
GOTO PROCEDURE
GOTO 600

LISTDET:
WRT_RECORD:
PROCESS_ID:
FLD_INDIC:
FLAGS:
PROCEDURE:

Figure 3-8 Example of Tagnames
Syntax Rules 3–3

Number of Characters per Input Line
Number of Characters per Input Line
The free-form input to VISION:Results is on 80-byte (position) records, the first 72
bytes (VISION:Results default) of which contain the free-form statements. This
leaves bytes (positions) 73 to 80 for an identification or sequence field. The default
can be changed by the COLUMNS keyword in the OPTION statement. To change
the start and end (the minimum is 30 positions) of the VISION:Results free-form,
in the free-form input record, use:

The example states that all valid entries begin in byte (position) 10 and end in byte
(position) 60 of the free-form input record. All other information is considered as
extraneous and is not validated. COLUMNS nn nn must be entered on a statement
by itself and must be within the bounds of both the old and new free-form
columns. However, a statement used for comments and denoted as such with the
use of an asterisk (*) must have the asterisk coded in position 1, regardless of the
COLUMNS option chosen.

Rules for Comparing Fields
Use the following rules for comparing fields.

OPTION COLUMNS 10 60

Figure 3-9 COLUMNS Keyword in the OPTION Statement Example

Character to
Character

You can compare two character fields. In this case, both
fields must be fewer than 256 characters. When the two
fields are not the same length, the shorter field is padded
with trailing blanks prior to the compare. A logical
compare is run on the fields.

Character to
Numeric or Packed

You can compare a character field to a numeric field or a
packed field as long as the character field is 16 or fewer
bytes long. If the character field is longer than 16 bytes, a
validation error results. An algebraic compare is run. If the
character field contains non-numeric data, a program
check occurs.

Character to Binary You can compare a character field to a binary field as long
as the length of the character field is the same as the binary
field. A logical compare is run on the fields.

Numeric to
Numeric

You can compare any two valid numeric fields. An
algebraic compare is performed.

Numeric to Binary You can compare any valid numeric and binary fields. An
algebraic compare is performed.
3–4 VISION:Results Reference Guide

Rules for Comparing Fields
Numeric to Packed You can compare any valid numeric and packed fields. An
algebraic compare is performed.

Packed to Packed You can compare any two valid packed fields. An algebraic
compare is performed.

Packed to Binary You can compare any valid packed and binary fields. An
algebraic compare is performed.

Binary to Binary You can compare any two valid binary fields as long as the
length of both fields is the same. An algebraic compare is
performed.
Syntax Rules 3–5

Rules for Moving Fields
Rules for Moving Fields
The following are the rules for moving fields.

Character to
Character

A 1- to 32767-byte character field can be moved to a 1- to
32767-byte character field. If you move a shorter field to a
longer field, the shorter field is left-aligned in the receiving
field and padded with blanks. If you move a longer field to a
shorter field, the longer field is left-aligned in the receiving
field and truncated on the right.

When padding occurs, the length of the receiving field is
used to determine how many blanks are moved. No checking
is run to ensure that an indexed MOVE, for example, does not
exceed the boundaries of the receiving field. Using the
LENGTH keyword in these cases prevents the padding of the
receiving field.

Character to
Numeric

Treated as numeric to numeric.

Character to
Packed

Treated as numeric to packed.

Character to
Binary

Treated as numeric to binary.

Numeric to
Character

A numeric field can be moved to a 1- to 16-byte character
field. If the sign of the numeric field is C, it is changed to an F
in the receiving field. The numeric to character move is useful
if you want a printable numeric field. If you move a shorter
numeric field to the character field, it is right-aligned in the
receiving field and high order zero filling occurs.

If the character field is shorter, high order truncation occurs.
If the numeric field is defined with decimals, they are
truncated.

Numeric to
Numeric

A numeric field can be moved to a numeric field. Decimal
alignment occurs automatically. The sign of the receiving
field is the same as that of the sending field. If the receiving
field is not large enough to hold the sending field, high and
low order truncation occurs.

Numeric to
Packed

A numeric field can be moved to a packed field. Data
conversion and decimal alignment occur automatically. If the
packed field is not large enough to hold the value of the
numeric field, high order and low order truncation occurs.
3–6 VISION:Results Reference Guide

Rules for Moving Fields
Numeric to
Binary

A numeric field can be moved to a binary field. Data
conversion and decimal alignment are automatic. If the
sending field is unsigned, the receiving field is signed
positive (C). If the binary field is not large enough to hold the
value of the numeric field, high order and low order
truncation occurs and sign changes can take place.

Packed to
Character

A packed field can be moved to a 1- to 16-byte character field.
Data conversion occurs automatically. If the sign of the
packed field is C, it is changed to F in the receiving field. If the
character field is not large enough to hold the value of the
packed field, high order truncation occurs. If the packed field
is defined with decimals, they are truncated. If the character
field is larger, high order zero filling occurs.

Packed to
Numeric

A packed field can be moved to a numeric field. Data
conversion and decimal alignment occur automatically. If the
sending field is unsigned, the receiving field is signed
positive (C). If the numeric field is not large enough to hold
the value of the packed field, high order and low order
truncation occurs.

If the packed field contains invalid data and is defined with
decimal digits to the right of the decimal point, an 0C7 error
occurs during the MOVE operation.

Packed to Packed A packed field can be moved to a packed field. Decimal
alignment occurs automatically. If the sending field is
unsigned, the receiving field is signed positive (C). If the
receiving field is not large enough to hold the sending field,
high and low order truncation occurs.

Packed to Binary A packed field can be moved to a binary field. Data
conversion and decimal alignment occur automatically. If the
binary field is not large enough to hold the value of the
packed field, high order and low order truncation or possibly
a sign change occurs.

Binary to
Character

A binary field can be moved to a 1- to 16-byte character field.
Data is automatically converted to external decimal by
VISION:Results. If the value is positive, the sign of the
character field is set to F to ensure a printable field. If the
character field is not large enough to hold the value of the
binary field, high order truncation occurs. If the character
field is larger, high order zero filling occurs. If the binary field
is defined with decimals, they are truncated.
Syntax Rules 3–7

Literals
Literals
Literals are occasionally needed in your program. For example:

To move a value to a field:

To compare a field to a value in a conditional statement:

To assign an initial value to a field during its definition:

To print a constant on a line of a report:

Binary to
Numeric

A binary field can be moved to a numeric field. Data
conversion and decimal alignment occur automatically. If the
sending field is not negative, the receiving field has a C sign.
If the numeric field is not large enough to hold the value of
the binary field, high order and low order truncation occurs.

Binary to Packed A binary field can be moved to a packed field. Data
conversion and decimal alignment occur automatically. If the
sending field is not negative, the receiving field has a C sign.
If the packed field is not large enough to hold the value of the
binary field, high order and low order truncation occurs.

Binary to Binary A binary field can be moved to a binary field. Decimal
alignment occurs automatically. If the binary receiving field
is not large enough to hold the value of the sending field,
high order and low order truncation or possibly a sign
change occurs.

MOVE 'CA' TO STATE
MOVE 100 TO AMOUNT

Figure 3-10 Move a Value to a Field

IF AMOUNT GE 500.75 GOTO PROC3 ...
IF STATE EQ 'CA' GOTO PROC4 ...

Figure 3-11 Compare a Field to a Value

FILE FILEOUT OUTPUT FROM FILEOUT
FIELDA 5 30 PD 2 VALUE 0
FIELDC 15 50 VALUE 'LOS ANGELES'

WORKAREA
BASEAMOUNT 5 PD 2 VALUE 250.50

Figure 3-12 Assign an Initial Value

ON CHANGE IN COSTCTR
LIST '*COST CENTER TOTAL' AT NAME ...

Figure 3-13 Print a Constant on a Line
3–8 VISION:Results Reference Guide

Literals
To print a constant during file print:

To use a numerical value in an arithmetic expression:

Character or Alphanumeric Literals
A character or alphanumeric literal such as ’JONES’ or ’201-22’ is expressed by
enclosing it in single or double quotation marks so it is distinguished from a data
name.

In a literal containing a quotation mark, you must repeat the quotation mark to
have the literal accepted.

FIELDA now contains IT'S.

Character Literal Moves
To move a character literal to a field, the literal’s maximum length is 70. You must
code it on one line; it cannot be continued. You can move a 70-byte or smaller literal
to a larger field up to a maximum of 32767 bytes. The receiving field is padded with
blanks. The receiving field must have a character data type.

If NAME is a 10-byte field, the receiving field contains JONES b/b/b/b/b/.

Character Literal Compares
To compare a field to a literal, the literal’s maximum length is 20. The field being
compared to can have a maximum size of 256 bytes. It must have a character data
type. The literal must always be coded to the right of the relational operator (for
example, EQ or GT).

PRINT 'ERROR 201'

Figure 3-14 Print a Constant

AMOUNT=AMOUNT*1.20
COUNT=COUNT+1
NEGVALUE=AMOUNT*-1

Figure 3-15 Use a Numerical Value

MOVE 'JONES' TO NAME ...
IF STATE EQ 'CA' MOVE 'CALIFORNIA' TO STATENAME ...
PRINT "ERROR 555" ...

Figure 3-16 Character or Alphanumeric Literal

MOVE 'IT''S' TO FIELDA

Figure 3-17 Repeat Quotation Mark

MOVE 'JONES' TO NAME

Figure 3-18 Move a Character Literal to a Field
Syntax Rules 3–9

Literals
To compare a larger-sized field to a literal, before the compare is run, the literal is
padded with blanks to make it the same size as the field.

If NAME is a 10-byte field, then the compare works like this:

Assigning Character Values to Fields
To define a character type field in an output FILE or WORKAREA statement,
assign an initial value to that field using a character literal. If the literal is smaller
than the field it is initializing, the literal is left-aligned and padded with blanks.

Because the literal ’CODE G’ is only 6 bytes and FIELD1 is 10 bytes in size, four
blanks are appended to the value.

The value can be up to 255 bytes in length. You can continue this type of literal onto
several lines by breaking it into multiple literals surrounded by quotation marks.

Here, a 36-byte literal used to initialize ALPHANUM is being continued on a
second line.

Listing Literals in a Report
You can print a constant value on a line in report printing. This is the case when
you want to identify subtotal or control break lines in the report and want to print,
for example, ’DEPARTMENT TOTAL’ or ’GRAND TOTAL.’ You can code a
character type literal in your LIST statement in place of a field name. The actual
value prints on the report rather than the value of a named field.

Here, when a control break occurs caused by a change in the value of
DEPARTMENT, a line is printed containing the constant ’DEPARTMENT TOTAL’
along with the other fields specified.

IF NAME EQ 'JONES' ...

Figure 3-19 Literal is Padded With Blanks

IF NAME EQ 'JONES ' ...

Figure 3-20 Results of Literal Padding in Figure 3-19

WORKAREA
FIELD1 10 VALUE 'CODE G'

Figure 3-21 Define a Character Type Field

WORKAREA
ALPHANUM 36 VALUE 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

'0123456789'

Figure 3-22 Breaking it Into Multiple Literals

ON CHANGE IN DEPARTMENT
LIST 'DEPARTMENT TOTAL' AT NAME SUM SALARY

Figure 3-23 Code a Character Type Literal in Your LIST Statement
3–10 VISION:Results Reference Guide

Literals
The maximum size of a literal appearing in a LIST statement is 30. It must be coded
on one line and cannot be continued.

Printing a Literal in a FILE PRINT
The file print feature (PRINT, HEXPRINT, HEX, and so on) can be used to print
records or portions of records. You can print a message or identifier to the
SYSPRINT (OS/390) or SYSLST (VSE) file.

Your message literal can be up to 20 bytes long.

Numeric Literals
A numeric literal such as 0, 595, 300.50, or -1 can be expressed without quotation
marks. It can include a leading minus sign (if negative), commas, and a decimal
point. It can contain a maximum of 16 digits. The total length of the numeric literal
must not exceed 20 bytes. It can be used in operations with numeric, packed, or
binary type fields.

Decimal alignment is automatic.

If AMOUNT is a 2-decimal position field, the 400 is actually moved as though it
were 400.00.

The 2-decimal position field FIELDA is completely zeroed.

Numeric Literal Moves
You can move a numeric literal to a numeric, packed, or binary field.

PRINT 'ERROR 321'
PRINT 'BEGIN FILEA PRINT'

Figure 3-24 Printing a Literal in a FILE PRINT

MOVE 0 to AMOUNT
IF AMOUNT GE 500.50 GOTO ...
COUNT=COUNT+1
CALC=FIELDA*37.5/100

Figure 3-25 Numeric Literals

MOVE 400 TO AMOUNT

Figure 3-26 Example of Decimal Alignment

WORKAREA
FIELDA 5 2 PD VALUE 0

Figure 3-27 2-Decimal Position Field FIELDA

MOVE 9,999.99 TO AMOUNT
MOVE -700 TO AMOUNT2

Figure 3-28 Move a Numeric Literal
Syntax Rules 3–11

Literals
AMOUNT or AMOUNT2 could have been defined as a numeric (NU), packed
(PD), or binary (BI) field.

Numeric Literal Compares
You can compare a numeric, packed, or binary field to a numeric literal. The literal
must appear to the right of the relational operator (for example, EQ or GE).

Numeric Literals in Arithmetic Expressions
Numeric literals can be used in arithmetic expressions with other numeric literals,
numeric packed, or binary fields.

Assigning Values to Numeric, Packed, or Binary Fields
To define a numeric, packed, or binary field in an output FILE or WORKAREA
statement, assign a value to that field using a numeric literal:

You can assign a value up to nine decimal positions:

Hexadecimal Literals
You can express a value that cannot be represented easily using alphanumeric or
special character notation. Express these values using hexadecimal notation. It
consists of representing each byte by a pair of characters in which the value can be
in the range of 0-9, A-F. Precede the start of such a literal by X’ and end it with a ’.
Using this notation, the character ’A’ is expressed as X’C1.’ The literal must be
coded on one line; it cannot be continued to another line.

You cannot use this type of literal in arithmetic operations.

IF AMOUNT GE 0 ...
IF AMOUNT2 GT 9,999.99 ...

Figure 3-29 Compare a Numeric Literal

AMOUNT=AMOUNT*1.10
COUNT1=COUNT1+1
COUNT2=(AMOUNT-1.75)/4
NEGAMT=AMOUNT*-1
AMOUNT2=FIELDA+1,245,373.25

Figure 3-30 Numeric Literals in Arithmetic Expressions

WORKAREA
FIELDA 5 PD 2 VALUE 0
FIELDB 3 NU 1 VALUE 3.1
FIELDC 1 BI VALUE 127
FIELDD 1 PD VALUE -1

Figure 3-31 Assigning Values to Numeric Fields

FIELDE 6 PD 9 VALUE 1.123456789

Figure 3-32 Example of Assigned Values
3–12 VISION:Results Reference Guide

Literals
Hexadecimal Literal Moves
You can move up to a 9-byte hexadecimal literal to a field. The receiving field must
have a character or binary data type and must be the same size as represented by
the literal.

FIELDG must be a 2-byte character field.

SWITCH must be a 1-byte character field.

Hexadecimal Literal Compares
You can compare up to a 9-byte character field to a hexadecimal literal. The field
must be the same size as represented by the literal. The literal must be coded to the
right of the relational operator (for example, EQ or NE).

FIELD1 must be a 3-byte character field.

Assigning Values to Fields Using Hexadecimal Notation
To define a character type field in an output FILE or WORKAREA statement,
assign an initial value to that field using a hexadecimal literal. The initialized field
can be up to 9 bytes in size. The field must be the same size as represented by the
literal.

MOVE X'0102' TO FIELDG

Figure 3-33 Hexadecimal Literal Move

MOVE X'FF' TO SWITCH

Figure 3-34 Hexadecimal Literal Move 2-byte character field

IF FIELD1 EQ X'FFFFFF' GOTO ...

Figure 3-35 Hexadecimal Literal Compare

WORKAREA
TABLE1 9 CH VALUE X'010203040506070809'
SWITCH 1 CH VALUE X'FF'

Figure 3-36 Initial Value Field Using a Hexadecimal Literal
Syntax Rules 3–13

Literals
3–14 VISION:Results Reference Guide

Chapter
4 U
sing the OPTION Command
Use the OPTION command to override the VISION:Results defaults and supply
information regarding the installation’s operating environment. You can code
information in the OPTION statement to:

� Specify running an existing VISION:Sixty™ program.
For licensed VISION:Sixty users only.

� Specify running an existing VISION:Report® program.
For licensed VISION:Sixty users only.

� Specify printing a file and the print type to be used.

� Identify the type of device for the VSE work file and its symbolic unit and file
name.

� Specify that the VISION:Results program is to be verified for correctness and
not executed.

� Indicate a change in the start and end columns of the free-form text.

� Specify printing of a VSE report file.

� Identify the use of variable data by the program.

� Control freezing and restoration of user modules.

� Indicate cross-reference listings.

� Specify VISION:Excel® keywords.

� Disable error handling and generate additional error message information.

� List the generated object code in Assembler language format.

� Resolve data name conflicts.

� Debug programs (see Options Useful for Technical Support on page 4-19).

� Change a divide by zero condition and allow processing to continue.

� Obtain VSAM file characteristics from the VSAM catalog entry.

� Specify the display format for DYLETIME.
Using the OPTION Command 4–1

� Indicate whether control totals print.

The OPTION statement is optional in VISION:Results. The OPTION statement
must precede all other statements in a program. There are exceptions—blank lines,
comments, COPY, REPORT, STATEON, and STATEOFF commands can precede
the OPTION statement. The OPTION COLUMNS statement can be anywhere in
your program.

Use the OPTION statement if a specific function is needed. You can use multiple
keywords on an OPTION statement or use multiple OPTION statements. Each of
the various keywords offered by VISION:Results is described, and examples of
each are shown at the end of this chapter.

The following is a list of all OPTION statements shown in Backus-Naur-Form
(BNF) notation. The rules for BNF notation are as follows:

� A vertical bar | separates mutually exclusive alternatives.

� An underline indicates a default value in VISION:Results.

� Braces { } are used to group related items that are alternatives. One item must
be chosen.

� Brackets [] are used to indicate optional items.

� Uppercase and special characters must be specified exactly as shown.

� Lowercase characters require a specific value to be substituted in their place.

� Parentheses must be typed exactly as shown.

� Keywords and operands between a set of ! and !... indicate that the repetition of
what is between the ! and !... is allowed.

� Bold text inside program examples indicates VSE only.

OPTION 260

OPTION QUIKJOB

OPTION [HEXPRINT | PRINT | HEX | LCPRINT]

OPTION FREEZE modulename [DATA 'literal']
[DISK type]
[SYSnnn filename]
[NOTOTAL]
[PRINTERROR | PRINTERR]
[RESTART nn]

OPTION RESTORE modulename nn [[RESTART nnnn] [DELIM [C’c’ | X’xx’]]

OPTION [FREEZDD ddname]

OPTION COLUMNS start end

OPTION VERIFY

OPTION DATA 'literal'

OPTION [PRINTERROR | PRINTERR | NOERROR]

Figure 4-1 List of All OPTION Statements (Page 1 of 3)
4–2 VISION:Results Reference Guide

OPTION [EXPRTERR | NOEXPRTERR]

OPTION [TOTAL | NOTOTAL]

OPTION nn LONG

OPTION [OPTLIST | NOOPTLIST]

OPTION [XREF | XREFA | NOXREF]

OPTION DMAP

OPTION [CONVENTIONAL | STRUCTURED | STRUCTURED2 | USERDEFAULT]

OPTION [QLF | QUALIFIERS | NOQLF | NOQUALIFIERS]

OPTION DISK type

OPTION SYSnnn [filename]

OPTION REPORTFILE filename

OPTION [SPOOL | NOSPOOL]

OPTION [EXCEL | NOEXCEL]

OPTION [PRINTDIGITS | NOPRINTDIGITS]

OPTION $$DUMP

OPTION $$PCB

OPTION $$KEYLEVEL nn.n

OPTION MSGCSECT

OPTION [PRINTEP | NOPRINTEP]

OPTION [NULLON | NULLOFF]

OPTION [ZDIVORG | ZDIVAB | ZDIVRC]

OPTION [VSAMCAT | NOVSAMCAT]

OPTION [PDSREPA | PDSREPN]

OPTION [TIMECOLON | TIMEDOT]

OPTION [NOSORTAB]

OPTION DYNAMDB2

OPTION [CDLOAD | NOCDLOAD]

OPTION STATSQL

OPTION CATPLANID

OPTION CATSYSID

OPTION [SQL2DBC | NOSQL2DBC]

OPTION IQBATCH

OPTION [COB2NR | NOCOB2NR]

OPTION [VSEDISK | NOVSEDISK]

OPTION [VSETAPE | NOVSETAPE]

Figure 4-1 List of All OPTION Statements (Page 2 of 3)
Using the OPTION Command 4–3

260 Option (VISION:Sixty Users Only)
260 Option (VISION:Sixty Users Only)

For licensed VISION:Sixty users, entering 260 after the OPTION command allows
a VISION:Sixty source program to be executed under VISION:Results. When 260
is specified as a keyword, no other keyword is allowed. The OPTION 260
statement must be the first statement in the program. The VISION:Sixty program
is placed after this statement.

OPTION 260 is non-functional in systems where VISION:Sixty has not been
licensed.

QUIKJOB Option (VISION:Report Users Only)

For licensed VISION:Report users, entering QUIKJOB after the OPTION
command allows a VISION:Report source program to be executed under
VISION:Results. When QUIKJOB is specified as a keyword, no other keyword is
allowed. The OPTION QUIKJOB statement must be the first statement in the
program. The VISION:Report program is placed after this statement.

OPTION [VSEALL | NOVSEALL]

OPTION [CURRENCY {C'x' | X'nn'}]

OPTION [DYL4YEAR | NODYL4YEAR]

OPTION PATCHES

OPTION [LE | NOLE]

OPTION [!USERINXnn dataname!]

OPTION [SYSBLOCK | NOSYSBLOCK]

OPTION [NUMPD|NONUMPD]

OPTION [NUMCHAR|NONUMCHAR]

OPTION [TSIZE nnM|nnnnnK]

OPTION [TABAREA {ABOVE|BELOW}]

Figure 4-1 List of All OPTION Statements (Page 3 of 3)

OPTION 260

Figure 4-2 260 OPTION Statement

OPTION QUIKJOB

Figure 4-3 QUIKJOB Option Statement
4–4 VISION:Results Reference Guide

FILE PRINT Options
OPTION QUIKJOB is non-functional in systems where VISION:Report has not
been licensed.

FILE PRINT Options
Each file print option specifies which print type is to be used when printing out a
file; the choices are HEXPRINT, PRINT, LCPRINT, or HEX. These choices (shown
in REPORTFILE Option on page 4-16) are mutually exclusive, that is, only one
print type can be used in an OPTION statement of any VISION:Results program.
Printing a file is completely independent of report printing.

You can specify any file to be printed. Using this option prints an entire file unless
a REJECT command is encountered in the program logic or there is not an exit
from the logic using ACCEPT or an implied ACCEPT. If portions of the file are to
be printed, Computer Associates recommends that the commands HEX, PRINT,
and HEXPRINT be used in the procedure logic.

The OPTION keywords for HEX, PRINT, LCPRINT, and HEXPRINT and the
procedure logic HEX, PRINT, LCPRINT, and HEXPRINT commands are mutually
exclusive. You cannot specify file print in both the OPTION statement and the
procedure logic. See the examples at the end of this section.

The HEXPRINT keyword prints a file in hexadecimal and graphics.

The PRINT keyword prints a file in graphics only.

The HEX keyword prints a file in hexadecimal only.

The LCPRINT keyword prints a file in graphics only, but does not translate
normally unprintable characters to blanks. The keyword LCPRINT is necessary
when lowercase characters are to be printed.

Output files can only be file printed when they are output from themselves. The
file name can be one to eight (seven for VSE) characters long. The file must begin
with an alphabetic character.

OPTION HEXPRINT filename

Figure 4-4 FILE PRINT Option HEXPRINT Keyword

OPTION PRINT filename

Figure 4-5 FILE PRINT Option PRINT Keyword

OPTION HEX filename

Figure 4-6 FILE PRINT Option HEX Keyword

OPTION LCPRINT filename

Figure 4-7 FILE PRINT Option LCPRINT Keyword
Using the OPTION Command 4–5

FILE PRINT Options
Following are examples using FILE PRINT options:

OPTION HEXPRINT ARFILE

OPTION HEXPRINT ARMSTR

OPTION HEX ARFILE

FILE ARFILE FB 352 5280
ACCOUNT 2 182

IF ACCOUNT EQ 'WO'
PRINT ARFILE ELSE
HEXPRINT ARFILE ENDIF

FILE ARFILE FB 352 5280
ACCOUNT 2 182

IF ACCOUNT EQ 'WO'
PRINT ARFILE ENDIF

or

OPTION PRINT ARFILE
FILE ARFILE FB 352 5280
ACCOUNT 2 182

IF ACCOUNT EQ 'WO'
ACCEPT ELSE REJECT ENDIF

Figure 4-8 Examples Using FILE PRINT Options
4–6 VISION:Results Reference Guide

Module Options
Module Options
Use the FREEZE keyword to translate a set of statements into object code and place
the module in a library for later execution. You can also RESTORE the load module
from its disk storage location and execute it. The module options handle these two
tasks.

Using the FREEZE keyword saves the machine instructions produced by
VISION:Results. The module is named immediately after the FREEZE keyword. It
then must be link edited to a load library (OS/390) or a core image library (VSE) in
the same manner as output produced by compilers and assemblers.

Frequently run programs can be frozen so that the program does not have to be
validated and compiled each time prior to execution. See the examples at the end
of this chapter.

You can replace the character delimiter that is specified on the Report statement.
This only affects programs that were frozen with the DELIM parameter on the
Report statement.

Note: You can only specify DELIM on the OPTION statement if you also specify
RESTORE.

The RESTORE keyword invokes a frozen module and executes it. See Restore a
Frozen Module on page 4-28.

The only keywords that are allowed in a RESTORE run on the OPTION statement
are:

OPTION FREEZE modulename [DATA 'literal'] [FREEZDD ddname]

Figure 4-9 Module Options—FREEZE

OPTION RESTORE modulename [nn] [[RESTART nnnn] [DELIM [C’c’ | X’xx’]]

Figure 4-10 Module Options—RESTORE

DYL4YEAR
NODYL4YEAR
DATA literal
DISK type
SYSnnn filename
NOTOTAL
PRINTERROR
RESTART nn
DELIM [C’c’ | X’xx’]
OPTLIST
NOOPLIST
COB2NR
NOCOBRNR

Figure 4-11 Keywords Allowed in a RESTORE Run (Page 1 of 2)
Using the OPTION Command 4–7

Specification of Default FREEZE ddname
For VSE users, the module name is the phase name. The module name or phase
name can be one to eight characters long. It can be alphanumeric, with the first
character being alphabetic.

For specific information about the FREEZE and RESTORE features, see the
VISION:Results Toolkit Guide.

Specification of Default FREEZE ddname
When running OPTION FREEZE, you can specify a 1- to 8- character ddname for
SYS280FZ by specifying it with the FREEZDD keyword in the OPTION statement.

For example, to generate the frozen module MYPROG and write it to the library
with the ddname of FREEZLIB, you can code:

Free-form COLUMNS Option
The free-form input to VISION:Results is an 80-byte record. The first 72 bytes
contain the VISION:Results free-form statements, leaving bytes 73-80 for an
identification or sequence field. The free-form input can be changed by the
COLUMNS keyword. To change the start and end of the VISION:Results free-form
input record, use:

VSEDISK
NOVSEDISK
VSETAPE
NOVSETAPE
VSEALL
NOVSEALL
LE
NOLE
$$PCB

Figure 4-11 Keywords Allowed in a RESTORE Run (Page 2 of 2)

OPTION [FREEZDD ddname]

Figure 4-12 FREEZDD Keyword in the OPTION Statement

OPTION FREEZE MYPROG FREEZDD FREEZLIB

Figure 4-13 Frozen Module MYPROG

OPTION COLUMNS start end

Figure 4-14 Change the Start and End of the Free-form
4–8 VISION:Results Reference Guide

VERIFY Option
Enter the “COLUMNS start end” statement in an OPTION statement by itself,
keeping it within the bounds of both the old and new free-form columns. A new
free-form header is printed for the statements that follow. The minimum number
of free-form columns is 30.

Data entered prior to position 10 and after position 60 in the free-form input record
is ignored.

VERIFY Option
To verify the correctness of the VISION:Results statements without executing
them, use:

OPTION VERIFY, when used in multiple report programs, applies to all requests,
primary as well as subsequent.

DATA Option
To supply data to a VISION:Results program other than in a file, use the DATA
keyword.

The literal, specified between quotation marks (’), can be numeric or alphanumeric
and cannot be longer than 38 characters. It is placed into the reserved word
DYLPARM. OS/390 users can use the PARM facility of the EXEC statement. See
the VISION:Results Getting Started Guide for a definition of DYLPARM.

Extended Error Option

OPTION COLUMNS 10 60

Figure 4-15 COLUMNS Start End Statement

OPTION VERIFY

Figure 4-16 Verify the Correctness

OPTION DATA 'literal'

Figure 4-17 Supply Data

OPTION [PRINTERROR | PRINTERR]

Figure 4-18 Execution Error
Using the OPTION Command 4–9

Enhanced Error Analysis
If an interrupt occurs during execution, typing PRINTERROR or PRINTERR after
the command OPTION prints an extended error analysis report. This analysis
prints all areas, work areas, buffers, indexes, and so on, used by the
VISION:Results program and assists you in determining the causes of the
interrupt. See the examples at the end of this chapter.

Enhanced Error Analysis
Typing OPTION EXPRTERR prints the address of the first byte of each line of a
FILE or REFORMAT area in hexadecimal in the left margin of the error analysis
output. In addition, the offset from the ending byte for each line is printed in
decimal and hexadecimal in the right margin.

To prevent the addresses and offsets from printing, regardless of the default
setting, use option NOEXPRTERR.

Suppress VISION:Results Control Totals Option
At the end of a run, VISION:Results automatically prints various counts
maintained by you or VISION:Results, such as DYLCOUNT1, record and
character counts, block counts, fixed blank counts, and divide by zero. If the
NOTOTAL keyword is specified in the OPTION statement, control totals do not
print. To suppress the VISION:Results control totals, use:

To suppress the VISION:Results program listing and VISION:Results control
totals use:

To change the control total printing default, use the NOTOTAL=Y parameter in
the DYLINSTL macro. To override control total print at execution time, use
OPTION TOTAL. See the VISION:Results Installation Guide for information on the
DYLINSTL macro.

OPTION [EXPRTERR | NOEXPRTERR]

Figure 4-19 Option NOEXPRTERR

OPTION NOTOTAL

Figure 4-20 NOTOTAL Keyword Specified in OPTION Statement

STATEOFF
OPTION NOTOTAL

Figure 4-21 NOTOTAL Parameter
4–10 VISION:Results Reference Guide

Number of Lines per Page Option
Number of Lines per Page Option
VISION:Results defaults to 55 lines per page for both the VISION:Results source
listing and any file prints (HEXPRINT, HEX, PRINT, LCPRINT, and
REPORTFILE). You can change the number of lines per page printed by using:

Where ‘nn’ is number of lines per page. The minimum ’nn’ value allowed by
VISION:Results is 13.

This option has no effect on the number of lines per page for any report being
printed. The REPORT statement must be used to change the number of lines per
page for a report.

OPTLIST and NOOPTLIST
If you do not want the default options established for your system to print at the
conclusion of your program run, use:

If NOOPTLIST is established as the installation default (using the DYLINSTL
customizing macro parameter, OPTLIST=N), OPTION OPTLIST can be used to
reverse the default and cause the default OPTIONs list to print. For more
information on the DYLINSTL macro, see the VISION:Results Installation Guide.

Cross-Reference Option
You can request a cross-reference listing of data names in the program by using
XREF or XREFA. The listing is produced at the end of each report request,
including the data names from the program in alphabetic sequence as well as the
size of the field, the data type, the number of decimals, the VISION:Results
statement number where the field was defined, and the VISION:Results statement
numbers where the field was referenced. Use the DMAP keyword for
cross-referencing by area, location, size, and statement number.

Once a cross-reference option is selected, it remains in effect for all report requests
in a multiple report run until it is changed. The option is indicated on the
VISION:Results OPTION statement. See Chapter 5, Data Name Qualification and
the VISION:Results Messages and Codes book for more details.

There are three cross-reference options available.

OPTION nn LONG

Figure 4-22 Number of Lines per Page Option

OPTION NOOPTLIST

Figure 4-23 NOOPTLIST Option
Using the OPTION Command 4–11

Cross-Reference Option
XREF and XREFA Options
Use XREF for cross referencing only referenced data names.

XREFA caution: If you have a large number of unreferenced data names, sorting them
prior to producing the cross-reference listing can take a long time.

Use XREFA for cross-referencing all data names.

Use NOXREF when you do not want to produce a cross-reference.

DMAP Option
The Data Name Map (DMAP) option prints the data names and their related
information in the sequence of Area, Location, Size, and Statement Number. Area,
Location, and Statement Number are printed in ascending order, and Size is
printed in descending order.

When an XREFA option is selected together with the DMAP option, all data names
in the program are printed for both XREFA and DMAP. If the selected options are
XREF and DMAP, only the referenced data names are printed for XREF and
DMAP. If only DMAP is selected, only the referenced data names are printed.

With the XREFA option, the cross-reference listing is printed with the data names
in alphabetical order within the corresponding qualifier.

With the DMAP option, the data name map is printed in Area, Location, Size, and
Statement Number order within the corresponding qualifier.

OPTION XREF

Figure 4-24 XREF Option

OPTION XREFA

Figure 4-25 XREFA Option

OPTION NOXREF

Figure 4-26 NOXREF Option

OPTION DMAP
OPTION DMAP XREFA

Figure 4-27 DMAP Option
4–12 VISION:Results Reference Guide

Programming Mode Option
Programming Mode Option
VISION:Results provides three programming modes. You can select the
appropriate mode based on your requirements. Once the mode has been selected,
it remains in effect for all report requests in a multiple report run unless it is
changed. The preferred mode is indicated by the VISION:Results OPTION
statement.

The CONVENTIONAL mode is the default and sets the mode to standard
VISION:Results.

The STRUCTURED mode allows the use of all structured features in
VISION:Results. To adhere to strict structured constructs, this mode disables the
usage of the GOTO, ACCEPT, and REJECT commands. See the VISION:Results
Getting Started Guide for a complete description of this feature.

The STRUCTURED2 mode allows all structured features including the GOTO,
ACCEPT, and REJECT commands, establishing a less restrictive environment than
OPTION STRUCTURED.

The USERDEFAULT mode assumes certain defaults to simplify programming.

See the VISION:Results Getting Started Guide for information on this feature.

RESTART and RESTORE Options (Multiple Reports)
See Module Options on page 4-7 for information on the module options and
Chapter 17, Multiple Reports and Multiple Requests for a description of the RESTART
and RESTORE keywords. See the VISION:Results Toolkit Guide for information
about OPTION RESTORE.

OPTION CONVENTIONAL

Figure 4-28 CONVENTIONAL Mode

OPTION STRUCTURED

Figure 4-29 STRUCTURED Mode

OPTION STRUCTURED2

Figure 4-30 STRUCTURED2 Mode

OPTION USERDEFAULT

Figure 4-31 USERDEFAULT Mode
Using the OPTION Command 4–13

Qualification of Data Name Option
Qualification of Data Name Option
VISION:Results provides a qualification of data name feature that allows you to
use non-unique data names in a program. Started with the OPTION command,
you specify the keyword QLF or QUALIFIERS. A qualifier can be a file name, a
table name, a named WORKAREA, or a used IDname. For more information, see
Chapter 17, Multiple Reports and Multiple Requests. The keyword NOQLF or
NOQUALIFIERS is specified to negate the qualification option.

The default value for this option can be specified with a parameter in the
DYLINSTL macro and can be overridden at execution time using these keywords.
See the VISION:Results Installation Guide for more information about the
DYLINSTL macro.

Allocating Memory for Tables and Arrays
If you define a table or an array, VISION:Results automatically acquires additional
memory to store the table or array. The TSIZE parameter in the OPTION statement
allows you to control the amount of storage reserved.

For example, if you need 2K of memory for the entries in one table and 4K for
another, code:

This allocates enough space for both tables.

You can use the TABLE/ARRAY processor of VISION:Results to create and access
tables residing above the 16M line. Use this option to table and search large
amounts of data.

Maximum values are 63M or 63000K.

OPTION [QLF | QUALIFIERS | NOQLF | NOQUALIFIERS]

Figure 4-32 Qualification Option

OPTION TSIZE nnM | nnnnnK

Figure 4-33 TSIZE Parameter in OPTION Statement

OPTION TSIZE 6K

Figure 4-34 Example of TSIZE Parameter

OPTION TSIZE nnM | nnnnnK

Figure 4-35 TSIZE
4–14 VISION:Results Reference Guide

Work File Option
Here are some guidelines for deciding how much memory to allow:

� Round up the number of bytes of data you expect to store in a given table to the
next multiple of 1024 (1K).

� Be generous in your estimate unless you know exactly how much data must be
tabled. Remember that tables can grow as your customer base grows.

� Variable-length tables require an additional 2 bytes per entry to hold the entry
length.

� Arrays always require the maximum space (the product of the element length
and all the dimensions).

� If insufficient storage is available to satisfy the memory required, an 80A
system abend or a 602 completion code (VSE) results. If this happens, increase
your region/partition size or decrease your TSIZE.

� The minimum TSIZE allowed is 2K; the maximum is 63000K. If TSIZE is not
specified, a default of 20K is used.

Work File Option
Note: This section only applies to VSE.

VISION:Results uses a disk work file. For VSE users only, it is necessary to specify
the type of disk device being assigned to the work file if the default cannot be used.

After DISK, one of the disk types must be specified. If a disk type is not specified,
VISION:Results defaults to 3330. The default can be changed during installation of
VISION:Results. FBA represents fixed block architecture devices. See the examples
at the end of this chapter.

Symbolic Unit and File Name Option
Note: This section only applies to VSE.

VISION:Results uses a DISK work file. For VSE users on VSE systems prior to
Release 2.1 only, you can change the default symbolic unit and file name of this
work file. The default symbolic unit is SYS004. The default file name is IJSYS04.

OPTION DISK [2311 | 2314 | 3330 | 3340 | 3350 | 3375 | 3380 | FBA]

Figure 4-36 Example of Disk Work File
Using the OPTION Command 4–15

REPORTFILE Option
To change the symbolic unit and file name, use:

where ‘nnn’ is the new symbolic unit and ’filename’ is the new file name. The file
name can be one to seven characters long. It can be alphanumeric, with the first
character always being alphabetic.

To change only the file name, use:

where ’filename’ is the new file name.

REPORTFILE Option
Note: This section only applies to VSE.

To print a VSE report file, use:

where ’filename’ consists of a 1- to 7- character name of the file to be printed. The
file must have a carriage control character (machine or ASA) in the first byte of
each record. This byte is used to control line spacing and page ejecting. The file
must be defined by a FILE statement. This option cannot be used with any of the
file print options (OPTION HEX, OPTION PRINT, OPTION LCPRINT, or
OPTION HEXPRINT). See the examples at the end of this chapter.

Spooling Option
Note: This section only applies to VSE.

The SPOOL option is useful when using VISION:Excel to request multiple letters
or to print VISION:Excel output at a more convenient time.

OPTION SYSnnn [filename]

Figure 4-37 Change the Symbolic Unit and File Name

OPTION SYS004 filename

Figure 4-38 Change Only the File Name

OPTION REPORTFILE filename

Figure 4-39 Print a VSE Report File

OPTION [SPOOL | NOSPOOL]

Figure 4-40 SPOOL Option
4–16 VISION:Results Reference Guide

VISION:Excel OPTION NOEXCEL (VISION:Excel Users Only)
VISION:Excel OPTION NOEXCEL (VISION:Excel Users Only)
The OPTION EXCEL statement activates all the VISION:Excel commands and
keywords. Programs with data names that are the same as VISION:Excel
commands and keywords will be interpreted as VISION:Excel commands and
keywords. This option is only for those with VISION:Excel.

The OPTION NOEXCEL statement deactivates all the VISION:Excel keywords.
This allows programs with the same data names as VISION:Excel to run correctly.
The default can be set during installation.

Extended Arithmetic List Option
The extended arithmetic capability allows VISION:Results to handle very large
numbers with greater internal precision. You have the choice of listing your data
names in either the extended arithmetic format (21 digits and nine decimal places)
or non-extended format (10 digits and five decimal places). This is specified by
using either OPTION PRINTDIGITS (list in extended format) or OPTION
NOPRINTDIGITS (list in non-extended format).

Because these larger summed numeric fields take up more space on a report line
than before, previously existing VISION:Results programs that now exceed the
maximum print line length must use OPTION NOPRINTDIGITS to cause the
report to be composed as in VISION:Results Release 2.2 or earlier.

PRINTDIGITS is the default. The syntax is as follows:

This option only affects the LIST statement.

$$DUMP Option
This option disables error handling if the program abends. It allows S0C7 (data
checks) and S0CB (zero divide exceptions) to be captured by the SPIE/STXIT code.
For the indicated program exceptions, the normal error analysis report is
generated. For all other program exceptions, the system abends immediately at the
problem point.

OPTION [EXCEL|NOEXCEL]

Figure 4-41 OPTION EXCEL or NOEXCEL Statements

OPTION [PRINTDIGITS | NOPRINTDIGITS]

Figure 4-42 OPTION PRINTDIGITS or NOPRINTDIGITS

OPTION $$DUMP

Figure 4-43 $$DUMP Option
Using the OPTION Command 4–17

$$PCB Option
$$PCB Option
This option lists the object code it generates in Assembler language format.

$$KEYLEVEL Option
This option back dates the release of VISION:Results so that new reserved words
are ignored (keyword table entries). This allows older programs created under a
previous release of VISION:Results to run even if some of the data names conflict
with reserved words in the new release. The valid release numbers are 2.2, 2.5, 2.8,
3.0, and 3.5.

MSGCSECT Option
The MSGCSECT option generates additional error message information. When
this keyword is specified in the OPTION statement, the additional information is
printed along with other DYL error messages in your listing. This additional
information is useful to Computer Associates Technical Support in quickly solving
problems.

Print Entry Point Address Option
The PRINT ENTRY POINT (or PRINTEP) option is useful for debugging abending
VISION:Results programs, especially in a VSE environment. Use this option to list
the entry point addresses of all subroutines called by the VISION:Results
program—the output shows all of the subroutines for which you have coded
CALL statements and their entry points.

OPTION $$PCB

Figure 4-44 $$PCB Option

OPTION $$KEYLEVEL 2.2

Figure 4-45 $$KEYLEVEL 2.2 Option

OPTION MSGCSECT

Figure 4-46 MSGCSECT Option

OPTION [PRINTEP | NOPRINTEP]

Figure 4-47 PRINTEP or NOPRINTEP Option
4–18 VISION:Results Reference Guide

Null Output File Option
Null Output File Option
If an output file is defined but never written to in the VISION:Results program,
option NULLON forces VISION:Results to OPEN and CLOSE the file when the
program ends. This allows subsequent programs using this file to depend on the
existence of the file. If this option is established as the installation default (using
the DYLINSTL customizing macro parameter, OUTFILE=Y), option NULLOFF
can be used to reverse the effect. See the VISION:Results Installation Guide for more
information on the DYLINSTL macro.

Options Useful for Technical Support
If you have problems executing your VISION:Results program and need to send
the program to Computer Associates Technical Support, execute the program with
the following OPTION statement:

After executing the program, collect all the listings and send them to Technical
Support. The output from the various OPTION settings can help to resolve the
problem quickly.

Divide by Zero Condition Keyword
When the ZDIVRC keyword is specified in the OPTION statement, if a divide by
zero condition occurs, the zero is changed to a 1, processing continues, and a return
code of 4 is issued.

When the ZDIVAB keyword is specified in the OPTION statement, if a divide by
zero condition occurs, a system ABEND occurs.

OPTION [NULLON | NULLOFF]

Figure 4-48 Options NULLON and NULLOFF

OPTION PRINTERROR XREFA DMAP $$PCB MSGCSECT PRINTEP
TEST LIST26 LISTAUD

Figure 4-49 Options for Technical Support

OPTION ZDIVRC

Figure 4-50 Divide by Zero Condition Keyword

OPTION ZDIVAB

Figure 4-51 ZDIVAB Keyword
Using the OPTION Command 4–19

Characteristics of VSAM Files
If the customizing parameter ZDIVAB=Y or ZDIVAB=R has been set as the
installation default (using the DYLINSTL customizing macro parameter) and the
ZDIVORG keyword is specified in the OPTION statement, the system default is
changed back to its original state of changing the zero to a 1 and continuing
processing. See the VISION:Results Installation Guide for more information on the
DYLINSTL macro.

Characteristics of VSAM Files
When the VSAMCAT keyword is specified in the OPTION statement, file
characteristics of VSAM files are obtained from the VSAM catalog entry that was
created for the file. You do not need to specify the file type and characteristics of
the VSAM file. You must specify the DD statement or DLBL statement, even for a
FREEZE or verify run.

The default for this option can be implemented by a parameter in the DYLINSTL
macro and can be overridden at execution time using these keywords. See the
VISION:Results Installation Guide for more information on the DYLINSTL macro.

This option must be in effect when processing VSAM RLS files.

PDS Replace
When WRITEDIR memname REPLACE is executed in a program and the member
is not present, if the PDSREPA keyword is specified in the OPTION statement, an
A is returned in the status byte if the member is successfully added. If the
PDSREPN keyword is specified in the OPTION statement, an ‘N’ is returned in the
status byte if the member is successfully added.

You can change the default by setting a parameter in the DYLINSTL macro and it
can be overridden at execution time using these keywords. See the VISION:Results
Installation Guide for more information on the DYLINSTL macro.

OPTION ZDIVORG

Figure 4-52 ZDIVORG Keyword

OPTION [VSAMCAT | NOVSAMCAT]

Figure 4-53 VSAMCAT and NOVSAMCAT Keywords

OPTION [PDSREPA | PDSREPN]

Figure 4-54 PDSREPA and PDSREPN Keywords
4–20 VISION:Results Reference Guide

DYLETIME Format Change
DYLETIME Format Change
When the DYLETIME field is listed, if the TIMECOLON keyword is specified in
the OPTION statement, DYLETIME lists as HH:MM:SS. If the TIMEDOT keyword
is specified in the OPTION statement, DYLETIME lists as HH.MM.SS.

The default can be changed by a parameter in the DYLINSTL macro and can be
overridden at execution time using these keywords. See the VISION:Results
Installation Guide for more information on the DYLINSTL macro.

Premature Sort Termination Without Abend
When a premature termination of SORT occurs, if the NOSORTAB keyword is
specified on the OPTION statement, the system generates a return code of 8.

A premature termination of SORT can occur if your program logic issues a STOP
or QUIT before SORT has processed all records. In some installations, a return
code of 16 to SORT causes an abend.

The default for this option can be set by a parameter in the DYLINSTL macro. See
the VISION:Results Installation Guide for more information on the DYLINSTL
macro.

CDLOAD Facility
Note: This section only applies to VSE.

The CDLOAD option loads the named subroutine using the VSE CDLOAD
facility, rather than LOAD, for user programs referenced in a CALL statement.

The subroutine is loaded into the partition’s dynamic area, rather than into storage
reserved by the compiler. Because of this, the size parameter in the CALL
statement is not needed. VSE determines the storage required. If the size
parameter previously used reserved additional storage at the end of the phase for

OPTION [TIMECOLON | TIMEDOT]

Figure 4-55 TIMECOLON and TIMEDOT Keywords

OPTION [NOSORTAB]

Figure 4-56 NOSORTAB Keyword

OPTION [CDLOAD | NO CDLOAD]

Figure 4-57 CDLOAD and NO CDLOAD Options
Using the OPTION Command 4–21

IQBATCH
the subroutine’s use, this storage is no longer available. In this case, the CALL
statement must specify NOCDLOAD and use the size value as before. CDLOAD
or NOCDLOAD in the OPTION statement overrides the DYLINSTL specification.

See Chapter 13, Using the CALL Command for information on calling the CDLOAD
facility. See the VISION:Results Installation Guide for DYLINSTL information.

IQBATCH
IQBATCH in the OPTION statement allows a VISION:Results request to provide
the name of the load module to be used in implementing the IQ Batch-Results
bridge.

COBOL II Environment
Specifying NOCOB2NR in the OPTION statement overrides the DYLINSTL
parameter, COB2NR=Y, which allows proper execution when calling COBOL II
subroutines compiled with the NORES option. Conversely, indicating COB2NR in
the OPTION statement reinstates this feature.

See the VISION:Results Installation Guide for information on the COB2NR
parameter of the DYLINSTL macro.

Match File Attributes for VSE Sequential Files
VISION:Results constructs DTFs (define the files) that match your actual FILE
statement attributes. The DTF contains the appropriate value {F | FB | V | VB} in
place of the U (undefined) in the RECFM (record format). (In previous releases of
VISION:Results, the old method called for DTFs with a RECFM of U to be utilized
when processing a sequential file under VSE.)

The match file attributes feature is implemented in the OPTION statement or the
DYLINSTL macro. If none of these keywords is specified in the OPTION
statement, the default set by the DYLINSTL macro is in effect.

OPTION IQBATCH name

Figure 4-58 IQBATCH in OPTION Statement

OPTION [COB2NR | NOCOB2NR]

Figure 4-59 COB2NR or NOCOB2NR in OPTION Statement

OPTION [VSETAPE | NOVSETAPE]

Figure 4-60 OPTION VSETAPE and NOVSETAPE
4–22 VISION:Results Reference Guide

Currency Symbol Substitution
OPTION VSETAPE uses the new DTF method for VSE tape files only. Disk files
use the default method. Conversely, OPTION VSENOTAPE uses the old method.

OPTION [VSEDISK | NOVSEDISK]

OPTION VSEDISK constructs DTFs for VSE disk files only. Tape files use the
default method. OPTION NOVSEDISK uses the old method.

Use OPTION VSEALL when you want VISION:Results to construct DTFs for all
VSE files, both tape and disk. OPTION NOVSEALL ignores the default method for
all VSE files, both tape and disk.

These keywords are ignored in an OPTION FREEZE statement, and a warning
message is issued. In an OPTION RESTORE statement or a straight OPTION
statement, these keywords provide the default value for the application being
restored.

Currency Symbol Substitution
Using CURRENCY in the OPTION statement overrides the CURNCY parameter
set in the DYLINSTL macro, which assigns a symbol to be used instead of $ for the
currency symbol.

where x is any alphanumeric or special character and nn is any pair of valid
hexadecimal characters.

See the VISION:Results Installation Guide for details on the DYLINSTL macro.

Four-Digit Year Support
Specifying DYL4YEAR in the OPTION statement creates a 4-digit year heading in
SYSPRINT or SYSLST. When used with the USERDEFAULT option, OPTION
DYL4YEAR produces a 4-digit year in the TITLE line.

The default is a 2-digit year format.

OPTION [VSEALL | NOVSEALL]

Figure 4-61 OPTION VSEALL and NOVSEALL

OPTION [CURRENCY {C'x' | X'nn'}]

Figure 4-62 CURRENCY in the OPTION Statement

OPTION [DYL4YEAR | NODYL4YEAR]

Figure 4-63 DYL4YEAR or NODYL4YEAR in OPTION Statement
Using the OPTION Command 4–23

Program Fixes Employed
This option overrides the DYL4YR parameter in the DYLINSTL macro. See the
VISION:Results Installation Guide and the VISION:Results Getting Started Guide for
information on the DYLINSTL macro and the USERDEFAULT mode, respectively.

Program Fixes Employed
OPTION PATCHES prints program fixes applied to your system. Although these
are automatically printed and it is no longer necessary, using it does not cause an
error.

IBM Language Environment (LE) Support
You can use OPTION LE initialize the language environment in order to allow
your program to CALL subroutines written in any LE-compliant language,
including COBOL, C, PL/I, FORTRAN, and Assembler. You can also CALL the
IBM LE Service Routines, such as CEEDATE and CEEDAYS.

You can request this support as a default by coding the new DYLINSTL parameter
LE=Y, which overrides the current DYLINSTL parameter COBENV=Y. If both are
specified, a warning message will be issued which states that the COBENV option
will be ignored.

OPTION LE or NOLE overrides the default for this run established by the
DYLINSTL macro.

You can specify or override this for a single run by specifying the new LE | NOLE
on the OPTION statement.

The options can be specified with OPTION FREEZE and OPTION RESTORE;
however, the RESTORE with LE only works if the program was frozen with
VISION:Results Release 5.0 or later.

User-Defined Index Fields
You can define your own index fields if you want to extend the number of indices
beyond the standard INW, INX, INY, and INZ. You must specify the names of
these fields on the OPTION statement and they cannot be defined in any other
VISION:Results statement. VISION:Results allocates a 2-byte binary field for each
specified name. A maximum of 99 user index fields can be defined.

OPTION [LE | NOLE]

Figure 4-64 LE and NOLE
4–24 VISION:Results Reference Guide

System-Determined Block Size Support for OS/390
where nn is a number from 01–99.

Note: The data name must be 2-10 characters in length, starting with an alpha
character.

Once defined, you can specify the user index in place of INW, INX, INY, or INZ in
all statements that currently allow indexing.

System-Determined Block Size Support for OS/390
You can let the Operating System calculate the appropriate block size of an output
file created by VISION:Results when no block size information is provided.

For OS/390 to calculate the block size, the following must be true:

� A non-zero block size must not be coded on the DD statement in the JCL
associated with the file.

� The block size must not be specified on the FILE statement, or the BY parameter
of the PICNSAVE statement must not be used.

OPTION SYSBLOCK enables system-determined block size even if the DYLINSTL
parameter SYSBLOK=Y had not been specified. OPTION NOSYSBLOCK causes
VISION:Results to provide a block size if none is specified, even if SYSBLOK=Y
had been specified on the DYLINSTL macro.

IF NUMERIC Test for PD Fields
You can use IF NUMERIC to test Packed Decimal (PD) fields.

The OPTION statement overrides the specification (or absence of) the DYLINSTL
parameter. NUMPD allows the IF NUMERIC statement to be used for PD fields.
NONUMPD causes the DYL-480E message if a PD field is used with an IF
NUMERIC statement.

OPTION [!USERINXnn dataname!]

Figure 4-65 USERINXnn

OPTION [SYSBLOCK | NOSYSBLOCK]

Figure 4-66 SYSBLOCK and NOSYSBLOCK

OPTION NUMPD|NONUMPD

Figure 4-67 NUMPD and NONUMPD
Using the OPTION Command 4–25

Modifying IF NUMERIC Test
Modifying IF NUMERIC Test
You can change the way the IF NUMERIC test works.

� OPTION NUMCHAR changes the IF NUMERIC test to check for only F0
through F9 in all bytes (that is, do not allow a sign in the low order digit) for
NU or CH fields. For PD fields, checks the sign field for x’C’.

� OPTION NONUMCHAR reverts to the standard test.

This option overrides the DYLINSTL parameter NUMCHAR.

TABLE or ARRAY Allocation Above the 16M Line
You can use the TABLE/ARRAY processor of VISION:Results to create and access
tables residing above the 16M line. Use this option to table and search large
amounts of data.

You can also set the TABLEHI option in the DYLINSTL macro to Y to specify to
VISION:Results that tables are to be allocated above the 16M line.See the
VISION:Results Installation Guide for more information. Use the following option to
specify to the compiler that, for this run only, ignore the DYLINSTL default and
either allow or disallow a table to be created above the 16M line.

Options for VISION:Interface
The following options are available to licensed users of VISION:Interface™.

For VISION:Interface for DB2 (Dynamic)

Use this option to override the default DB2® plan and subsystem ID. See the
VISION:Interface for DB2 with VISION:Results Reference Manual for information
about OPTION DYNAMDB2.

OPTION NUMCHAR|NONUMCHAR

Figure 4-68 NUMCHAR and NONUMCHAR

OPTION TABAREA {ABOVE | BELOW}

Figure 4-69 TABAREA ABOVE and BELOW

OPTION [DYNAMDB2 [DB2PLANID {dataname |'literal'}]
[DB2SYSID {dataname | 'literal'}]]

Figure 4-70 OPTION DYNAMDB2
4–26 VISION:Results Reference Guide

Examples
For VISION:Interface for DB2 (Static)
Use this option to override the default DB2 plan and subsystem ID and specify the
module name of the frozen program to be created. See the VISION:Interface for
DB2 with VISION:Results Reference Manual for information about OPTION
STATSQL.

Copying DB2 Table Definitions
Use the following option to specify PLAN and subsystem ID when using the
COPYDB2 command to copy DB2 table definitions for use as VISION:Results data
names.

To change the OPTION statement overrides, you must use the JCL overrides
described in COPYDB2 Requirements on page 15-25.

Examples
Print a File in Both Hexadecimal and Graphics
Print an entire 100-byte record from an input file in both hexadecimal and graphics
by using the HEXPRINT option.

Override the Default for a VSE Work File
Override the default (SYS004) for the VSE work file with SYS010 by coding:

Override the Work File System Number and File Name
Override both the work file system number (SYS004) and the file name (IJSYS04)
defaults by coding:

OPTION STATSQL modulename [PLANID planname SYSTEMID ssid]

Figure 4-71 OPTION STATSQL

OPTION [CATPLANID planname] [CATSYSID ssid]

Figure 4-72 Access to IBM DB2

OPTION HEXPRINT ARMSTR FILE ARMSTR FB 100 1000

Figure 4-73 Example HEXPRINT Option

OPTION SYS010

Figure 4-74 Example Override the Default for a VSE Work File

OPTION SYS010 DYLWORK

Figure 4-75 Example Override the Work File System Number and File Name
Using the OPTION Command 4–27

Examples
Override the 3330 Disk Type Default
Override the 3330 disk type default for the VISION:Results work file by coding:

Variable Data in a VISION:Results Program
Pass a variable to a program using the keyword DATA in the OPTION command
by coding:

Freeze a Program
Freeze a VISION:Results program by coding:

Restore a Frozen Module
Use OPTION RESTORE to restore a previously frozen module that has been link
edited and cataloged to a load or core image/phase library.

Submit a VISION:Sixty Program through VISION:Results
Valid only for licensed VISION:Sixty users. To submit a VISION:Sixty program
through VISION:Results, code:

OPTION DISK 3380

Figure 4-76 Example Override the 3330 Disk Type Default

OPTION DATA '01/15/01'
FILE ARMSTR FB 100 1000
ACCTNO 5 BALANCE 5 170 PD 2 A

WORKAREA
TODAY 8

MOVE DYLPARM TO TODAY
LIST ACCTNO BALANCE TODAY

Figure 4-77 Example Variable Data

OPTION FREEZE WKMSTR
FILE ARMSTR FB 100 1000
ACCTNO 5 BALANCE 5 170 PD 2 A

WORKAREA
PARMINFO 60
TODAY 8 1

MOVE DYLPARM TO PARMINFO
LIST ACCTNO BALANCE TODAY

Figure 4-78 Example Freeze a Program

OPTION RESTORE WKMSTR DATA '01/15/01'

Figure 4-79 Example Restore a Frozen Module

OPTION 260
:
:
your VISION:Sixty program
:
:

Figure 4-80 Example Submit a VISION:Sixty Program through VISION:Results
4–28 VISION:Results Reference Guide

Examples
Extended Error Analysis
Error analysis only prints if an interrupt occurs during the execution of the
VISION:Results program. In this example, PRINTERR is specified during the
restoration of the module WKMSTR. To request VISION:Results’ extended error
analysis, code:

Use the SPOOL Option
When generating two different letters, each printed on a different letterhead, spool
the letters so that they can be selected later for printing on the correct stationery.

Change the Number of Lines per Page
To change the number of lines printed per page when specific records are selected
and printed in hexadecimal, code the following. This also changes the lines printed
on a page for the program listing.

Print a Report File
For VSE only. When printing a report file, the carriage control character must be in
position 1 of the input.

Submit a VISION:Report Program through VISION:Results
Valid for licensed VISION:Report users only. To submit a VISION:Report program
through VISION:Results, code:

OPTION RESTORE WKMSTR DATA '01/15/01' PRINTERR

Figure 4-81 Example Extended Error Analysis

OPTION SPOOL DATA '01/15/99'

Figure 4-82 Example SPOOL Option

OPTION 60 LONG HEXPRINT ARFILE
FILE ARFILE FB 352 5280
ACCOUNT 2 182

IF ACCOUNT EQ 'IO' ACCEPT
ELSE REJECT ENDIF

Figure 4-83 Example Change the Number of Lines per Page

OPTION DISK 3380
OPTION REPORTFILE ARREPT
FILE ARREPT FB 133 1330

Figure 4-84 Example Print a Report File

OPTION QUIKJOB
:
:
your VISION:Report program
:
:

Figure 4-85 Example Submit a VISION:Report Program through VISION:Results
Using the OPTION Command 4–29

Examples
Specify Cross-References
The following demonstrates how to specify both the cross-reference (XREF) only
for referenced data names and the cross-referencing by area, location, size, and
statement number (DMAP).

OPTION XREF DMAP
FILE ARFILE FB 352 5280
ACCOUNT 2 182 BILLNGDATE 6 44 NU D
BALANCE 5 170 PD 2 E

LIST ACCOUNT BILLNGDATE BALANCE

Figure 4-86 Example Specify Cross-References
4–30 VISION:Results Reference Guide

Chapter
5 D
ata Name Qualification
The qualified data name feature (OPTION QLF) allows you to use non-unique
data names in your program, as long as they are assigned to different qualifiers. A
qualifier is any file name, table name, array name, or named WORKAREA. This
option also allows the definition of non-unique, self-defining data names on
separate file statements. If you do not use this option, all data names must be
unique.

The DYLINSTL parameter QLF=Y can be specified to default to Qualifier mode.
See the VISION:Results Installation Guide for details. Any setting in the DYLINSTL
macro is overridden by OPTION QLF | NOQLF.

The complete format of the command is:

The default keyword is NOQLF or NOQUALIFIERS. To use the OPTION, code:

OPTION QLF

or

OPTION QUALIFIERS

In addition to making your program easier to read and understand, OPTION QLF
is useful if you have a large number of data names in a program and the files,
tables, and arrays you are using have similar fields. For example, if you are
defining two files that each have an account field, you can code:

OPTION QLF

FILE AFILE FB 80 1600
ACCOUNT 7

FILE BFILE FB 80 1600
ACCOUNT 7

In this case, AFILE and BFILE are considered qualifiers. When the two ACCOUNT
fields are referenced in the program, they must be written as AFILE.ACCOUNT
and BFILE.ACCOUNT.

OPTION [QLF|QUALIFIERS|NOQLF|NOQUALIFIERS]

Figure 5-1 OPTION QLF Command Format
Data Name Qualification 5–1

Qualification Format
Qualification Format

Qualified data names must always be referenced in your program logic in the
following manner:

OPTION QLF

FILE ARFILE FB 352 5280
AMOUNT 5 170 PD 2 A

TABLE ARTBL F 6 ENTRY TBLENT STATUS TBLSTAT
AMOUNT 5 PD 2
.
.

MOVE ARFILE.AMOUNT TO ARTBL.AMOUNT

For example:

BALTOT = AFILE.AMOUNT + BALTOT

AMTDUE = AFILE.AMOUNT * BFILE.RATE

SORT ARFILE USING ARFILE.ACCOUNT

LIST ARFILE.ACCOUNT ARFILE.NAME ARFILE.BALANCE

MOVE ARFILE.NAME TO CUSTFILE.NAME

Qualifying of Keywords and Self-Defining Data Names
When OPTION QLF is specified, you automatically qualify the self-defining data
names for the keywords COUNT, LENGTH, and STATUS, whether or not they are
specified in the FILE statement definition. For example:

OPTION QLF

FILE ARFILE FB 352 5280

The above FILE statement does not specify the keywords COUNT, STATUS, or
LENGTH. When you specify OPTION QLF or OPTION QUALIFIERS, you can
qualify these areas as:

ARFILE.COUNT
ARFILE.STATUS
ARFILE.LENGTH

qualifier . dataname

� �
1-8 2-50

characters characters

Figure 5-2 Qualification Format
5–2 VISION:Results Reference Guide

Qualifying Work Areas
If you specify the FILE statement with COUNT, STATUS, or LENGTH, you can
use either form of qualification. For example:

FILE ARFILE FB 352 5280 COUNT ARCNT

IF ARFILE.ARCNT . . .

MOVE ARFILE.COUNT TO . . .

When you define a table in a program the self-defining data names for the
keywords STATUS, ENTRY, KEYLOC, KEYLEN, LENGTH, and OFFSET are also
automatically qualified, and, if specified in the TABLE statement, can be qualified
using either form. For example:

TABLE XTBL F 40 ENTRY TBENT KEYLOC KLOC KEYLEN KLEN
STATUS TSTAT

MOVE 10 TO XTBL.KEYLOC...

MOVE 1 TO XTBL.TBENT...

For arrays, the self-defining data name for the STATUS keyword is automatically
qualified.

Qualifying Work Areas
You can also use a named WORKAREA as a qualifier. In this case, the qualifier size
must be from two to eight characters long.

In the following example, the WORKAREA named HOLD (from two to eight
characters long) is used as a data name qualifier in the program logic:

OPTION QUALIFIERS

FILE ARFILE FB 352 5280 STATUS EOFAR
ACCOUNT 7 4
LASTNAME 25 85
BALANCE 5 170 PD 2 A

WORKAREA
BALTOT 7 PD 2

WORKAREA NAMED HOLD
LASTNAME 25

IF ARFILE.LASTNAME EQ HOLD.LASTNAME
BALTOT = BALTOT + BALANCE ENDIF
Data Name Qualification 5–3

Qualifying with Multiple Reports
Qualifying with Multiple Reports
If you are using a retained file, table, or array in a multiple-report program, the ID
name becomes the qualifier. For more information, see Chapter 17, Multiple Reports
and Multiple Requests. In the following example, an array called NUMLIST is
retained and uses the array data names in a second report request.

FILE NUMFILE FB 80 1600 STATUS NUMSTAT
NAME 25
NUM 7 PD

ARRAY NUMLIST F 32 DIM(6 2) STATUS ARSTAT RETAIN
NAME 25
NUM 7 PD

MOVE NUMFILE.NAME TO NUMLIST.NAME
MOVE NUMFILE.NUM TO NUMLIST.NUM

REPORT2

USE NUMLIST

IF NUMLIST.NUM GT 1000
MOVE 0 TO NUMLIST.NUM ENDIF

MOVE CORRESPONDING and OPTION QLF
You can move several data name areas at the same time by using the MOVE
CORRESPONDING command. For more information, see Chapter 10, Using the
MOVE Command. The format is:

The fields to be moved must have a different qualifier than the receiving fields, but
the same data names. The sending and receiving fields do not have to be of the
same data type, but they must conform to the standard rules for moves. See
Chapter 3, Syntax Rules for more information. The following example uses MOVE
CORRESPONDING:

FILE ARFILE FB 80 STATUS ARSTAT
ACCT 2
NAME 25
BALANCE 7 PD 2 A

FILE CUSTFILE FB 80 STATUS CUSTSTAT
NAME 25
ADDRESS 15
PHONE 10
ACCT 2
BALANCE 7 PD 2 E

MOVE CORRESPONDING ARFILE TO CUSTFILE

MOVE {CORRESPONDING | CORR} qualifier TO qualifier [SUPPRESS]

Figure 5-3 MOVE CORRESPONDING Command
5–4 VISION:Results Reference Guide

Options XREF/XREFA and DMAP with QLF
In this example, all data name areas from ARFILE having a CORRESPONDING
data name area in CUSTFILE are moved.

MOVE CORRESPONDING ARFILE TO CUSTFILE

This statement does three moves simultaneously:

MOVE ARFILE.ACCT TO CUSTFILE.ACCT
MOVE ARFILE.NAME TO CUSTFILE.NAME
MOVE ARFILE.BALANCE TO CUSTFILE.BALANCE

When you use MOVE CORRESPONDING in your program, the generated
program listing shows the individual MOVE statements with the word INSERT
printed to the left of each MOVE statement. If you do not want this expansion, code
the word SUPPRESS at the end of your MOVE statement. For example:

MOVE CORR ARFILE TO CUSTFILE SUPPRESS

See Chapter 10, Using the MOVE Command for more information.

Options XREF/XREFA and DMAP with QLF
When you request the Data name Map (DMAP) and the cross-reference (XREFA
or XREF) options in a program, the cross-reference listing is printed with the data
names in alphabetical order within the corresponding qualifiers and the data name
map is printed in area, location, and size (descending sequence) with the
corresponding qualifiers. For more information, see XREFA Option on page 5-6
and DMAP Option on page 5-7.

The following examples show the files and work areas of a program and the
cross-reference and data name map listings that are generated from them.

OPTION DMAP XREFA QLF STRUCTURED ;VERIFY

FILE ARFILE FB 352 5280 STATUS EOFAR
ACCOUNT 7 4
LASTNAME 15 11
FIRSTNAME 10 26
BILLDATE 6 44
NAME 25 85
ADD1 25 110
ADD2 25 135
BALANCE 5 170 PD 2 A
ACCTCODE 2 182
INSTLBAL 6 191 PD 2 E
INSTPAY 3 197 PD 2 A
INTPART 3 206 PD 2 A
NUMPY 2 209 PD A

FILE ARSUB FB 39 OUTPUT FROM ARSUB STATUS EOFARS
ACCOUNT 7
LASTNAME 15
FIRSTNAME 10
BALANCE 5 PD 2 A
ACCTCODE 2

WORKAREA NAMED WORK1
LASTNAME 15

Figure 5-4 Example Files and Work Areas of a Program (Page 1 of 2)
Data Name Qualification 5–5

Options XREF/XREFA and DMAP with QLF
XREFA Option

WORKAREA
BALTOT 7 PD 2 A
BALTOT1 7 PD 2 A
BALTOT2 7 PD 2 A

.

.
(Program logic)

.

.

Figure 5-4 Example Files and Work Areas of a Program (Page 2 of 2)

COMPUTER ASSOCIATES VISION:RESULTS DATE 01/15/99
C R O S S R E F E R E N C E

A T D
R Y E

DATENAME E P C
QUALIFIER OR TAG LOCN A SIZE E . DEFN REFERENCES

ARFILE ACCOUNT 4 A 7 CH 3
ARSUB ACCOUNT 1 J 7 CH 19
ARFILE ACCTCODE 182 A 2 CH 11
ARSUB ACCTCODE 38 J 2 CH 23- 48
ARFILE ADD1 110 A 25 CH 8- 36 37
ARFILE ADD2 135 A 25 CH 9- 37
ARFILE ARFILE 1 A 1 CH 2
ARSUB ARSUB 1 J 1 CH 18
ARFILE BALANCE 170 A 5 PD 2 10- 44 50
ARSUB BALANCE 33 J 5 PD 2 22- 42 52

BALTOT 409 R 7 PD 2 31- 44 44 47
BALTOT1 416 R 7 PD 2 32- 42 42 47 52
BALTOT2 423 R 7 PD 2 33- 47 50

ARFILE BILLDATE 44 A 6 CH 6- 35
C%ARFILE ARC U 5 PD 2
C%ARSUB JRC U 5 PD 18

ARFILE COUNT ARC U 5 PD 2
ARSUB COUNT JRC U 5 PD 18
ARFILE EOFAR ARF U 1 CH 2
ARSUB EOFARS JRF U 1 CH 18
ARFILE FIRSTNAME 26 A 10 CH 5- 40
ARSUB FIRSTNAME 23 J 10 CH 21- 40
ARFILE INSTLBAL 191 A 6 PD 2 12- 49
ARFILE INSTPAY 197 A 3 PD 2 13- 49
ARFILE INTPART 206 A 3 PD 2 14

L%ARFILE ARS U 2 BI 2
L%ARSUB JRS U 2 BI 18

ARFILE LASTNAME 11 A 15 CH 4- 39
ARSUB LASTNAME 8 J 15 CH 20- 39
WORK1 LASTNAME 393 R 15 CH 27- 48
ARFILE LENGTH ARS U 2 BI 2
ARSUB LENGTH JRS U 2 BI 18
ARFILE NAME 85 A 25 CH 7- 36
ARFILE NUMPY 209 A 2 PD 0 15- 49

S%ARFILE ARF U 1 CH 2
S%ARSUB JRF U 1 BI 18

ARFILE STATUS ARF U 1 CH 2
ARSUB STATUS JRF U 1 CH 18
TAG SUBRT00: 46- 41
TAG SUBRT99: 51- 41
WORK1 WORK1 393 R 1 CH 26

Figure 5-5 Example XREFA Option
5–6 VISION:Results Reference Guide

Options XREF/XREFA and DMAP with QLF
If data names containing more than 42 characters are included in your program,
the Area and Location sections do not print on the cross-reference listing when
XREFA or XREF is requested.

DMAP Option

S T E R L I N G S O F T W A R E VISION:RESULTS DATE 01/15/99
D A T A N A M E M A P

A T D
R Y E

DATENAME E P C
QUALIFIER OR TAG LOCN A SIZE E . DEFN REFERENCES

TAG SUBRT00: 46- 41
TAG SUBRT99: 51- 41
ARFILE ARFILE 1 A 1 CH 2
ARFILE ACCOUNT 4 A 7 CH 3
ARFILE LASTNAME 11 A 15 CH 4- 39
ARFILE FIRSTNAME 26 A 10 CH 5- 40
ARFILE BILLDATE 44 A 6 CH 6- 35
ARFILE NAME 85 A 25 CH 7- 36
ARFILE ADD1 110 A 25 CH 8- 36 37
ARFILE ADD2 135 A 25 CH 9- 37
ARFILE BALANCE 170 A 5 PD 2 10- 44 50
ARFILE ACCTCODE 182 A 2 CH 11
ARFILE INSTLBAL 191 A 6 PD 2 12- 49
ARFILE INSTPAY 197 A 3 PD 2 13- 49
ARFILE INTPART 206 A 3 PD 2 14
ARFILE NUMPY 209 A 2 PD 0 15- 49
ARSUB ACCOUNT 1 J 7 CH 19
ARSUB ARSUB 1 J 1 CH 18
ARSUB LASTNAME 8 J 15 CH 20- 39
ARSUB FIRSTNAME 23 J 10 CH 21- 40
ARSUB BALANCE 33 J 5 PD 2 22- 42 52
ARSUB ACCTCODE 38 J 2 CH 23- 48
WORK1 LASTNAME 393 R 15 CH 27- 48
WORK1 WORK1 393 R 1 CH 26

BALTOT 409 R 7 PD 2 31- 44 44 47
BALTOT1 416 R 7 PD 2 32- 42 42 47 52
BALTOT2 423 R 7 PD 2 33- 47 50

ARFILE COUNT ARC U 5 PD 2
C%ARFILE ARC U 5 PD 2

ARFILE EOFAR ARF U 1 CH 2
S%ARFILE ARF U 1 CH 2

ARFILE STATUS ARF U 1 CH 2
ARFILE LENGTH ARS U 2 BI 2

L%ARFILE ARS U 2 BI 2
C%ARSUB JRC U 5 PD 18

ARSUB COUNT JRC U 5 PD 18
S%ARSUB JRF U 1 BI 18

ARSUB EOFARS JRF U 1 CH 18
ARSUB STATUS JRF U 1 CH 18
ARSUB LENGTH JRS U 2 BI 18

L%ARSUB JRS U 2 BI 18

Figure 5-6 Example DMAP Option
Data Name Qualification 5–7

No Qualified Data Names Option
No Qualified Data Names Option
When you code OPTION QLF or OPTION QUALIFIERS at the beginning of your
program, it remains in effect for the entire program. In a multiple-report run, this
option remains in effect for all requests, unless you code OPTION NOQLF or
OPTION NOQUALIFIERS in a subsequent request. OPTION NOQLF turns off the
qualified data name option.

You cannot use both OPTION QLF and OPTION NOQLF in a single report
request, but you can change modes between requests in a multiple-report run.
5–8 VISION:Results Reference Guide

Chapter
6 U
sing the FILE Command
A FILE statement must be coded to define every file to be read or written by
VISION:Results. The FILE statements typically are the first statements to appear,
unless preceded by an OPTION statement.

OPTION HEXPRINT FILEIN
FILE FILEIN FB 80 800
FILE FILEO1 OUTPUT FROM FILEIN FB 80 4000
FILE FILEO2 OUTPUT FROM FILEIN FB 80 4000

VISION:Results directly supports up to eight input (seven when SORT is used)
and eight output files in a run. The files can be of any supported organization
(sequential, BDAM, ISAM, or VSAM) and format (fixed, variable,
variable-spanned, or undefined) in any combination.

You can process an unlimited number of sequential input and output files using
the EXIT module, DYLIOU. Additionally, you can read and write any number of
files independently using the CALL facility.

The following file organizations and formats are supported:

Sequential Fixed, variable, variable-spanned (OS/390 only), and
undefined formats.

BDAM (or DAM) Fixed, variable, and undefined formats.

ISAM Fixed, variable (OS/390 only) formats.

VSAM KSDS,
ESDS, and RRDS

Fixed, variable format for KSDS and ESDS, and fixed for
RRDS.

PDS Fixed, variable, and undefined formats.

SSL Fixed format.

VISION:Results
EXIT facility

Fixed, variable, variable-spanned (OS/390 only), and
undefined formats. Same as sequential organization.

Database support IMS (optional interface)
DL/I (optional interface)
IDMS/DB (optional interface)
DB2 (optional interface)
DBC (optional interface)
ADABAS, DATACOM/DB, TOTAL (using CALL
command)
Using the FILE Command 6–1

The following I/O modes are supported:

� Sequential organization, including:

– Sequential retrieval

– Sequential write

� BDAM (or DAM) organization, including:

– Sequential retrieval

– Sequential load

– Random retrieval

– Random retrieval and update

� ISAM organization, including:

– Sequential retrieval

– Sequential load/load extend

– Random retrieval

– Random retrieval and update

– Limited sequential (SETL) retrieval by full or generic key

� VSAM organization, including:

– Sequential retrieval

– Sequential load/load extend/insert

– Random retrieval

– Random retrieval and update

– Sequential retrieval and update

– Limited sequential (skip) retrieval by full or generic key

� PDS organization, including:

– Sequential member retrieval

– Selective member retrieval

– Full directory retrieval

– Sequential member write

– Sequential directory write

� SSL organization, including:

– Sequential retrieval

– Selective retrieval

� EXIT organization, including:

– Sequential retrieval

– Sequential write
6–2 VISION:Results Reference Guide

FILE statements are not required for the following files:

� VISION:Results source program listing file and file print output, which is
SYSLST (VSE) or SYSPRINT (OS/390 and VM)

� VISION:Results report file, which is usually SYSLST (VSE) or SYS280R (OS/390
and VM)

� SORT files for work, library (OS/390 SORTLIB), and print (OS/390 SYSOUT)

� VISION:Results object file from freeze run, which is SYSPCH (VSE) or
SYS280FZ (OS/390 and VM)

� VISION:Results work files, which are SYS004, AUDEPF, AUDWRK,
AUDPRINT, and AUDCBF (OS/390 and VM) or IJSYS04, SYS008, SYS009,
SYS010, and SYS011 (VSE)

� Database or other user files to be read, written, or updated using the CALL
facility

� JCL must be included for all files processed even if a file is not defined in a FILE
statement

The rules regarding FILE statements are:

� Input files can be defined anywhere in the program and must be defined before
they are referenced.

� Output files that are output from themselves can be defined anywhere in the
program and must be defined before they are referenced.

� Output files that are output from another file must be defined before any
processing phase keywords are defined.

� Coding self-defining data names that are a subset of the file name is allowed.
Using the FILE Command 6–3

Supported Access Methods
Supported Access Methods
The following notation rules describe the syntax of FILE statements:

� A vertical bar | separates mutually exclusive alternatives.

� Underlined text shows default options.

� Braces { } show related alternative items. One item must be selected.

� Brackets [] indicate optional items.

� Uppercase letters, words, and special characters must be specified exactly as
shown.

� Lowercase letters, words, and special characters require a specific value to be
substituted in their place.

� Parentheses must be typed exactly as shown.

� Keywords and operands between a set of ! and !... indicate that the repetition of
what is between the ! and !... is allowed.

� Bold text indicates VSE only.

The required syntax for the FILE statement is shown below:

A detailed explanation for each keyword and command can be found at the
beginning of the FILE syntax illustrations.

BDAM Chapter 6, Using the FILE Command and Chapter 21, BDAM
Processing

ISAM Chapter 6, Using the FILE Command and Chapter 20, ISAM
Processing

SEQUENTIAL Chapter 6, Using the FILE Command

VSAM ESDS Chapter 6, Using the FILE Command and Chapter 20, ISAM
Processing

VSAM KSDS Chapter 6, Using the FILE Command and Chapter 20, ISAM
Processing

VSAM RRDS Chapter 6, Using the FILE Command and Chapter 20, ISAM
Processing

EXIT Chapter 6, Using the FILE Command

PDS Chapter 6, Using the FILE Command and Chapter 22, Using PDS
and SSL Support

SSL Chapter 6, Using the FILE Command and Chapter 22, Using PDS
and SSL Support
6–4 VISION:Results Reference Guide

Supported Access Methods
BDAM (or DAM) Files
See Chapter 22, Using PDS and SSL Support for more information on BDAM
processing.

FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
RANDOM RELBLK BLKNUM STATUS BDAMSTAT

EXIT Files
See Chapter 13, Using the CALL Command for detailed information on writing an
EXIT module.

FILE TEMPFL VB 75 1508 OUTPUT FROM TEMPFL
EXIT DYLIOU

FILE filename

BDAM {RELTRK dataname2 | RELBLK dataname2}

STATUS dataname2

{F | V | U} recordsize

{INPUT | OUTPUT FROM filename | IO}

{RANDOM dataname2 {CH | NU | BI | PD} [decimals] |

SEQUENTIAL [dataname2 {CH | NU | BI | PD} [decimals]]}

[KEYLEN nnn] [COUNT dataname2] [LENGTH dataname2] [DYNAM]

[DISK {2311 | 2314 | 3330 | 3340 | 3350}]

[SYSnnn] [EXTENTS nn]

Figure 6-1 BDAM Processing

FILE filename

EXIT modulename [nK]

[SEQUENTIAL]

[{INPUT | OUTPUT FROM filename | IO}]

[{FB | VB | S | F | V | U | SB} [recordsize [blocksize]]]

[SIZE nnnnn]

[PARM ({WORK | dataname3 ...})]

[STATUS dataname2] [DYNAM]

[TAPE] [SYSnnn] [DISK {2311 | 2314 | 3330 | 3340 | 3350 |
3375 | 3380 | FBA}]

Figure 6-2 EXIT Module
Using the FILE Command 6–5

Supported Access Methods
ISAM Files
See Chapter 21, BDAM Processing for more information on ISAM processing.

FILE OUTFILE ISAM OUTPUT FROM INFILE FB 120 1200
KEYLEN 3 KEYLOC 1

FILE ISAMFL ISAM FB 70 700 RANDOM SKEY
KEYLEN 3 KEYLOC 1 STATUS ISTAT

FILE ISAMFIL ISAM FB 70 700 DISK 3340 RANDOM SKEY
KEYLEN 3 KEYLOC 1

PDS Files
See Chapter 22, Using PDS and SSL Support for more information on PDS syntax.

FILE PDSOURCE PDS DSNAREA MEMBER MEMNAME COUNT MEMCOUNT
STATUS PDSTATUS

FILE SYSOURCE PDS DSNAREA U MEMBER SYSNAME
LENGTH SYSNAME STATUS SYSTATUS

FILE filename

ISAM

{INPUT | OUTPUT FROM filename | IO}

[{FB | VB | F | V} [recordsize [blocksize]]]

{RANDOM dataname2 {CH | NU | BI | PD} [decimals] |

SKIP dataname2 {CH | NU | BI | PD} [decimals] | SEQUENTIAL}

[KEYLEN nnn [KEYLOC nnnn]] [POSITION dataname2]

[STATUS dataname2] [COUNT dataname2] [LENGTH dataname2]

[BYPASS nn] [DROPERR] [DUMMY] [NULL]

[RETAIN | NORETAIN]

[{MODIFY modulename [nK]} [SIZE nnnnn]

[PARM ({IOAREA | WORK | dataname3...})]] [DYNAM]

[DISK {2311 | 2314 | 3330 | 3340}]

[EXTENTS nn] [MASTER] [CYLOFL nn]

[SYSnnn] [ONEBUFF]

Figure 6-3 ISAM Processing

FILE filename

PDS dataname MEMBER dataname [NEWNAME dataname] STATUS dataname

[INPUT | OUTPUT FROM filename]

[{FB | VB | F |V | U} [recordsize [blocksize]]] [DYNAM]

[LENGTH dataname]

[COUNT dataname]

Figure 6-4 PDS Syntax
6–6 VISION:Results Reference Guide

Supported Access Methods
SEQUENTIAL Files

FILE ARFILE
FILE OUTFILE FROM OUTFILE OUTPUT FB 25 2500
FILE ARFILE FB 352 5280 DISK 3330 SYS027

SSL Files
See Chapter 22, Using PDS and SSL Support for more information on SSL syntax.

FILE ARTEXT BOOK BOOKNAME STATUS TEXTSTAT
FILE ARTEXT BOOK SOURCEPGM STATUS SOURCESTAT

COUNT SOURCECNT

VSAM ESDS Files
For more information about the keywords and operands used by VSAM ESDS file,
see Chapter 19, VSAM Processing.

Note: In the example below, the bold text is optional if you have used the OPTION
VSAMCAT statement or the VSAMCAT=Y keyword in the DYLINSTL macro.

FILE filename

[SEQUENTIAL]

{INPUT | OUTPUT FROM filename}

[{FB | VB | S | F | V | U | SB} [recordsize [blocksize]]]

[{CARD | CARDS} [{INTERPRET | INTSEL | SELECT | JCL}]]

[STATUS dataname2] [COUNT dataname2] [LENGTH dataname2]

[BYPASS nn] [DROPERR] [DUMMY] [NULL]

[RETAIN | NORETAIN]

[{MODIFY modulename [nK]} [SIZE nnnnn]

[PARM ({IOAREA | WORK | dataname3...})]] [DYNAM]

[DISK {2311 | 2314 | 3330 | 3340 | 3350 | 3375 | 3380 | FBA}]

[DISKETTE | {DATAVER | NOFEED | PROTECT | SECURE | VERIFY |

VOLVER}] [NUMFILES dataname2]

[SYSnnn] [ONEBUFF]

[TAPE [{NL | SL | T}] [{REWIND | NORWD | UNLOAD}] [n]

[NUMFILES dataname2]]

Figure 6-5 SEQUENTIAL Files

FILE filename

SSL BOOK dataname2 STATUS dataname2

[COUNT dataname2]

Figure 6-6 SSL Syntax
Using the FILE Command 6–7

Supported Access Methods
When using this feature, you do not need to specify the file type and its
characteristics, just type VSAM in the FILE statement. The VSAMCAT option must
be in effect to process RLS files correctly.

For examples of these programs, see Chapter 20, ISAM Processing.

FILE TRANS ESDS F 40

FILE OUTFILE ESDS V 210 LENGTH OUTLEN
OUTPUT FROM OUTFILE

FILE filename [VSAM]

ESDS [PASSWORD {'password' | dataname2}]

{INPUT | OUTPUT FROM filename | IO}

[{F | V | S} [recordsize]]

{RANDOM dataname2 | RANDOMX dataname2} |

{SKIP dataname2 | SKIPX dataname2} | SEQUENTIAL}

[{RELBYTE dataname2 | RELBYTEX dataname2}] [POSITION dataname2]

[STATUS dataname2] [COUNT dataname2] [LENGTH dataname2]

[DROPERR] [DUMMY] [REUSE | NULL]

[RETAIN | NORETAIN]

[{MODIFY modulename [nK]} [SIZE nnnnn]

[PARM ({IOAREA | WORK | dataname3...})]] [DYNAM]

[SYSnnn]

Figure 6-7 VSAM ESDS Files
6–8 VISION:Results Reference Guide

Supported Access Methods
VSAM KSDS Files
For more information about the keywords and operands used by VSAM KSDS
files, see Chapter 19, VSAM Processing.

Note: In the example below, the bold text is optional if you used the OPTION
VSAMCAT statement or the VSAMCAT=Y keyword in the DYLINSTL macro.

When using this feature, you do not need to specify the file type and its
characteristics. Type VSAM in the FILE statement. The VSAMCAT option must be
in effect to process RLS files correctly.

FILE FKSDSI KSDS F
FILE FKSDS KSDS OUTPUT FROM SEQIN F
FILE VSAMIN KSDS V COUNT KCOUNT LENGTH KLENGTH

VSAM RRDS Files
For more information about the keywords and operands used by VSAM RRDS
files, see Chapter 19, VSAM Processing.

Note: In the example below, the bold text is optional if you have used the OPTION
VSAMCAT statement or the VSAMCAT=Y keyword in the DYLINSTL macro.

When using this feature, you do not need to specify the file type and its
characteristics, just type VSAM in the FILE statement. The VSAMCAT option must
be in effect to process RLS files correctly.

FILE filename [VSAM]

KSDS [PASSWORD {'password' | dataname2}]

{INPUT | OUTPUT FROM filename | IO}

[{F | V | S} recordsize]]

{RANDOM dataname2 {CH | NU | BI | PD} [decimals] |

SKIP dataname2 {CH | NU | BI | PD} [decimals] | SEQUENTIAL

[KEYLEN nnn [KEYLOC nnnn]] [POSITION dataname2]

[REUSE | NULL] [ERASE dataname2] [PARTKEY nnn]

[STATUS dataname2] [COUNT dataname2] [LENGTH dataname2]

[DROPERR] [DUMMY]

[RETAIN | NORETAIN]

[{MODIFY modulename [nK]} [SIZE nnnnn]

[PARM ({IOAREA | WORK | dataname3...})]] [DYNAM]

[SYSnnn]

Figure 6-8 VSAM KSDS Files
Using the FILE Command 6–9

Syntax Definitions (General)
For examples of these programs, see Chapter 20, ISAM Processing.

FILE VRRDS1 RRDS F 40 OUTPUT FROM FILEIN
RELREC RELRECNUM

FILE EXAMPLE RRDS F 108 IO RANDOM RELRCD
STATUS STATFLG

Syntax Definitions (General)

Filename
A filename is required. It must immediately follow the FILE command, and you
can specify any valid name. An OS/390 or VM file name can be from one to eight
characters long and must start with an alphabetic character. This file name also
serves as the ddname in the OS/390 JCL and FILEDEF in VM.

A VSE file name can be from one to seven characters long and is the file name that
appears in the DLBL or TLBL JCL statement for the file.

FILE ACCTMST ...

The JCL looks like this:

FILE filename [VSAM]

RRDS [PASSWORD {'password' | dataname2}]

{INPUT | OUTPUT FROM filename | IO}

[{F} [recordsize]]

{RANDOM dataname2 {CH | NU | BI | PD} [decimals] |

SKIP dataname2 {CH | NU | BI | PD} [decimals] | SEQUENTIAL}

[RELREC dataname2] [POSITION dataname2] [ERASE dataname2]

[STATUS dataname2] [COUNT dataname2] [LENGTH dataname2]

[DROPERR] [DUMMY] [REUSE | NULL]

[RETAIN | NORETAIN]

[{MODIFY modulename [nK]} [SIZE nnnnn]

[PARM ({IOAREA | WORK | dataname3...})]] [DYNAM]

[SYSnnn]

Figure 6-9 VSAM RRDS Files

OS/390: //ACCTMST DD DSN=T01.MYDS,DISP=SHR

VSE: // ASSGN SYSnnn,X'131'

// DLBL ACCTMST,'MASTERFILE' ...

// EXTENT SYSnnn ...
6–10 VISION:Results Reference Guide

Syntax Definitions (General)
File Organization
File organization is required if it is not physical sequential. The supported values
are as follows:

FILE ISFILE ISAM ...

Input/Output Type
An entry is required if not INPUT. This specifies whether the file is to be opened
as input, output, or both. The valid values are:

Processing Mode
The processing mode is not required if the sequential, ISAM, or VSAM file is being
read sequentially from the beginning. You must specify the processing mode if it
is to be random, skip sequential ISAM, or VSAM. The supported values are:

� SEQUENTIAL on page 6-12

� RANDOM dataname (data type) and RANDOMX dataname on page 6-27

� SKIP dataname (data type) and SKIPX dataname on page 6-28

SEQUENTIAL default

ISAM Indexed sequential

ESDS VSAM entry sequence

KSDS VSAM keyed sequence

RRDS VSAM relative record sequence

BDAM Direct access

PDS Partitioned data set

INPUT Default. The file is opened as an input file. This is the case if you
are processing the file in sequential, random retrieve, or skip
sequential mode.

OUTPUT The file is opened as an output file. This is coded when you are
creating a sequential, ISAM, or VSAM file. You can also code this
if you are load-extending an ISAM or VSAM file, or sequentially
inserting a new record in a VSAM KSDS file.

I/O The file is both read from and written to. This is coded if you are
randomly reading and writing an ISAM or VSAM file or if you are
sequentially reading and updating a VSAM file.
Using the FILE Command 6–11

Syntax Definitions (General)
SEQUENTIAL
Default. The file is read from the beginning or is created. You also code this if you
are load-extending an ISAM or VSAM file, or inserting new records into a VSAM
KSDS file.

FILE FILEIN FB 80 800

The default values for file organization (SEQUENTIAL), I/O type (INPUT), and
processing mode (SEQUENTIAL) are assumed.

FILE FILEIN SEQUENTIAL INPUT SEQUENTIAL FB 80 800

This defines the same file that is shown in the previous example, except the default
values have been coded.

FILE FILEIN KSDS IO SEQUENTIAL F 124 KEYLEN 8

A KSDS VSAM file is read sequentially from the beginning; its records are updated
or deleted, or new records are inserted.

FROM filename
This is required if a sequential, ISAM, or VSAM output file is being
created/loaded. This is optional if a random ISAM or VSAM I/O file is being
defined.

The file area from which the record is written is identified by the FROM keyword.
Following FROM, code the name of the file in which the area holds the record to
be written. This can be an input file record, or the record can be written from its
own output hold area, provided you have moved the record to this area yourself
during the program logic.

If you do not code this phrase while defining a random I/O file, VISION:Results
assumes that you are writing from its own input area.

FILE FILEIN INPUT FB 80 1600
FILE FILEOUT OUTPUT FROM FILEIN FB 80 4000

The output file FILEOUT is being copied from the input file FILEIN.

FILE ACCTIN INPUT FB 80 1600
NAMEI 30 ACCOUNTI 5 50

FILE ACCTNEW OUTPUT FROM ACCTNEW FB 120 2400
ACCOUNTO 5 NAMEO 30 ...
.
.
.
MOVE NAMEI TO NAMEO MOVE ACCOUNTI TO ACCOUNTO

An entirely new record is formatted using some of the fields from the input file.
The record is built in the output record's work area, so VISION:Results is told to
write from this area.
6–12 VISION:Results Reference Guide

Syntax Definitions (General)
Record Format
Record format is required as follows:

� For all VSE files.

� For all BDAM files.

� For all OS/390 VSAM files, unless the VSAMCAT option is in effect and the DD
statement for the corresponding VSAM file is included in the JCL.

The acceptable values are:

Record Size
Code the record size attribute of the file you are defining under the following
conditions:

blank The record format is obtained from the JCL or the data set label
(OS/390).

F The record format is fixed unblocked.

V The record format is variable unblocked.

S The record format is variable-spanned unblocked (OS/390 only for
sequential files; OS/390 and VSE for VSAM KSDS and ESDS files).

U The record format is undefined.

FB The record format is fixed blocked.

VB The record format is variable blocked.

SB The record format is variable-spanned blocked (OS/390 only).

For VSE: � Sequential files.

� ISAM files.

� BDAM files.

� VSAM files when the processing mode is I/O.

� Sorted files.

For OS/390: � Input files that are unlabeled and do not have LRECL
coded in the JCL DD statement.

� Output files that do not have LRECL coded in the JCL DD
statement.

� ISAM files when the processing mode is I/O.

� BDAM files.

� VSAM files when the processing mode is I/O.
Using the FILE Command 6–13

Syntax Definitions (General)
The record size value can range from 1 to 32767 (32752 in the case of
variable-length files). If defining a fixed-length file, code the fixed-length size. If
defining a variable-length file, code only the maximum length of the data; do not
include the length of the Record Descriptor Word (RDW) that always precedes the
data portion of a variable-length non-VSAM record. A VSAM record does not have
an RDW. If defining an undefined format file, code the length of the longest
possible record (block) on the file.

If you are coding the record size, you must immediately precede it with the record
format.

FILE FIXIN INPUT F 80

Here, a fixed unblocked input file is being defined. Each record is 80 bytes long.

FILE VAROUT OUTPUT VB 80 844 FROM VARIN ...

A variable-length file is created. The data portion of each record has a maximum
length of 80 bytes. VISION:Results adds 4 more bytes for the RDW when setting
the DCB/DTF attributes. The maximum block size, including the length of the
RDW fields and the Block Descriptor Word (BDW) field, is 844.

FILE MYVSAM KSDS INPUT F 134
FIELDX 5 30
.
.
SORT MYVSAM USING FIELDX

Above, the record type and length is coded for the VSAM file because it is sorted
in the program and SORT needs the length of the record.

Block Size
The block size attribute of the file you are defining must be coded under the
following conditions:

� If VSE, and you are defining a fixed or variable blocked sequentially organized
file.

� If VSE, and you are defining a fixed blocked ISAM file.

� If OS/390 input, and the file is unlabeled and you have not coded the size in the
JCL DD statement of the file.

� If OS/390 output, and you have not coded the size in the JCL. If the file is a
non-VSAM output file, SYSBLOK was selected in the DYLINSTL macro, and no
JCL block size was specified, then the operating system calculates the block size
and the block size is not required on the FILE statement.

The block size value can range from 1 to 32767. When specifying the block size of
a variable-length file, include the maximum length for the data portion of all
records, the RDW fields that precede each record, plus the 4-byte Block Descriptor
Word. The maximum block size for variable blocked (VB) is 32760.
6–14 VISION:Results Reference Guide

Syntax Definitions (General)
When coding the block size in a FILE statement, it must be preceded by the record
format and record size.

FILE FILEIN INPUT FB 80 1600

In this example, the input file is fixed blocked format with a record length of 80 and
block size of 1600.

STATUS dataname
This is required for BDAM. One use of this phrase is to allow you to test whether
a sequentially read input file has reached end of file. After the keyword STATUS,
code a valid data name to identify the STATUS field. You do not have to define the
field anywhere because VISION:Results defines the field automatically.

During program execution, when VISION:Results detects the end of file on an
input file it is reading, it moves an ’E' to the STATUS field. Additionally, it moves
high values (all binary ones) to the file's record area. If all of the sequentially read
input files in the program are at end of file, a termination procedure is initiated.

This means that termination procedures are initiated for programs with only one
input file, which immediately goes to end of file (a null or empty file). This
bypasses any user logic coded to test the status flag or an input field for high
values. In this case, the ONE END OF INPUT section must be used to perform any
user logic on end of file.

If you are processing multiple input files, check when any one of the files is
completed. You can do this by testing the STATUS field for E.

FILE SEQIN INPUT FB 140 1400 SYS011
STATUS STATSEQ

FILE VSAMIN KSDS INPUT RANDOM FINDKEY F 40
KEYLEN 5 STATUS STATVS

IF STATSEQ EQ 'E' STOP ENDIF
.
.
.

Checking the status on the sequential input file is important because the random
VSAM file will never reach the end of file and VISION:Results will not terminate
the run for you.

For more information on ISAM and VSAM processing, see STATUS dataname on
page 6-25.

LENGTH dataname
This phrase gives you access to the length of the current record being processed.
Follow the LENGTH keyword with a valid data name. You do not have to define
this field anywhere because VISION:Results does it automatically.
Using the FILE Command 6–15

Syntax Definitions (General)
This is usually an optional phrase, but it is required under the following
conditions:

� You have a variable-length file, OUTPUT from itself.

� You have an undefined file, OUTPUT from itself.

Rules for the FILE LENGTH keyword:

� It is not allowed when OUTPUT is specified on the FILE statement, unless it is
FROM itself.

� LENGTH must be used on an OUTPUT file output from itself, if the file is
variable length. Otherwise, VISION:Results only writes out a 4-byte record. No
syntax check is made if LENGTH is not used.

When a record is read from a file, the length of the record just read is placed in the
field identified by the data name. This is particularly useful if your file is undefined
or variable in format and you need to know the current length. The value in the
length field for a variable-length record is the data length only. It does not include
the 4 bytes for the RDW.

If you do not tell VISION:Results, using the format coded in the FILE statement,
that the file is variable or variable-spanned, the value of the LENGTH field
includes the RDW length. If the file is VSAM variable format, the records have no
RDW.

FILE ACCTREC INPUT VB 300 3044 LENGTH RECLEN
INACCOUNT 5 7 INNAME 30 45 INBAL 8 98 NU 2
IF RECLEN EQ 100 GOTO REC100 ENDIF
IF RECLEN EQ 250 GOTO REC250 ENDIF
.
.
.

The length of the data portion of the variable-length record must be known to
process the record.

FILE ACCTREC INPUT FB 300 3000
INACCOUNT 5 1 INNAME 20 15 INBAL 8 35 NU 2

FILE ACCTVAR OUTPUT FROM ACCTVAR VB 300 3044 LENGTH VARLEN
ACCOUNT 5 1 NAME 30 6 BALANCE 5 36 PD 2
.
.
MOVE INACCOUNT TO ACCOUNT
MOVE INNAME TO NAME
MOVE INBAL TO BALANCE
MOVE 300 TO VARLEN
.
.

A variable-length file is created from a fixed-length file. You must have a means to
establish the length of the record to write. This is done by specifying the LENGTH
phrase in the output FILE statement, and then moving the record length value you
want to the field identified by the data name. Use the same approach if creating an
undefined format file from fixed input.
6–16 VISION:Results Reference Guide

Syntax Definitions (General)
COUNT dataname
This phrase gives you access to the current record count of the file being read or
written. If you code the keyword COUNT followed by a data name of your
selection, you can interrogate the record count field in your program logic. This is
particularly useful when you want to do either of the following:

� Limit the reading or writing of records.

or

� Select certain records based on their position in a file.

You do not have to define the record count field, just give it a name.
VISION:Results allocates the field automatically. When a record is read or written
either as part of the automatic cycle or when you issue a READ or WRITE
command, VISION:Results adds 1 to the appropriate record count field.

FILE ACCTFLE INPUT FB 100 1000 COUNT INCOUNT
PRINT ACCTFLE
IF INCOUNT EQ 100 STOP ENDIF

Records from ACCTFLE are read and printed until the record count reaches 100.

Then, the run is terminated.

FILE INFILE
FILE OUTFILE OUTPUT FROM INFILE FB 200 2000 COUNT OUTCOUNT
IF OUTCOUNT EQ 500 STOP ENDIF

An output file is being created directly from input records. In this example, once
500 records have been written, the program is terminated.

Do not alter the contents of the record count field.

CARD or CARDS
The keyword CARD or CARDS in a FILE statement defining an input file specifies
that the input is coming from data records following the FIN statement in the
program stream. FIN cannot be used within code that is input to VISION:Results
using the COPY or COPYE command.

If OS/390, the file name in the FILE statement must be SYSIN; if it is not,
VISION:Results changes the file name to SYSIN. If VSE, the file name must be
SYSIPT. The JCL ddname of SYSIN accepts input for the non-SYSIN file name after
the FIN statement. This file name must not have an OS/390 DD JCL statement.

VISION:Results logically reads all data from SYSIN, then separates it into two files.
If a READ statement is issued, use the coded file name.

OS/390:

FILE SYSIN CARDS
PRINT SYSIN
FIN
DATA RECORD 1
DATA RECORD 2
DATA RECORD 3
Using the FILE Command 6–17

Syntax Definitions (General)
VSE:

FILE SYSIPT CARDS
PRINT SYSIPT
FIN
DATA RECORD 1
DATA RECORD 2
DATA RECORD 3

In both the OS/390 and VSE examples, instream data to print is performed.

In VSE, you code CARD or CARDS for output directed to SYSPCH.

FILE SYSIPT CARD
FILE SYSPCH CARD OUTPUT FROM SYSIPT
FIN
DATA RECORD 1
DATA RECORD 2

A VSE VISION:Results program reads data input from the program stream and
directs it to SYSPCH.

JCL
VSE only. This keyword can be used along with CARD or CARDS to indicate that
instream data containing JCL is being read. This allows //, /*, and /& statements
to be read as data and not treated as JCL.

If the JCL keyword is being used, the file name must not be SYSIPT and a SYS
number for a programmer logical unit (for example, SYS011) must be specified.

Additionally, you must provide your own delimiter to know when you have read
all of the data because /* and /& no longer serve that purpose.

// ASSGN SYS011,X'05C'
// EXEC DYL280,SIZE=250K
FILE MYDATA CARD JCL SYS011
FIELDA 10

IF FIELDA EQ '**END DATA' STOP ENDIF
PRINT MYDATA
FIN
// JOB JOBPROD
// EXEC PRODPGM
/*
/&
**END DATA
/&

This VSE run reads instream data containing JCL and prints each record. When the
statement containing the value ‘**END DATA’ is read, the run is terminated.

INTERPRET
VSE only. If CARD OUTPUT is specified and the punch is a 3525 with the interpret
feature, you can code the keyword INTERPRET in your FILE statement to perform
the standard 2-line interpret on records being punched.

FILE TRANSIN INPUT FB 80 800 TAPE SYS011
FILE SYSPCH OUTPUT CARD INTERPRET FROM TRANSIN

A tape file is read and its records are being punched/interpreted.
6–18 VISION:Results Reference Guide

Syntax Definitions (General)
SELECT dataname
VSE only. If CARD OUTPUT has been specified and you want to direct punched
cards to either stacker 1 or 2, code the keyword SELECT followed by a valid data
name to identify the field that contains the stacker select code. You do not have to
define this field anywhere. It is done automatically.

Valid stacker select codes are:

� V = Stacker 1

� W = Stacker 2

Before you punch a card, move one of the codes to the data name you selected. The
card is then routed to the proper stacker.

FILE FILEIN FB 80 1600 DISK 3330 SYS014
IN1 1 34

FILE SYSPCH OUTPUT CARD SELECT STACKNO FROM FILEIN
IF IN1 EQ '1' NEXT ELSE GOTO PROC2 ENDIF
MOVE 'V' TO STACKNO
WRITE SYSPCH ACCEPT

PROC2:
.
.
.

Records are read from a tape file. If the IN1 field in the input record is equal to 1,
the record is punched and routed to stacker 1. If the IN1 field is not equal to 1,
another procedure is performed.

INTSEL dataname
VSE only. If CARD OUTPUT is specified and the punch is a 3525 with
interpretation, you can code the keyword INTSEL followed by a data name you
specify to allow for the standard 2-line interpretation to occur, and also to direct
the punched card to stacker 1 or 2. Either V or W must be moved to the data name
prior to punching the card. See SELECT dataname on page 6-19.

BYPASS nn
OS/390 and VSE. Applies to processing. Coding the keyword BYPASS followed by
1 to 99 tells VISION:Results to bypass 1 to 99 blocks of data at the start of the file
before processing the first record.

This feature is useful for handling unconventional files, such as 1401 standard
labeled tapes, whose data blocks are preceded by other than data records.

FILE TAPEIN INPUT FB 100 1000 TAPE NL BYPASS 1 SYS011
PRINT TAPEIN

A 1401 labeled tape is read. Because there is no tape mark between the label and
the data, the BYPASS option is coded to skip over the 80-byte label.
Using the FILE Command 6–19

Syntax Definitions (General)
DUMMY
The keyword DUMMY coded in your FILE statement is useful if you have to do
some processing where you do not want VISION:Results to read a file, but need to
satisfy VISION:Results' requirement that at least one file is defined. This can be the
case if you are either reading a file using an external routine invoked by the CALL
statement, or using VISION:Results to test and verify one of your own routines.

Doing a READ to a file having a DUMMY option generates an error of FILENAME
NOT DEFINED.

You must terminate the run yourself using the STOP command when you are
finished processing. VISION:Results terminates automatically only when
sequentially processed files (no random files) have been defined and when all of
these files have reached end of file. A DUMMY status creates a condition where the
file is on hold and never finishes.

FILE SYSIN CARD DUMMY
WORKAREA
JULDATE 3 PD VALUE 96015
GREGDATE 8

CALL DATECONV 2K USING JULDATE GREGDATE
PRINT JULDATE LENGTH 11
STOP
FIN

VISION:Results is testing the proper execution of a date conversion routine. The
DUMMY keyword prevents reading the SYSIN file because no input records are
required. The external routine is invoked once using CALL to convert a 3-byte
packed Julian date to an 8-byte edited Gregorian date. The date hold areas are
printed after the conversion. The run is then terminated. If the STOP command is
not included, a validation error is generated.

NULL
OS/390 and VSE. This applies to sequential and ISAM output files only. If there is
a possibility that the output file you are defining is not written to, and you want a
null file created (a file with labels but no data), code NULL in your FILE statement.

FILE SEQOUT OUTPUT FROM XYZ FB 100 1000 SYS021 NULL

Above, a sequential output file is defined. To ensure that the file is at least opened
and closed to create labels, the NULL option is coded.

The compiler can be customized to provide this facility as a default. See the
VISION:Results Installation Guide for information on the DYLINSTL macro
parameter OUTFILE.

DROPERR
OS/390 and VSE. Input only. If you have an input file and you are abending
because of I/O errors on one or more of the blocks on the file, you can often process
the file by specifying DROPERR in the FILE statement. When the operating system
6–20 VISION:Results Reference Guide

Syntax Definitions (General)
detects an input error, it drops the block rather than abending. If you use this
option, you are losing one or more records depending on how many there are per
block, but this is often preferable to not being able to process at all.

VISION:Results lets you know how many blocks it had to drop by printing a
dropped block count in the I/O control totals at the end of the run.

FILE SEQIN INPUT FB 400 4000 SYS011 TAPE DROPERR

A tape file that has bad blocks is read and any blocks with an error are dropped.

SYSnnn
VSE only. This entry is required if the file is on tape. You must specify the SYS
number of a Programmer Logical Unit by which the file is identified.

FILE SEQIN FB 400 4000 SYS012 TAPE

A tape input file is defined and its SYS number is SYS012. This is the same number
as the one that appears in the ASSGN JCL statement for the file.

// ASSGN SYS012,X'nnn'
// TLBL SEQIN ...

This is how the JCL looks for the previous example.

Device Specifications
VSE only. This entry is optional for VSE Release 2.1 and above. It is required for
releases prior to 2.1. You must identify the device on which the file resides or is to
reside if the file is not VSAM. A VSAM file does not require a device specified. If
omitted, the default is standard labeled tape with the rewind option in effect.

TAPE Label Rewind (Options)
The file resides, or is to reside, on tape. Following the keyword TAPE, you can code
information regarding tape labels or rewind options:

Label:

T The tape file has a leading tape mark or is to be written with a
leading tape mark.

NL The tape is, or is to be, unlabeled.

SL Default if omitted. The tape has standard labels or is to be written
with standard labels. Remember to include your TLBL statement
in the JCL if it is standard labeled.
Using the FILE Command 6–21

Syntax Definitions (General)
Rewind Options:

FILE MASTER INPUT FB 100 1000 SYS040 TAPE

A tape input file is on standard labeled tape with the option to rewind the tape
before and after the run, but no unload.

FILE ACCTFLE INPUT FB 200 2200 TAPE NL UNLOAD SYS010

An unlabeled tape is read. The tape is rewound before and after the run, and then
unloaded.

FILE NEWFILE OUTPUT FROM XYZ FB 150 1500 TAPE NORWD SYS010

A standard labeled tape is created. The tape is not rewound before or after the run.

Multiple File Input

TAPE nn
If you have multiple tape files (not a multi-volume file) that you want to read in,
the number (1 to 99) of files can be coded after the TAPE keyword. All of the files
must have the same type of labels, format, record size, and block size.

FILE FILEIN INPUT FB 100 1000 TAPE 5 UNLOAD SYS010

Here, five separate standard labeled files are read in as one file. The rewind option
specifies that the final tape is to be unloaded. All intermediate reels are unloaded
as they are finished.

FILE FILE2 INPUT FB 200 2200 TAPE 6 NORWD SYS010

Above, six standard labeled files reside on one reel. If you code NORWD, all six
files are read from the same reel. There is no rewinding and unloading between
each file.

TAPE NUMFILES or DISKETTE NUMFILES
If the number of multiple input files varies from run to run, you can dynamically
specify the number in a VISION:Results program. Instead of coding a number after
the TAPE keyword in the FILE statement, code:

... TAPE NUMFILES dataname ...

If you are using a diskette, code:

... DISKETTE NUMFILES dataname ...

REWIND Default if omitted. Rewind the tape before and after the run, but
do not unload it.

UNLOAD Rewind the tape before and after the run and unload it at the end.

NORWD Do not rewind the tape before or after the run.
6–22 VISION:Results Reference Guide

Syntax Definitions (General)
You can code any valid data name. You do not have to define the field to which
you are assigning the name. VISION:Results does this automatically. Then, in your
program logic, sometime before the first file is completely processed, move the
number of files you want to read to the field identified by the data name.

FILE SYSIPT CARD
INNUM 2 1 NU
FILE TAPEIN INPUT FB 100 1000 TAPE UNLOAD NUMFILES INFILES
SYS029
ACCOUNT 3 4 PD

FILE TAPEOUT OUTPUT FB 100 2000 TAPE SYS030
FROM TAPEIN

ON ONE MOVE INNUM TO INFILES ENDONE
SORT TAPEIN USING ACCOUNT WORK 3
WRITE TAPEOUT
FIN
05

Multiple tape inputs are read in, sorted in ACCOUNT sequence and written to one
output tape file. The number of files varies from run to run, so the NUMFILE data
name option is used in the FILE statement, and the number is obtained
dynamically from card input and moved to the NUMFILES field.

The NUMFILES option comes in handy for programs that you are freezing.

Do not confuse multi-volume tape files with multi-files. If you have a file that
spans several tape reels, you do not have to specify anything special. The VSE
system treats it as one file provided that it has standard labels.

When reading multiple files, you cannot use the alternate drive assignment feature
of VSE. All tapes must be read from the same drive.

DISK nnnn
The file resides, or is to reside, on a disk device. For VSE releases prior to Release
2.1, the supported values for nnnn are:

– 2311

– 2314

– 3330

– 3340

– 3350

– 3375

– 3380

– FBA (For use with 3310 and 3370 drives)

All models of the above devices are supported.

FILE ACTFILE INPUT FB 50 2000 DISK 3340

For VSE Release 2.1 and above, the disk device type entry is optional. If you make
an entry, specify DISK or TAPE only, without a system number.
Using the FILE Command 6–23

Syntax Definitions (General)
DISKETTE (options)
The file resides or is to reside on a 3540 diskette. After the keyword, specify one or
more of the following options for data checking and positioning of the diskette:

FILE TRANSIN INPUT F 80 DISKETTE DATAVER SYS011

A diskette file is read with the option to check for the indication that the data on it
has been verified.

ONEBUFF
VSE only. Code this if you want to allocate only one buffer to hold the data blocks
of files read or written. This can conserve memory or create more wait time in the
partition.

FILE SEQIN INPUT FB 200 2000 DISK 3340 SYS011 ONEBUFF

A sequential input file on disk is defined and one buffer is specified.

DYNAM
OS/390 only. Indicates that the file (file name) is dynamically allocated by the
VISION:Results program using the ALLOCATE command. Any file that specifies
DYNAM must not have DD statements included for the file name in the JCL that
will execute the VISION:Results program.

If DYNAM is coded for a file name, the program must explicitly issue a READ /
WRITE / READDIR / READMEM / WRITEDIR / WRITEMEM command to
perform the I/O, or else a validation error occurs. See Chapter 14, Using Procedural
Commands for details about the ALLOCATE command.

NOFEED Do not place the diskette into the collector's bin at end of file.

DATAVER Check for indication on the diskette that the data on it has been
verified.

VOLVER Verify the volume serial number on the diskette.

VERIFY Perform the two operations specified by DATAVER and
VOLVER.

SECURE On output, ensure that the data is secure.

PROTECT On output, ensure that the file cannot be over-written.

FILE OUTFILE OUTPUT FB 100 FROM OUTFILE DYNAM
OUTREC 100

WORKAREA
JCLSTAT 1

WORKAREA
OUTJCL 320 1

FILLER 80 1

Figure 6-10 DYNAM (Page 1 of 2)
6–24 VISION:Results Reference Guide

ISAM and VSAM Syntax Definitions
ISAM and VSAM Syntax Definitions
The following FILE statement specifications are for ISAM and VSAM files.

KEYLEN nnn
OS/390 and VSE. Required if a VSE ISAM file is being defined. Required if ISAM
is being defined and the processing is to be random retrieval, random retrieval
with update, sequential I/O (VSAM), or skip sequential.

Required for VSAM KSDS RLS files. Not required for VSAM if either OPTION
VSAMCAT or the DYLINSTL parameter VSAMCAT=Y was specified.

The keyword KEYLEN followed by a number from 1 to 255 specifies the length of
the ISAM or VSAM KSDS key.

KEYLOC nnnn
OS/390 and VSE. Required if a VSE ISAM file is being defined. Required for
VSAM KSDS RLS files if the key position is not position 1 in the file. Not required
for VSAM KSDS or OS/390 ISAM. The keyword KEYLOC followed by a number
identifies the location of the key in the record (the first byte of the record is
KEYLOC 1).

FILE ISFILE ISAM RANDOM SRCHKEY DISK 3330 FB 200 2000
KEYLEN 7 KEYLOC 2 SYS008

In a VSE run, ISFILE is an ISAM file read randomly. It has a key length of 7 and the
key starts with the second byte of the record.

STATUS dataname
OS/390 and VSE. This is optional. It must be used during ISAM or VSAM random
or skip processing. After the keyword STATUS, code any valid data name. You do
not have to define the field anywhere. VISION:Results automatically allocates the
field.

VALUE '//OUTFILE DD DSN=DYL.BCM.OUTFILE,'
FILLER 80
VALUE '// DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,'

FILLER 80
VALUE '// SPACE=(TRK,(4,2),RLSE),'

FILLER 80
VALUE '// DCB=(RECFM=FB,BLKSIZE=2000,LRECL=100)

ON ONE
ALLOCATE FILE DYNAMICALLY OUTJCL STATUSFLAG JCLSTAT
IF JCLSTAT EQ 'N'

PRINT 'ERROR IN DYNAMICALLY ALLOCATED JCL'
STOP

ENDIF
ENDONE
WRITE OUTFILE

Figure 6-10 DYNAM (Page 2 of 2)
Using the FILE Command 6–25

ISAM and VSAM Syntax Definitions
The field identified by the data name holds the status of a random or skip
sequential retrieval. Returned codes are:

Check this field after issuing a READ to make sure you are retrieving properly.

POSITION dataname
OS/390 and VSE. Use this only if processing an ISAM or VSAM file in SKIP mode.
This specifies whether processing is to start at or after the search key you supply.
This keyword is optional.

After the POSITION keyword, code a valid data name to hold the positioning
value. You do not have to define this field. VISION:Results automatically allocates
the field.

During your program logic, move the desired value to the data name before
issuing the first READ. The following values are supported:

FILE ISFILE ISAM SKIP SRCHKEY KEYLEN 7 KEYLOC 1
POSITION SETIT STATUS ISFSTAT
FB 200 2000 DISK 3330 SYS011

In a VSE run, an ISAM file is read in SKIP mode. Move a generic or full key to the
SRCHKEY field and move a positioning code to SETIT before issuing a read.

PARTKEY nnn
OS/390 and VSE VSAM KSDS. This is required if file is VSAM KSDS and
processing is SKIP sequential read with positioning to start at or after a partial or
generic key.

blank Requested record not found.

I Duplicate or invalid key.

Y Requested record retrieved.

E End of file reached (skip mode only).

blank Position the file at a record equal to or greater than the partial or full key
specified (default).

G Same as above.

E Position the file at a record equal to the partial or full key specified.

R Repeat. You must supply this value each time you want to reposition at
the same key that was used for the last positioning request.
6–26 VISION:Results Reference Guide

ISAM and VSAM Syntax Definitions
After the keyword PARTKEY, code the length (1 to 255) of the generic key to be
searched for.

FILE VSFILE KSDS F 200 SKIP STARTKEY KEYLEN 7 PARTKEY 2
POSITION SETIT

In an OS/390 run, a VSAM KSDS file is read in SKIP mode. Only the first 2 bytes
of the 7-byte key are used in the positioning. Before the first read is issued, a 2-byte
generic key must be moved to STARTKEY and the positioning code moved to
SETIT.

REUSE
OS/390 and VSE. Optional. Required for VSAM ESDS or KSDS sequential output
if you want to write over an existing VSAM file. The file you are applying the
REUSE to must have been defined as reusable in the IDCAMS definition.

FILE VSFILE KSDS OUTPUT FROM XYZ F 200 REUSE

VSFILE is recreated without having been deleted in an IDCAMS run. The file has
previously been established as reusable in an IDCAMS run.

ERASE dataname
OS/390 and VSE. Code this if you intend to delete any records from a VSAM KSDS
file during random I/O or sequential I/O processing.

After the keyword ERASE, code a valid data name. You do not have to define the
field; VISION:Results does this automatically.

In your program, after you have read a record and now want to delete it from the
file, move an E to the data name you have specified and then issue a WRITE. The
record is removed from the file rather than rewritten.

FILE VSFILE KSDS IO RANDOM FINDKEY F 200
KEYLEN 5 STATUS STATUSFLG ERASE DELETEFLG

A VSAM KSDS file is read randomly and updated. During program logic, after a
record is retrieved, if it is determined that the record must be deleted, the value E
must be moved to DELETEFLG before the WRITE is issued. This record is deleted
rather than rewritten to the file.

RANDOM dataname (data type) and RANDOMX dataname
RANDOM: OS/390 and VSE; RANDOMX: OS/390 only. Code RANDOM when
the file is ISAM or VSAM (KSDS/ESDS) and is either read randomly or read and
updated randomly. Only code RANDOMX when the file is VSAM ESDS and is
either read randomly or read and updated randomly.

The dataname is required. You can code any valid data name to identify the field
that holds the key of the record you are looking for. You do not have to define this
field anywhere, because this area is automatically set up. You must move the
appropriate key to this field before doing any random reads.
Using the FILE Command 6–27

ISAM and VSAM Syntax Definitions
For ISAM or VSAM KSDS, if the key's data type is not character, code a data type
of NU (numeric or zoned), PD (packed), or BI (binary) after the dataname,

If you are retrieving records from an Extended Format VSAM ESDS file, the
RANDOMX dataname identifies the field that receives your relative byte address
(RBA) that is used instead of a key to retrieve and update ESDS records. The field
identified by the data name is packed decimal and 16 bytes long.

If you are retrieving records from a VSAM ESDS file, the RANDOM dataname
identifies the field that receives your relative byte address (RBA) that is used
instead of a key to retrieve and update ESDS records. The field identified by the
data name is binary and 4 bytes long.

For special considerations regarding signed and unsigned keys, see the
VISION:Results Getting Started Guide.

FILE ISFILE ISAM RANDOM FINDKEY ...
.
.
.
MOVE TRANSKEY TO FINDKEY
READ ISFILE

Here, an ISAM file is being read randomly. It specifies that the key hold field is to
be referenced by the name FINDKEY. During program logic, you need to move the
key from wherever it resides to FINDKEY before you issue the READ command.

FILE MYVSAM KSDS IO RANDOM SEARCHKEY ...

Here, it indicates that the VSAM KSDS file is to be read and updated randomly.
The data name SEARCHKEY is where the key is placed before reading and
writing.

FILE VSAMIN ESDS INPUT RANDOM RBAKEY ...

A VSAM ESDS file is read randomly. The data name RBAKEY identifies a 4-byte
binary field set up by VISION:Results to hold the RBA of the record you want.
Place the value into this area before issuing the READ command.

SKIP dataname (data type) and SKIPX dataname
SKIP: OS/390 and VSE; SKIPX: OS/390 only. Code SKIP when the input file is
ISAM or VSAM (KSDS/ESDS) and you want to read it sequentially but do not
want to start at the beginning. The SKIP mode allows you to begin at or above the
full or generic key that you provide. Only code SKIPX when the input file is VSAM
ESDS and you want to read it.

The dataname is required if SKIP mode is specified. You can code any valid data
name to identify the field that holds the full or generic key of the starting record.
VISION:Results automatically sets up this area, so you do not have to define this
field anywhere. Move the appropriate key to this field before doing any skip
sequential reads.

For ISAM or VSAM KSDS, if the key's data type is not character, code a data type
of NU (numeric or zoned), PD (packed), or BI (binary) after the dataname,
6–28 VISION:Results Reference Guide

ISAM and VSAM Syntax Definitions
If you are retrieving records from a VSAM ESDS file, the SKIP dataname identifies
the field that receives your relative byte address (RBA) instead of a key to begin
sequential reading in skip mode. You cannot use a generic RBA. You must specify
a full RBA, and it must be equal to the RBA of the record with which you want to
start. The field identified by the ‘dataname’ is binary and 4 bytes long.

If you are retrieving records from an Extended Format VSAM ESDS file, the SKIPX
dataname identifies the field that receives your relative byte address (RBA) instead
of a key to begin sequential reading in skip mode. You cannot use a generic RBA.
You must specify a full RBA, and it must be equal to the RBA of the record with
which you want to start. The field identified by the ‘dataname’ is packed decimal
and 16 bytes long.

See the VISION:Results Getting Started Guide for additional considerations for
signed and unsigned keys.

FILE ISFILE ISAM INPUT SKIP STARTKEY ...

An ISAM file is read sequentially, but reading can be started and restarted at
various points in the file during processing. In the example above, a full or generic
(partial) key is moved to STARTKEY before issuing the first and subsequent reads.

FILE VSAMFIL KSDS F SKIP STARTKEY ...

In this example, a VSAM KSDS file is read sequentially, but reading can be started
and restarted at various points in the file during processing. A full or generic
(partial) key is moved to STARTKEY before issuing the first and subsequent reads.

FILE VSAMFIL ESDS F SKIP RBAKEY ...

Here, a VSAM ESDS file is read sequentially, but reading can be started and
restarted at various points in the file during processing. An RBA that is equal to
the RBA of the record at which you want to begin reading is moved to RBAKEY.

RELBYTE dataname and RELBYTEX dataname
RELBYTE: OS/390 and VSE; RELBYTEX: OS/390 only. This is optional. If you
need to know the Relative Byte Address of the VSAM ESDS record just read or
written, this option allows you to obtain that information.

After the keyword RELBYTE or RELBYTEX, code a valid data name to identify the
field you can interrogate during processing. You do not have to define the field. It
is done automatically. RELBYTE defines a 4-byte binary field; RELBYTEX defines
a 16-byte packed decimal field for an Extended Format VSAM ESDS.

FILE VSAMIN ESDS F 200
RELBYTE RBAIN

MOVE RBAIN TO DYLPRTCOMM
HEXPRINT VSAMIN

A VSAM ESDS file is read; each record's RBA is obtained from the RBAIN field and
placed in the comments area of the file print line before the record is printed. The
record is printed in hex and graphics, with its RBA appearing to the left.
Using the FILE Command 6–29

ISAM and VSAM Syntax Definitions
PASSWORD ‘password’
OS/390 and VSE. VSAM only. Required if VSAM file is password-protected.
Following the keyword PASSWORD, code the necessary 1- to 8-character
password enclosed in quotation marks.

FILE VSAMIN KSDS PASSWORD 'LETMEIN' F 140

A VSAM KSDS input file is defined and the password is given in the FILE
statement.

PASSWORD dataname
OS/390 and VSE. VSAM only. An alternate and dynamic means of supplying a
password to access a protected file. Following the keyword PASSWORD, code any
valid data name. You do not have to define the field. VISION:Results
automatically allocates it for you.

In your program logic, before the file is opened and read, move the password to
the field you specified in the FILE statement.

FILE VSAMIN KSDS PASSWORD UNLOCK F 140

ON ONE
MOVE 'LETMEIN' TO UNLOCK
ENDONE

READ VSAMIN
PRINT VSAMIN
FIN

A VSAM KSDS file is read and printed. Before the file is accessed, the password is
set.

You can also read the password in from instream data or introduce it using the
PARM parameter in the EXEC statement (OS/390 only).

CYLOFL nn
VSE ISAM only. This is optional. It is required if the number of cylinder overflow
tracks on each cylinder is not 0. Following the keyword CYLOFL, code the number
of cylinder overflow tracks per cylinder allocated to the file.

FILE SEQIN FB 200 4000 TAPE SYS011
FILE ISFILE ISAM OUTPUT FROM SEQIN FB 200 2000
DISK 3330 KEYLEN 5 KEYLOC 2
CYLOFL 2

A VSE ISAM fixed blocked file is created from sequential input. Two tracks per
cylinder on the 3330 are established as cylinder overflow tracks.
6–30 VISION:Results Reference Guide

RETAIN
EXTENTS nn
VSE ISAM only. Optional. Specifies the total number of cylinder index, prime data,
and independent overflow EXTENTS coded in the JCL for the file. This number
does not include the master index EXTENT statement, if present. Following the
keyword EXTENTS, code the number as described above. If omitted, it defaults to
three extents.

MASTER
VSE ISAM only. Code this keyword when defining an ISAM file and the file has a
master index.

RETAIN
OS/390 and VSE. RETAIN can be specified for any file except those that are being
processed with MODIFY or EXIT. Use to indicate that the file description and all
its associated data descriptions are to be saved and made available for use in a
subsequent request.

If RETAIN is coded on a FILE statement, you can code USE and the file name in a
subsequent report. This allows you to process the file again, but without
completely defining it again.

If RETAIN has not been specified, an attempt to code USE and the file name in a
subsequent report request results in a validation error.

EXIT and MODIFY
The following FILE operands are used for special file processing only.

MODIFY modulename [nK]
OS/390 and VSE. The MODIFY keyword is used to indicate that special processing
is required either immediately following the input operation or immediately prior
to the output operation. The modulename coded immediately following the
keyword MODIFY is the name of a user written module invoked to perform the
special processing.

For VSE users, this name must be followed by the memory requirement for the
module, for example, 1K. The default is 4K. The maximum size allowed for VSE is
999K.

For OS/390 users, the memory size is not required and there is no maximum
module size. See Chapter 14, Using Procedural Commands for rules concerning user
modules.
Using the FILE Command 6–31

EXIT and MODIFY
When MODIFY is specified, VISION:Results performs all the I/O operations
against the file either as part of the automatic cycle or when READ/WRITE is
executed. The user module is invoked to process the record either immediately
following input or just prior to output.

Use this feature to automatically scramble records prior to writing out a file, to
expand/condense records as they are processed, to secure fields within a record,
or for many other applications.

Any other FILE operands that apply are still required.

FILE PAYROLL INPUT FB 360 7200 TAPE SYS011
MODIFY DECRYPT

A payroll file is read. When the file was created, it was encrypted for security
reasons. Whenever a record is read, it is passed to a routine DECRYPT that
decrypts it so that the records can easily be processed in this program.

When specifying data names following a FILE statement that has been coded with
MODIFY, define the fields on input, as they appear after the routine has executed.
For output files, define the fields as they appear prior to the routine being
executed.

Restrictions
� You cannot output a file from a file that is specified with MODIFY. Specify the

output file from (FROM) itself and then move the data yourself.

� You cannot specify a file print using the OPTION statement for a file that has
MODIFY specified.

� To define an output file with MODIFY specified, code OUTPUT from itself.

EXIT modulename [nK]
OS/390 and VSE. The EXIT keyword specifies a user module invoked to do all I/O
processing for this particular file. This facility can access files that are not normally
supported by VISION:Results. It is your responsibility to provide the module. For
VSE users, the module name must be followed by the memory requirements for
the module, for example, 1K. The default is 4K. The maximum allowable size for
VSE is 999K. For OS/390 users, the memory size is not required.

If EXIT is coded on a FILE statement, the user's module is invoked whenever I/O
is required for this file, either as part of the automatic cycle or whenever
READ/WRITE is executed.

Whenever a FILE specifying EXIT is coded, you may be required to supply a STOP
statement. If there is a SORT in the program, this determines when the program
terminates. If there is no SORT, you must execute a STOP when you have
determined that the program is complete. See Chapter 14, Using Procedural
Commands for rules concerning user-written modules.

FILE BDAMSTR FB 435 8700 INPUT EXIT USERIO

A file named BDAMSTR is going to be read by the user's module USERIO.
6–32 VISION:Results Reference Guide

EXIT and MODIFY
Restrictions
When coding a FILE statement that specifies EXIT, you must supply all the
required operands to satisfy VISION:Results validation, even though they may not
be required for the user module. Certain FILE operands are not valid if EXIT is
specified. The following keywords are not valid with EXIT:

� LENGTH

� COUNT

� SELECT

� INTSEL

� NUMFILES

� POSITION

� SKIP/SKIPX

� RANDOM/RANDOMX

� ERASE

� PASSWORD

� PARTKEY

The STATUS keyword can be used with EXIT, but it is your responsibility to set
the field to E in the module.

You can SORT a file that is being processed using EXIT, but you cannot specify an
EXIT-processed file as the operand of UNTIL on a SORT statement.

You can process the EXIT file in the same manner as any other VISION:Results file,
but you cannot specify file printing using the OPTION statement for this file.

You can define data names following your FILE statement for your EXIT file in the
same manner as for a regular file. VISION:Results allocates a record area for your
file equal to the larger of the record size or SIZE parameter, and the data names
apply to this area. It is the user's responsibility to ensure that the record is moved
into this area by the I/O module.

You can create an output file using an EXIT keyword, but there are some
restrictions. An output EXIT file must be OUTPUT FROM itself. To write a record
directly from another file, you must move it yourself. Also, if you want to
OUTPUT another FILE from an EXIT file, you must move the record yourself. You
cannot code FROM an EXIT file.

FILE SYSIN CARD
FILE RECFILE FB 80 8000 OUTPUT
FROM RECFILE EXIT USERIO

MOVE SYSIN TO RECFILE LENGTH 80
FIN

This example writes data to RECFILE. The records are copied to the RECFILE.
Using the FILE Command 6–33

EXIT and MODIFY
SIZE nnnnn
OS/390 and VSE. SIZE is valid only if EXIT or MODIFY has been supplied. It is
used to indicate how large an area is required to hold a record.

MODIFY
When SIZE is used with MODIFY, it indicates that the record is to be processed in
a work area whose size is specified by the 1- to 5-digit number following the
keyword SIZE. All data definitions apply to this work area. If SIZE is specified, the
user-written MODIFY module moves from the I/O area to this work area on input
and from this work area to the I/O area on output. When SIZE is specified, it is not
possible to access the actual I/O area in VISION:Results.

You can specify SIZE if your records were being expanded. For example, you are
reading VB records that are being expanded in a MODIFY module to fixed length
for easier processing in VISION:Results.

FILE VAREMP VB 210 2144 MODIFY USEREXP
SIZE 400

A variable record file is read by VISION:Results. Immediately following the input
operation, the user's module USEREXP is invoked to expand the variable record to
a fixed 400-byte record. All data names specified following this statement refer to
the expanded data in the 400-byte area.

FILE VAREMP VB 210 2144 MODIFY USERCND
SIZE 400 OUTPUT FROM VAREMP

You build a record in a 400-byte area. Just prior to the output operation, the
module USERCND is invoked to condense the record in the 400-byte area down to
a variable record, maximum 210 bytes in the I/O area.

EXIT
When coding an EXIT-processed file, indicate the maximum record length
possible. This is necessary to allow VISION:Results to allocate a record area. You
can specify the record size either as the logical record length following the record
format keyword or by specifying SIZE.

If both SIZE and a logical record length are supplied, VISION:Results allocates an
area equal to the size of the larger. If neither is supplied, a validation error occurs.
It is the responsibility of the user-written EXIT module to move the record to this
area on INPUT and write from this area on OUTPUT.

PARM (dataname)
OS/390 and VSE. The PARM keyword is valid only if EXIT or MODIFY has been
specified. The keyword PARM is followed by a series of data names enclosed in
parentheses, indicating the parameters that are to be passed to the EXIT/MODIFY
module. The data names cannot be more than 10 characters. A standard parameter
list is built using the specified data names and is pointed to by register 1. Standard
linkage conventions apply. EXIT and MODIFY both have default parameter lists.
The PARM keyword only needs to be supplied if the user module requires a
6–34 VISION:Results Reference Guide

IOU-Processed Files
parameter list that differs from the standard. See Chapter 14, Using Procedural
Commands for a description on writing user EXIT and MODIFY routines and the
default parameter list.

Two special keywords can be specified as part of the parameter list—IOAREA and
WORK. They are valid only as part of the operand field of the PARM keyword.

IOAREA
When specifying a parameter list for a MODIFY routine, you must be able to
specify the I/O area for this particular file. Specify the keyword IOAREA as part
of the parameter list. The address of the I/O area for the current record is passed
as the appropriate entry in the list.

IOAREA refers to the area that VISION:Results reads into or writes from. If SIZE
is also specified, it is your responsibility, in the MODIFY routine, to move the
record from this area to the work area on input or to this area from the work area
on output.

IOAREA is invalid for EXIT.

WORK
WORK is valid for EXIT-processed files and any MODIFY file that has SIZE
specified. It refers to the area that has been allocated by VISION:Results to hold the
record while it is being processed. It is your responsibility to move to it during an
INPUT EXIT/MODIFY module and from it during an OUTPUT EXIT/MODIFY
module.

IOU-Processed Files
Any program that requires more than eight (seven if SORT is being used) input
files or eight output files can process the additional files using the IOU (Input
Output Unlimited) facility. The IOU facility calculates how many IOU files it needs
and allocates them appropriately. This facility might also be required if you get a
‘628E Unable to allocate work area’ message.

The IOU facility can process any standard sequential file (fixed, variable, blocked,
unblocked, input, output) on tape or disk. Spanned files are not supported, and
neither is VSAM or ISAM. There are some limitations associated with IOU files:

� For variable files, VISION:Results does not manipulate the RDW. It is your
responsibility to allow for it.

� Certain FILE keywords are not valid with IOU-processed files. See EXIT
restrictions for the list of keywords you cannot use.

� Any program using the IOU facility that does not contain a SORT must
determine when processing is to terminate and issue a STOP.
Using the FILE Command 6–35

Considerations for Processing Variable-Length Records
To use the IOU facility, code your FILE statement for your sequential file
specifying all the required keywords. You must also specify EXIT DYLIOU on the
statement. This causes the module DYLIOU to perform all I/O for the file. Do not
code a PARM keyword. Always specify a maximum record size.

FILE SEQTAPE VB 85 894 SYS011 TAPE
EXIT DYLIOU

For VISION:Results logic purposes, this is a standard file; however, the I/O is
performed using the module DYLIOU.

If you get a 628E message, making some of your output files IOU-processed files
might allow the program to compile and execute.

Considerations for Processing Variable-Length Records
VISION:Results simplifies the processing of variable files. You do not have to
worry about differences in processing VSAM and non-VSAM variable files
because both are handled the same way.

Record Size
When specifying the logical record length for a variable file, you must specify the
maximum data length. For non-VSAM files, VISION:Results adjusts this length to
allow for the RDW (record descriptor word).

Block Size
Blocking has no meaning for VSAM files and is ignored. When specifying the
maximum block size for non-VSAM files, you must specify the actual physical size
of the block. In calculating this, add 4 to the specified record length (to allow for
the RDW), multiply by the blocking factor and then add 4 to allow for the BDW
block descriptor word.

For example, a variable file containing records with a maximum length of 200,
blocked 10, has a maximum block size of 2044. ((200+4)*10+4). The maximum
block size specified for a variable file does not have to allow for a fixed number of
the maximum length records. The specific application determines what the
optimum block size must be. VISION:Results, however, requires that the specified
block size be at least 8 greater than the record size given.

Location of Data Within Record
VISION:Results assumes that position one of every variable record is the first byte
of data. It automatically takes care of the 4-byte RDW for non-VSAM variable files.
If you are setting up data definitions for variable-length records, start defining
fields from the first byte of data.
6–36 VISION:Results Reference Guide

Considerations for Processing Variable-Length Records
Length of Current Record
On input, VISION:Results keeps track of the length of the data in the record just
read. You can access this information by specifying the keyword LENGTH and a
data name. The data name specified is a 2-byte binary field and contains the length
of the data in the record just read. This applies to both VSAM and non-VSAM files.

For output files, it is your responsibility to tell VISION:Results how long the data
portion of the current record is. For non-VSAM files, VISION:Results uses this
length to build a RDW before writing the record.

Output from Itself
If a file is defined to be output from itself, it has its own I/O area assigned. It also
has a 2-byte binary length field assigned to the file. You can reference this length
field by specifying the keyword LENGTH followed by a data name.

It is your responsibility to move data to the area and place the length of the data in
the LENGTH dataname statement before the record is written either using the
automatic cycle or a WRITE command. In most cases, failure to move a valid
length to the LENGTH dataname statement results in wrong length records being
written.

Output from an Input File
When a file is written from an input file, VISION:Results does not assign an I/O
area for the file or a length field. VISION:Results references the I/O area and
length field for the input file when the output file is written. VISION:Results places
restrictions on the type of file that a variable output file can be written from.

A variable non-VSAM file can be written only from another variable non-VSAM
file. A variable VSAM file cannot be written from a variable non-VSAM file. If
other combinations are required, you must specify OUTPUT from itself for the file,
move the data, and set up the data length.

When a record is being written from an input area, the length automatically is set
up by VISION:Results when the record is read. LENGTH cannot be specified for
the output file because the length field does not exist for this file. You can specify
the LENGTH dataname for the input file if you want to adjust the length of the
record. You can shorten a record to be written by changing the contents of the
LENGTH dataname. Do not attempt to write a longer record.

If it is necessary to increase the length of a record, specify OUTPUT from itself on
the FILE statement, move the data, and set up the length. The LENGTH data name
always contains the length of the data only.

File Printing Variable Files
VISION:Results automatically handles the RDW; you need only be concerned with
data. There is one exception. Whenever VISION:Results does a file print of the
record either using the OPTION statement or one of the file print commands such
as HEXPRINT or PRINT, VISION:Results prints the RDW if it is present. An RDW
Using the FILE Command 6–37

Considerations for Processing Variable-Length Records
is present only for non-VSAM files. This is done to assist in debugging. The data
that is defined at byte 1 in the data definitions is at byte 5 in the file print of the
record if there is an RDW. This is also true for the dump of the record in a
PRINTERROR error analysis dump.

Sorting a Variable File
To eliminate a possible error during SORT, VISION:Results moves variable-length
records from the I/O area to a fixed-length area for processing. This is transparent
and you normally do not need to worry about it. If an error occurs in the
VISION:Results execution, the record shown in the I/O area in the PRINTERROR
dump is not necessarily the record you are processing. For both VSAM and
non-VSAM files, the variable record has been moved to a work area. Check the
record there.

When you use SORT, you can have a maximum of seven input files.

Exceptions to the Above Rules
VISION:Results assumes that you are working only with the data portion of the
record and that it handles the RDW if it exists. There are two exceptions to this:

� If the file is an EXIT-processed file defined as variable, it is your responsibility
to handle any RDW that there might be. VISION:Results does not add 4 bytes
to the record size to allow for an RDW, nor does it assume that the first byte you
are defining is data.

� Under OS/390, it is not necessary to specify the record format. If you do not
specify the record format, VISION:Results does not make allowances for a
possible RDW.

Always specify at least the record format for files. The following example can
result in creating an output file that has two RDWs on every record.
6–38 VISION:Results Reference Guide

Considerations for Unblocked ISAM Files
OS/390 ONLY

� Statement 1 defines an input file but does not specify the record format. INFILE
refers to byte 1 of the physical record, not byte 1 of the data. If INFILE is in fact
a variable-length file, INLEN contains the length of the record including the
4-byte RDW and INFILE refers to the first byte of the RDW.

� Statement 2 defines an output file. It is to be a variable file and VISION:Results
automatically allows for the RDW.

� OUTFILE refers to byte 1 of the data or byte 5 of the physical record.

� Statement 4 moves the data from the input area to the output area. The RDW
from the input record is at byte 5 of the physical output record.

� Statement 5 sets up the data length for the output file. When VISION:Results
enters the automatic cycle to write the output file, it adds 4 to the output length
to allow for the RDW and then builds the RDW at byte 1 of the physical output
record. When the record is written, it has two RDWs with the actual data
starting at location 9.

Avoid this problem by specifying the record format in the file statement. In this
case:

FILE INFILE VB LENGTH INLEN

Considerations for Unblocked ISAM Files
Note: This section only applies to VSE.

Handling ISAM files by the IBM VSE I/O routines is different for blocked than it
is for unblocked. The following sections outline the differences and provide
guidelines for processing unblocked ISAM files.

Sequential Read
When a blocked ISAM file is read, the system brings in only the data record, not
the key prefix. When an unblocked ISAM file is read sequentially, the key precedes
the data in the record area even though the key may also be embedded in the
record.

FILE INFILE LENGTH INLEN 1
FILE OUTFILE VB 500 5044 LENGTH
OUTLEN

2

OUTPUT FROM OUTFILE 3
MOVE INFILE TO OUTFILE LENGTH IN
LEN

4

MOVE INLEN TO OUTLEN 5
Using the FILE Command 6–39

Considerations for Unblocked ISAM Files
Read an unblocked ISAM file whose record length is 35 and key length is 5.

FILE ISAMIN F 35 ISAM DISK 3340 KEYLEN 5 KEYLOC 1
FIRSTBYTE 1 6
NEXTFLD 10 7

The first byte of data is located in byte 6 of the record area. The last 5 bytes of data
are beyond the end of the record area, strictly speaking. If you need to access the
last n bytes of the record (where n is the key length), set up a WORKAREA and a
variable-length field and move into it to obtain the entire record:

MOVE FIRSTBYTE LENGTH 35 TO HOLDREC

Sequential Load/Extend
Unblocked ISAM sequential output requires that the record be written from an
area containing the key followed by the data.

Create an unblocked ISAM file with a record length of 35 and a key length of 5.

FILE ISAMOUT F 35 ISAM DISK 3340
KEYLEN 5 KEYLOC 1 OUTPUT FROM WORKFL

FILE WORKFL F 40 TAPE NL SYS029
WORKKEY 5 WORKREC 35

The file WORKFL is not a real file, just an area to write from. In this example,
SYS029 must be assigned to IGN (ignore) in the JCL. The key of the output record
is moved to WORKKEY and the data to WORKREC.

Random Retrieval
Random retrieval of unblocked ISAM files works the same way as for blocked
ISAM files. Just move the key you are searching for to your RANDOM data name
and issue a read. The data is returned in your record area WITHOUT the key
prefix. Byte 1 of the data is in byte 1 of the record area.

Random Update
In this type of access, the record must be randomly retrieved first. See above.

If the record is found (STATUS dataname = Y), only the replacement record is
moved to the output area. If the record is not found, the key AND data are moved
to the output area. In both cases, a WRITE command is then issued to replace or
add the record as necessary.

FILE ISAMUPD F 35 ISAM DISK 3340 RANDOM IKEY
KEYLEN 5 KEYLOC 1 IO FROM WORKFL
RECIN 35

FILE WORKFL F 40 TAPE NL SYS029
OLDREC 35 1
NEWKEY 5 1
NEWREC 35 6

The file WORKFL is not a real file, just an area that you can write in. You must
assign SYS029 to IGN.
6–40 VISION:Results Reference Guide

Considerations for Concatenated Input Files
Considerations for Concatenated Input Files
Note: This section only applies to OS/390

VISION:Results supports concatenation of unlike input data sets only for data sets
on different device types or with different block sizes. All data sets in the
concatenation list must have the same LRECL (record length) and RECFM (record
format).
Using the FILE Command 6–41

Considerations for Concatenated Input Files
6–42 VISION:Results Reference Guide

Chapter
7 U
sing the IF Command
Use the IF statement to selectively process data, such as when only records of a
certain type on a file are wanted or when different logic is to be executed
depending on conditions.

Comparing and Selecting Data
You can code IF statements almost anywhere in your program, as part of regular
logic or in special logic, such as ON END, ON CHANGE, or ON ONE.

For example, in a simple file print program, you want to select records with a state
code of CA. To accomplish this, code:

FILE FILEIN INPUT FB 200 2000
STATECODE 2 45

IF STATECODE NE 'CA' REJECT ENDIF
PRINT FILEIN

If the state code above is not equal to CA, the record is rejected. Otherwise, execute
the next statement following the ENDIF (PRINT FILEIN). The IF statement can
also be stated:

IF STATECODE EQ 'CA' NEXT ELSE REJECT ENDIF
PRINT FILEIN

If the state code is equal to CA, execute the next statement following the ENDIF
(PRINT FILEIN); otherwise, reject the record.

You can also code:

IF STATECODE EQ 'CA' PRINT FILEIN
ELSE REJECT ENDIF

The format of an IF (conditional) statement is:

IF datanamex [NOT] relationaloperator {datanamez
{literal}

true condition-1 imperative statement(s)
ELSE | OTHERWISE
false condition imperative statement(s)

ENDIF

Figure 7-1 IF (conditional) Statement
Using the IF Command 7–1

Comparing and Selecting Data
IF
IF signals the beginning of a conditional statement.

NOT
NOT is an optional keyword that negates the relational operator with which it is
associated. For example, if condition-1 is true, then NOT condition-1 is false.
Likewise, if condition-1 is false, then NOT condition-1 is true.

Relational Operators
Relational operators represent the type of comparison to be executed. Valid entries
are:

datanamex This represents a field, identified by its data name, that is to be
compared to another data name or to a literal, or is to be tested for
a certain state, such as positive, negative, numeric, or bits on.

This field can be alphanumeric, packed, or binary and can have
from zero to nine decimal positions. It can be indexed, and its
length cannot be modified by the ’LENGTH xx’ phrase.

Condition Truth Value

condition-1 True False

NOT condition-1 False True

EQ Equal. If datanamex is equal to datanamez or literal, execute true
condition imperatives. If not equal, execute false condition imperatives.

NE Not Equal. If datanamex is not equal to datanamez or literal, execute true
condition imperatives. If equal, execute false condition imperatives.

LT Less Than. If datanamex is less than datanamez or literal, execute true
condition imperatives. If datanamex is equal to or greater than datanamez
or literal, execute false condition imperatives.

GT Greater Than. If datanamex is greater than datanamez or literal, execute
true condition imperatives. If datanamex is less than or equal to
datanamez or literal, execute false condition imperatives.

LE Less Than or Equal To. If datanamex is less than or equal to datanamez or
literal, execute true condition imperatives. If datanamex is greater than
datanamez or literal, execute false condition imperatives.

GE Greater Than or Equal To. If datanamex is greater than or equal to
datanamez or literal, execute true condition imperatives. If datanamex is
less than datanamez or literal, execute false condition imperatives.
7–2 VISION:Results Reference Guide

Comparing and Selecting Data
Dataname or Literal
This represents a field, identified by its data name, or a literal that is being
compared to. This field can be alphanumeric, packed, or binary and can have zero
to nine decimal positions.

The data type or number of decimal positions does not have to be the same as
datanamex. Data conversion and decimal alignment are handled automatically
before the compare is made. The field can be indexed, and its length cannot be
modified by the ’LENGTH xx’ phrase.

VISION:Results also allows a virtually unlimited number of literals as
comparators within IF statements. For example:

True Condition-1 Imperatives
If a condition is true depending on the test made, you can execute almost any
VISION:Results command. This includes MOVE, CALL, LIST, READ, WRITE, and
arithmetics. However, you cannot code a SORT or another IF statement. Nested IFs
are supported in STRUCTURED mode.

You can branch to other logic (GOTO), ACCEPT, REJECT, terminate the run
(STOP), or fall through to the next statement following ENDIF (NEXT).

IF COSTCENTER EQ 5443
MOVE 'X' TO FIELDA
COUNTER = COUNTER+1
WRITE FILEOUT
ACCEPT

ELSE REJECT ENDIF

If the COSTCENTER value is equal to 5443, the imperative move, add, and write
statements are executed and the program logic is exited using ACCEPT. If the
COSTCENTER value is not equal to 5443, the logic is exited using REJECT.

If, at the end of your true condition imperatives, you do not ACCEPT, REJECT,
GOTO, or STOP, execution then proceeds to the next statement following ENDIF.

IF COSTCENTER EQ 5443
MOVE 'X' TO FIELDA
COUNTER = COUNTER+1
WRITE FILEOUT

ELSE REJECT ENDIF

This example is the same as the preceding one, except that the true condition logic
is not exited using ACCEPT. The next statement executed is whatever is present
after the keyword ENDIF.

IF FIELD1 EQ 'LITERAL1' 'LITERAL2' 'LITERAL3'
NEXT

ELSE
REJECT

ENDIF

Figure 7-2 Literals as Comparators
Using the IF Command 7–3

Range Compares
False Condition Imperatives
If a condition is false depending on the test made, you can execute almost any
VISION:Results command. This includes MOVE, CALL, LIST, READ, WRITE, and
arithmetics.

You cannot code a SORT or another IF statement. You can branch to other logic
(GOTO), ACCEPT, REJECT, terminate the run (STOP), or fall through to the next
statement.

IF COSTCENTER NE 5443 REJECT
ELSE
MOVE 'X' TO FIELDA
COUNTER = COUNTER+1
WRITE FILEOUT
ACCEPT ENDIF

If the COSTCENTER value is not equal to 5443, the program logic is exited using
REJECT. Otherwise, the move, add, and write imperatives are executed and the
logic is exited using an ACCEPT.

The word ELSE precedes the false condition imperatives to indicate their
beginning.

You do not have to code false condition imperatives. The preceding example can
also be coded as follows:

IF COSTCENTER NE 5443 REJECT ENDIF
MOVE 'X' TO FIELDA
COUNTER = COUNTER+1
WRITE FILEOUT
ACCEPT

If you do not code false condition imperatives as part of the IF statement, the
statements following the ENDIF terminator are executed. If no executable
statements (such as MOVE or LIST) follow ENDIF, or if the following statements
are part of special logic (such as ON CHANGE or ON END), an automatic
ACCEPT happens and your program logic is exited.

ENDIF
ENDIF terminates the IF statement and is always required. Code this following the
imperative statements associated with the IF.

See Chapter 3, Syntax Rules for a list of simple valid compare combinations and the
rules that govern them.

Range Compares
You can incorporate a compare for a range or ranges of values in your IF statement
using the relational operators EQ or NE:

IF DEPT EQ 910 THRU 915 ACCEPT ELSE REJECT ENDIF
7–4 VISION:Results Reference Guide

Series Compares
Here, if DEPT is equal to 910, 911, 912, 913, 914, or 915 exit the program logic using
ACCEPT. Otherwise, exit the logic using REJECT.

IF DEPT EQ 910 THRU 915 935 THRU 940 ACCEPT
ELSE REJECT ENDIF

In this example, more than one range compare has been expressed in a statement.

Series Compares
You can incorporate a compare for a series of values in your IF statement using the
relational operators EQ or NE:

IF DEPT EQ 910 911 913 ACCEPT ELSE REJECT ENDIF

If DEPT is equal to 910, 911, or 913, exit the program logic using ACCEPT.
Otherwise, exit the logic using REJECT.

Combined Range and Series Compares
You can combine the range and series tests into one IF statement.

IF DEPT EQ 401 517 910 THRU 915 934 937 950 THRU 954
ACCEPT ELSE REJECT ENDIF

If DEPT is equal to 401, 517, 910 through 915, 934, 937, or 950 through 954, exit the
program logic using ACCEPT. Otherwise, exit the logic using REJECT.

Class or Status Tests
There are occasions when, in order to select certain data or execute certain logic,
you need to know if a field is in a particular status. You want to determine if it is
positive or negative, contains numeric data only, or if certain bits are on. Different
versions of the IF statement accomplish these things for you.

Test for Positive Value
You can test a numeric (NU), packed (PD), or binary (BI) field for a positive
(greater than 0) value using this format:

IF datanamex [NOT] POSITIVE
true condition imperative statement(s)

ELSE or OTHERWISE
false condition imperative statement(s)

ENDIF

Figure 7-3 Test for Positive Value
Using the IF Command 7–5

Class or Status Tests
The data name can be indexed. It cannot have its length modified by the ‘LENGTH
xx’ phrase.

IF BALANCE POSITIVE
PRINT ARREC
ACCEPT

ELSE REJECT ENDIF

If the BALANCE field is greater than 0, execute the true condition imperatives
(PRINT and exit program logic using ACCEPT). Otherwise, exit the logic using
REJECT.

Test for Negative Value
You can test a numeric (NU) field, packed (PD) field, or binary (BI) field for a
negative (less than 0) value using this format:

IF datanamex [NOT] NEGATIVE
true condition imperative statement(s)

ELSE or OTHERWISE
false condition imperative statement(s)

ENDIF

The data name can be indexed. It cannot have its length modified by the ‘LENGTH
xx’ phrase.

IF BALANCE NEGATIVE
PRINT ARREC
ACCEPT

ELSE REJECT ENDIF

If the BALANCE field is less than 0, execute the true condition imperatives
(PRINT, and exit program logic using ACCEPT). Otherwise, exit the program logic
using REJECT.

Test for Numeric Value
You can test a 1- to 31-byte character (CH), numeric (NU), or a 1- to 16-byte PD
field for a numeric value, using this format:

IF datanamex [NOT] NUMERIC
true condition imperative statement(s)

ELSE or OTHERWISE
false condition imperative statement(s)

ENDIF

Figure 7-4 Test for Numeric Value

For NU
field

The result is true only if the contents of the field contain external
decimal numbers 0 to 9 (hex notation F0 to F9) with the exception
of the low order or least significant byte, which can be A0 to A9,
C0 to C9, E0 to E9 (signed positive), or B0 to B9 or D0 to D9
(signed negative).
7–6 VISION:Results Reference Guide

Class or Status Tests
For NU or CH fields, the IF NUMERIC test can be restricted to only allow the sign
position to contain F0-F9, by use of the DYLINSTL parameter NUMCHAR=Y, or
the statement OPTION NUMCHAR. For PD fields, the IF NUMERIC test can be
restricted to only allow the sign position to contain a value of C.

The datanamex field can be indexed. It cannot have its length modified by
the ’LENGTH xx' phrase.

For example, for a field called NUMFIELD that is defined as a 5-byte numeric field,
the following values are considered numeric:

The following values are considered non-numeric:

Test for Bits On
You can test a 1-byte field of any data type for bits on (ones) using the following
format:

The hex-literal-mask is used as an 8-bit mask. The bits of the mask correspond one
for one with the bits of the field represented by datanamex. A mask bit of 1
indicates that the corresponding bit in the field is to be tested. When the mask bit
is 0, the corresponding bit in the field is ignored. When specifying a test for bits
ONES, for a true condition to be set, all of the bits in the field must be ones that are
also ones in the mask literal.

For PD field The result is true only if the contents of the field contain external
decimal numbers 0 to 9 (hex notation F0 to F9) with the exception
of the last (sign) position, which is tested for a value of A through
F.

12345 (F1F2F3F4F5)

1234E (F1F2F3F4C5)

1/ b1345 (F140F1F3F4F5)

/ b/ b 345 (4040F3F4F5)

123 /b/ b (F1F2F34040)

IF datanamex [NOT] ONES hex-literal-mask
true condition imperative statement(s)

ELSE or OTHERWISE
false condition imperative statement(s)

ENDIF

Figure 7-5 Test for Bits On
Using the IF Command 7–7

Compound Compares
The datanamex field can be indexed. It cannot have its length modified by
the ’LENGTH xx’ phrase.

IF FIELD1 ONES X'C8'
GOTO PROCA

OTHERWISE
GOTO PROCB ENDIF

Bits 0, 1, and 4 in FIELD1 are tested for ones. If all the tested bits are on (1), there is
a branch to PROCA. If none or only one or two of the bits are on, the logic
identified by the PROCB tag is entered.

Test for Bits Mixed
You can test a 1-byte field of any data type for bits mixed using the following
format:

The hex-literal-mask is used as an 8-bit mask. The bits of the mask are made to
correspond one for one with the bits of the field represented by datanamex. A
mask bit of 1 indicates that the corresponding bit in the field is to be tested. When
the mask bit is 0, the corresponding bit in the field is ignored. When specifying a
test for bits MIXED, for a true condition to be set, at least one of the bits in the field
must be 1 that is also 1 in the mask. If all of the tested bits in the field are ones, a
true condition is still set.

The datanamex field can be indexed. It cannot have its length modified by
the ’LENGTH xx’ phrase.

IF FIELDA MIXED X'F0'
GOTO PROCA

ELSE
GOTO PROCB ENDIF

Bits 0, 1, 2, and 3 in FIELDA are tested for at least one bit on (1). If one or all bits
are on, there is a branch to PROCA. If none of the tested bits is on, there is a branch
to PROCB.

Compound Compares
If you need to compare for several conditions before a decision to select or process
can be made, you do not have to do each compare separately. You can code
compound conditions in your IF statements.

IF datanamex [NOT] MIXED hex-literal-mask
true condition imperative statement(s)

ELSE or OTHERWISE
false condition imperative statement(s)

ENDIF

Figure 7-6 Test for Bits Mixed
7–8 VISION:Results Reference Guide

Compound Compares
Select or Process if Any of Several Conditions Is True
An OR connector between two or more compares indicates that if any of the
compares results in a true condition, the true condition imperative statements are
executed. The format is as follows:

IF DEPT EQ 201 OR
JOBCLASS EQ 'C'
ACCEPT

ELSE REJECT ENDIF

A record is accepted for output if the value of DEPT is equal to 201 or if JOBCLASS
is equal to C. If neither is true, the record is rejected.

IF FIELDA EQ FIELDC OR
FIELDH (INW) GT FIELDJ OR
FIELDM LT 721
COUNTER=COUNTER+1
GOTO PROCA

ELSE GOTO PROCB ENDIF

If any of the compares is true, the COUNTER field is incremented by 1 and a
branch to PROCA occurs. If none of the compares is true, a branch to PROCB
occurs.

You can include series, range, or special tests (POSITIVE, NEGATIVE, NUMERIC)
in your compound OR compares:

If FIELDA contains a negative value or if FIELDB contains the value 401, 403, 511,
512, or 513, execute the statement following ENDIF. Otherwise, if none of the
compares is true, reject the record.

IF datanameu [NOT] relational operator {datanamew}
{literal }

OR
datanamex [NOT] relational operator {datanamew}

{literal }
true condition imperative statement(s)

ELSE or OTHERWISE
false condition imperative statement(s)

ENDIF

Figure 7-7 OR Connector Format

IF FIELDA NEGATIVE OR
FIELDB EQ 401 403 511 THRU 513

NEXT ELSE REJECT ENDIF

Figure 7-8 Compound OR Compare
Using the IF Command 7–9

Combining Compound Compares
Select or Process if All of Several Conditions Are True
An AND connector between two or more compares indicates that only if all of the
compares result in a true condition will the true condition imperative statement(s)
be executed. The format is as follows:

IF DEPT EQ 201 AND
JOBCLASS EQ 'C'

ACCEPT ELSE REJECT ENDIF

A record is accepted for output only if DEPT is equal to 201 and if JOBCLASS is
equal to C. If neither or only one of the conditions is true, the record is rejected.

IF FIELDA EQ FIELDC AND
FIELDH (INW) GT FIELDJ AND
FIELDM LT 721
COUNTER=COUNTER+1
GOTO PROCA

ELSE GOTO PROCB ENDIF

If all three of the compares are true, the COUNTER field is incremented by 1 and
a branch to PROCA occurs. If none, one, or two of the compares is true, a branch
to PROCB happens.

You can include series, range, or special tests (POSITIVE, NEGATIVE, NUMERIC)
in your compound AND compares:

IF FIELDB EQ 511 THRU 513 AND
FIELDC POSITIVE

NEXT ELSE REJECT ENDIF

Here, if FIELDB contains the value 511, 512, or 513 and FIELDC contains a positive
value, execute the statement following ENDIF. Otherwise, if none or one of the
compares is true, reject the record.

Combining Compound Compares
You can also combine AND and OR in the same conditional statement. For
example, to select all Grade 7 pay-level employees in department 950 and all
salaried (exempt) employees, code:

IF DEPT EQ 950 AND
GRADE EQ '7'
GOTO ABC ENDIF

IF datanameu [NOT] relational operator {datanamew}
{literal }

AND
datanamex [NOT] relational operator {datanamew}

{literal }
true condition imperative statement(s)
ELSE or OTHERWISE
false condition imperative statement(s)

ENDIF

Figure 7-9 AND Connector Format
7–10 VISION:Results Reference Guide

Combining Compound Compares
IF EXEMPT EQ 'Y' NEXT
ELSE REJECT ENDIF
ABC:

Or, you can combine it in one conditional statement and obtain the same result:

IF DEPT EQ 950
AND GRADE EQ '7' OR
EXEMPT EQ 'Y' NEXT

ELSE REJECT ENDIF

When ANDs and ORs are combined in the same conditional statements, all AND
combinations are evaluated first, left to right, before any OR combinations. In the
previous example, a Grade 7 employee in department 950 results in a true
condition. A non-Grade 7 employee in department 950 results in a false condition
for the AND; but, if the employee was salaried, it would be a true condition for the
OR and a true condition for the complete conditional statement.

To clarify the conditional statement for documentation purposes or alter the order
of how simple conditions are combined, you can use parentheses to indicate how
conditions are to be combined:

IF (DEPT EQ 950 AND GRADE EQ '7') OR
EXEMPT EQ 'Y' NEXT

ELSE REJECT ENDIF

The result is the same as in the previous example; all salaried employees and all
Grade 7 employees in department 950 are selected. If, however, you want to select
only salaried or Grade 7 employees from department 950, code:

IF DEPT EQ 950 AND
(GRADE EQ '7' OR EXEMPT EQ 'Y') NEXT

ELSE REJECT ENDIF

The OR condition is evaluated left to right before the AND condition. A
non-exempt employee or anyone not in DEPT 950 causes a false condition.

If you are coding a complex IF statement and you are in doubt as to what order the
condition is evaluated, use parentheses. All conditions within parentheses are
evaluated together.

Conditions can be nested within parentheses:

IF DEPT EQ 950 AND
(GRADE EQ '7' AND (EXEMPT EQ 'Y' OR HOURS LT 40)) NEXT

ELSE REJECT ENDIF

Salaried employees, Grade 7 employees in department 950, or employees working
less than 40 hours per week in department 950 are selected.

When using parentheses in an IF statement, left and right parentheses must be
matched or a validation error occurs.
Using the IF Command 7–11

Interval and Random Selection of Data
Interval and Random Selection of Data
The IF SAMPLING command, followed by a unique application number, invokes
interval or random selection of data in your VISION:Results program procedure
logic. The format of this IF SAMPLING statement is as follows:

See Chapter 25, Using Random Selection and Chapter 26, Table and Array Handling
for a detailed description of IF SAMPLING, and how to define and use an interval
or random selection request.

IF [NOT] SAMPLING nn
true condition imperative statement(s)

ELSE or OTHERWISE
false condition imperative statement(s)

ENDIF

Figure 7-10 IF SAMPLING Command
7–12 VISION:Results Reference Guide

Chapter
8 S
tructured Programming
Structured Option
The structured programming option of VISION:Results has been implemented for
use by programmers and data processing installations that are involved in this
methodology. All the generally accepted structures have been implemented in
VISION:Results, and they use the traditional verbs associated with pseudo code.

The theory of structured programming supports three basic structures: sequence,
selection, and iteration. Each structure must have only one entry point and only
one exit. All three structures are fully supported by VISION:Results.

Sequence
The sequence structure is made up of one or more sequentially executed
commands. Any of the VISION:Results commands, including PERFORM, can be
combined to form a sequence structure.

GOTO, ACCEPT, and REJECT commands are disallowed when you are in
structured mode.

Selection
The selection structure is used to control processing based on a specified condition.
VISION:Results has two commands to accomplish the selection:

IF-THEN-ELSE-ENDIF
CASE-WHEN-ELSE-ENDCASE

The IF-THEN-ELSE-ENDIF combination is used to control processing based on a
single predicate.
Structured Programming 8–1

Structured Option
The CASE structure has been implemented to control processing based on
multiple predicates.

In this structure, all predicates have the same subject but many different
conditions. This structure is often used to improve readability and efficiency of the
program. Suppose that processing is to be controlled based on a transaction code
in the input record, and there are 50 of these codes. You could code 50 IF
statements. The execution of this is inefficient and the listing is not easy to read. As
an alternative, the CASE structure can be used.

Iteration
The iteration structure allows for looping, or the repeated execution of a segment
of code. Two commands are available in VISION:Results to accomplish this:

DOWHILE
DOUNTIL

Figure 8-1 IF Structure

Figure 8-2 CASE Structure

FalseConditionTrue

ProcessProcess

Process

Process

Process

Conditio
n

Condition

Condition
8–2 VISION:Results Reference Guide

Invoking Structured Mode
The DOWHILE structure checks a specified condition and continues processing
the loop while the condition is true. The condition is checked at the beginning of
the loop, so it is possible to have zero iterations of the loop.

The DOUNTIL structure checks a specified condition and continues processing the
loop until the condition is true. The condition is checked at the end of the loop, so
the loop is always executed at least once.

The various structures (sequence, selection, and iteration) can be combined and
nested one within the other to accomplish any required task — the result is still a
structured program. Computer Associates suggests that you indent the code for
each structure that is subordinate to another to improve the readability of the
resulting source listing.

Invoking Structured Mode
To use the structured features in VISION:Results, you must explicitly request it
using the OPTION command or establish it as a default. The structured commands
and nesting capability can lead to a complicated and difficult-to-understand
program if used indiscriminately by an inexperienced programmer. To invoke this

Figure 8-3 DOWHILE Structure

Figure 8-4 DOUNTIL Structure

False

Process
True

Condition

True

Process Condition

False
Structured Programming 8–3

Invoking Structured Mode
mode, specify the keyword STRUCTURED or STRUCTURED2 on an OPTION
statement at the beginning of your program. To establish either as a default, set the
DYLINSTL macro parameter PROGMOD to STRUCT or STRUCT2, respectively.

This allows the use of the structured commands in the program as well as the
nesting of IF statements. The option must be specified at the beginning of a
program and remains in effect for the entire program. In a multiple-report run, the
option remains in effect for all requests unless another OPTION statement is found
in a subsequent request. You cannot mix modes in a single request, but you can
change modes between requests in a multiple-report run.

The possible options are:

OPTION STRUCTURED
OPTION STRUCTURED2
OPTION CONVENTIONAL
OPTION USERDEFAULT

See Chapter 4, Using the OPTION Command for descriptions of these formats in
addition to other OPTION statements.

STRUCTURED
Allows the use of structured commands and nested of IF statements. Disallows
GOTO, ACCEPT, and REJECT commands.

STRUCTURED2
Allows the use of structured commands and nested IF statements. Also allows the
use of GOTO, ACCEPT, and REJECT commands.

Users of VISION:Interface for DB2 and VISION:Interface for SQL/DS (VSE or
CMS) should use STRUCTURED2 mode or have the DYLINSTL macro parameter
STRUCGO set to Y (STRUCGO=Y).

CONVENTIONAL
Sets mode to conventional VISION:Results. This disallows the use of structured
commands and is the default mode for VISION:Results.

USERDEFAULT
Disallows the use of structured commands and some conventional report facilities.
When in USERDEFAULT mode, VISION:Results makes some assumptions about
any reports produced, therefore, reducing the amount of coding required by you.
See Chapter 9, USERDEFAULT Mode Programming for a complete description of
USERDEFAULT mode programming.

[OPTION STRUCTURED | STRUCTURED2]

Figure 8-5
8–4 VISION:Results Reference Guide

Restrictions
Restrictions
Structured programming has often been referred to as GOTO-less programming.
This is not a restriction to structured techniques, but occurs if the structures are
used correctly. To aid you in developing better programs, when STRUCTURED is
requested, the GOTO command is disallowed. However, EXITDO, EXITCASE,
and ITERATE can be used to circumvent the need for a GOTO. The
VISION:Results commands ACCEPT and REJECT are also disallowed because
they interfere with any iterative structure used. OPTION STRUCTURED2 allows
you to use the GOTO, ACCEPT, and REJECT commands in a structured
VISION:Results program.

Suggested Coding Standards
Computer Associates recommends that, when the STRUCTURED option is being
used, some strict coding standards be followed. This is not a VISION:Results
requirement. VISION:Results is completely free-form and the placement of
commands, keywords, data names, and literals on the coding line has no meaning.
However, adherence to coding standards improves the readability of the source
listing, facilitates debugging, and makes future maintenance of the program much
easier.

The following are suggested guidelines:

� Code only one command per line. If the command cannot fit on one line, it is
continued on a second line or more, indented to show that it is part of the
previous line.

� Insert blank lines in the source to separate pieces of code.

� Code Reference points (tags) on a line by themselves.

� Segment the program and use the NEWPAGE command prior to each segment
so that each separate piece of code starts at the top of a new page. Each segment
should be a discrete piece of code having only one entry and one exit. As a rule
of thumb, no segment should contain more code than fits on one page (that is,
50 lines).

LIST ACCTNO NAME TRANS
BALANCE INTEREST

LISTDET:
LIST ACCTNO NAME TRANS
Structured Programming 8–5

Suggested Coding Standards
Choose meaningful names for data names and tagnames. Also, in defining data
names, prefix each data name with a constant to indicate to which file the data
belongs. For example, all fields on an accounts receivable file might have their data
names prefixed with the letters AR. See Chapter 15, Using the COPY or COPYE
Command for more information about the COPY or COPYE command.

� Indent code in the program based on the structure to which the code belongs.
Proper use of indentation graphically illustrates the relationship between the
statements and structures. For example:

– All tagnames start in column 1.

– All VISION:Results commands should start in column 4 or later. The exact
location depends on whether the keyword is subordinate to a structure and,
if so, which level.

– All commands between an IF and ELSE should be indented four columns to
the right of the IF. The ELSE should be lined up with the IF. All commands
between ELSE and ENDIF should also be indented four columns. The
ENDIF should be lined up with the IF and the ELSE.

IF condition
command
command

ELSE
command

ENDIF
8–6 VISION:Results Reference Guide

Suggested Coding Standards
This gives a very clear picture of the scope of the IF. This same rule also
applies if an IF is nested within another IF.

– All commands between a DOWHILE or DOUNTIL and ENDDO should be
indented four columns to the right of the DO. The ENDDO should line up
with DO. If another structure is coded subordinate to the DOWHILE or
DOUNTIL, the same rules for indentation should be followed.

– When the CASE structure is used, ENDCASE should line up with CASE.
WHEN and ELSE should be lined up one under the other and four columns
to the right of CASE. The code between WHEN and the next WHEN,
WHEN and ELSE, WHEN and ENDCASE, or ELSE and ENDCASE should
be indented eight columns to the right of CASE.

– The following keywords and associated objects should appear on lines by
themselves, indented the appropriate amount: IF, ELSE, ENDIF, DOUNTIL,
DOWHILE, ENDDO, CASE, WHEN, ENDCASE.

IF condition
command
command
IF condition

command
command

ELSE
command

ENDIF
ELSE

command
ENDIF

DOWHILE condition
command
DOUNTIL condition

command
IF condition

command
ELSE

command
ENDIF

command
ENDDO

ENDDO

CASE dataname
WHEN condition

command
command

WHEN condition
command

ELSE
command
command

ENDCASE
Structured Programming 8–7

Sequence Structure
– Most commands should fit on one line. If a command does not fit, the
remaining code goes on a second or subsequent line and should be indented
eight columns.

– VISION:Results entry point commands (ON END OF SORTING, ON END
OF INPUT, ON CHANGE IN, and ON FINAL) should start in column 1,
and commands following should start in column 4 or later.

– Although a well-written, structured program is much easier to follow than
an unstructured one, adequate documentation is still essential to complete
understanding of the program. Comments should be logically placed in the
code, symmetrically aligned, and set off from the code by asterisks or other
noncode symbols or blank lines.

Again, this list of coding standards is only suggested and in no way limits the
free-form capabilities of VISION:Results’ syntax.

Sequence Structure
All the executable VISION:Results commands can be used as part of a sequence
structure with the exception of GOTO, ACCEPT, and REJECT. These three
commands are disabled when in STRUCTURED mode. They can be enabled in
STRUCTURED mode by using the OPTION STRUCTURED2 statement.

The other command described here is PERFORM because it is used extensively in
all structured programming.

PERFORM
The PERFORM command causes control to pass to another segment of
VISION:Results code. When the segment has been executed, control returns to the
statement following the PERFORM.

The format of PERFORM is:

PERFORM tagname1 [TO tagname2]
[VARYING name FROM initial TO ending [BY increment]]

where tagname1 is the tagname that identifies the first instruction to be performed
and tagname2 is the tagname that immediately follows the last instruction to be
executed.

The PERFORM is TO a tagname. Any commands following the TO tagname are
not executed. If TO is not coded, the statements starting at tagname1 are executed
until a tag or ON END/CHANGE is encountered.

The VARYING keyword is used as a counter for the PERFORM statement. Starting
from an initial value, you can PERFORM this statement until an end value. The
name entry must be a field name. The initial, ending, and increment values can be
8–8 VISION:Results Reference Guide

Selection Structure
either field names or literals and can contain up to nine digits to the right of the
assumed decimal point. The increment can be positive or negative. If the BY
increment value is not specified, the default is 1.

You can nest PERFORM statements. That is, when you are in a segment that is
performed, you can also issue another PERFORM.

If you attempt, in detail logic, to PERFORM a segment of code following an ON
CHANGE or ON FINAL, a validation error results.

If you are issuing a PERFORM in ON CHANGE or ON FINAL logic and the
segment you are performing is prior to an ON CHANGE or ON FINAL (that is, it
is considered detail time code), take care that you do not execute a LIST in the
performed code. Either a validation error occurs, or you get a 550 abend during
execution.

Selection Structure
VISION:Results has two selection structures — CASE and IF. See Chapter 7, Using
the IF Command for a description of the basic IF command. It is reviewed here
because it is used in structured programming and because you can nest IF
statements in STRUCTURED mode. The CASE structure is valid only while in
STRUCTURED mode.

IF
The basic IF format is:

IF condition
[THEN] {imperative}
{ELSE imperative}
ENDIF

The specified condition is evaluated. When the condition is true, the code between
the IF and the ELSE is executed and then control passes to the command following
the ENDIF. If the condition is false, the code between the ELSE and the ENDIF is
executed and then control passes to the command following the ENDIF. Either the
true logic or the ELSE and false logic can be omitted, as needed. The word THEN
is treated as a noise word by VISION:Results. You can use it if you think it
improves the readability of your program.
Structured Programming 8–9

Selection Structure
Placement of ENDIF
Every IF statement must have a corresponding ENDIF. If each IF is not paired with
an ENDIF, a validation error results. The ENDIF is important because it limits the
scope of the IF. Care should be taken in determining where to place the ENDIF.
Consider the following example:

IF BALANCE GT 300

BALANCE = BALANCE * 1.10

ELSE

BALANCE = BALANCE * 1.05

ENDIF

LIST BALANCE

When BALANCE is greater than 300, it is increased by 10%. All BALANCE entries
less than or equal to 300 are increased by 5%. The ENDIF terminates the logic
controlled by the condition and all BALANCEs are listed.

Now consider:

IF BALANCE GT 300
BALANCE = BALANCE * 1.10

ELSE
BALANCE = BALANCE * 1.05
LIST BALANCE

ENDIF

In this case, the BALANCE entries greater than 300 are increased by 10%. All other
BALANCEs are increased by 5%. Because the LIST command precedes the ENDIF,
it is under control of the IF. Only those BALANCEs that are less than or equal to
300 and have been increased by 5% are listed. The placement of the ENDIF is
significant and becomes even more so when nested IF statements are used.

Nesting IF
When running under the STRUCTURED option of VISION:Results, nested IF
statements are permitted. That is, another IF-THEN-ELSE-ENDIF can be issued
subordinate to an existing IF. There is no limit to the number of IF statements that
can be nested one within the other. However, take care not to nest IF statements
too deeply. Beyond two or three levels, it becomes very difficult to follow the logic
when nesting is used.

VISION:Results always pairs the ELSE and ENDIF with the preceding active IF.
The evaluation of any IF and the execution of the appropriate code depends on the
placement of the IF with respect to a higher-level IF (before or after the higher level
ELSE) and the evaluation of the condition associated with the higher-level IF. The
proper use of indentation makes it much easier to understand nested IF
statements.

Remember, every IF must have a corresponding ENDIF, and the placement of it is
significant, whether you are dealing with a simple IF or a nested IF.
8–10 VISION:Results Reference Guide

Selection Structure
Review the following example:

IF BALANCE GT 300
IF ACCOUNT EQ ’EO’

BALANCE = BALANCE * 1.20
ELSE

BALANCE = BALANCE * 1.10
ENDIF

ELSE
IF ACCOUNT EQ ’AO’

BALANCE = BALANCE * 1.15
ELSE

BALANCE = BALANCE * 1.05
ENDIF

ENDIF
LIST BALANCE

All BALANCE entries are being increased. The amount of the increase depends on
the current BALANCE and the particular account. First, the BALANCE is checked.
If the BALANCE is greater than 300, the account is checked. EO accounts get a 20%
increase, while everyone else with a BALANCE greater than 300 gets a 10%
increase. Control then passes to the LIST statement.

For BALANCE entries less than or equal to 300, the account is also checked. AO
accounts receive a 15% increase, while all other BALANCE entries less than or
equal to 300 get a 5% increase. After applying the appropriate increase, control
passes to the LIST statement.

EO accounts with BALANCEs less than or equal to 300 only get a 5% increase, and
AO accounts with BALANCEs greater than 300 get a 10% increase.

Nested IF statements are powerful tools that can result in very efficient object code
being produced. They can also cause a lot of logic problems if not used carefully.

IF Restrictions
There are certain VISION:Results commands that cannot be issued subordinate to
IF. Any attempt to do so results in a validation error. The restricted commands are:

SORT
ON END OF INPUT
ON END OF SORTING
ON CHANGE IN
ON FINAL
LIST (at control break or ON FINAL time)
tagname definition (reference point)

CASE
If you have a variety of possibilities to check for on a particular field, you could
nest IF statements to handle the problem and produce efficient code. However,
depending on the number of possibilities, this could result in a program that is
very difficult to read. The CASE structure produces efficient code and a program
that is very easy to follow. Its basic function is to select code to be executed based
on different values for a single subject. Unlike IF, which gives you two possibilities
(the condition is true or it is false), the CASE structure allows for unlimited
possibilities.
Structured Programming 8–11

Selection Structure
The format of the CASE structure is:

The first statement of a CASE structure consists of the command CASE, followed
by a data name (the content of this data name controls the processing flow within
the CASE structure). The data name can be indexed; this index is not carried over
to the next CASE structure.

Next comes a series of WHEN statements (one for each condition), followed by the
condition to be tested. Notice that the data name is not repeated with each WHEN
statement; VISION:Results automatically uses the data name from the CASE
statement. ELSE is an optional keyword that executes its logic if all previous
WHEN conditions prove false; therefore, it is logically placed after the last WHEN
statement. (Remember, when an ELSE statement is used within the CASE
structure, either a WHEN logic or the ELSE logic always executes.)

The ENDCASE statement is required as the last statement of the structure. The
CASE and ENDCASE statements enclose the entire CASE structure.

The following two examples show a simple CASE statement and a logically
equivalent non-CASE statement. Both of these examples have the same meaning:

CASE TRANCODE
WHEN EQ ’A’

IF TRANCODE EQ ’A’

You can code compound conditions, as well as list and range compares, as part of
the WHEN, just remember to omit the first operand. VISION:Results gives you a
validation error if you forget. For example:

CASE ACCOUNT
WHEN EQ ’EO’ ’IO’ ’NA’ THRU ’PE’

During execution, VISION:Results evaluates condition 1. If it is true, the
imperative statements between condition 1 and the next WHEN are executed and
then control passes to the first statement following the ENDCASE. If condition 1 is
false, VISION:Results evaluates condition 2. If it is true, the appropriate statements
are executed and then control passes to the statement following ENDCASE. If
condition 2 is false, VISION:Results proceeds to evaluate the next condition, and
so on. The ELSE indicates that the code following is to be executed only if all the
preceding conditions are false.

CASE dataname [index]
WHEN condition1

imperative
WHEN condition2

imperative
:
:
ELSE

imperative
ENDCASE

Figure 8-6 CASE Structure Format
8–12 VISION:Results Reference Guide

Selection Structure
ENDCASE terminates CASE processing. Every CASE statement must have a
corresponding ENDCASE. The placement of the ENDCASE is significant in that it
indicates the end of code that is being controlled by CASE, as well as the start of
code that is outside the scope of the structure.

If used properly, CASE produces very efficient code. Once a true condition has
been detected, the appropriate code is executed and then control leaves the
structure. No further tests are done.

Consider this example:

CASE YR_OF_RELEASE
WHEN EQ 96

PERFORM REV TO REV_X
WHEN EQ 95

PERFORM NOREV TO NOREV_X
ELSE

PERFORM ALL_OTHER TO ALL_OTHR_X
ENDCASE
LIST TITLE REVIEW YR_OF_RELEASE

All movies released in 1996 are placed on a list for critical review and are eligible
for annual awards. All those with release dates in 1995 are processed as not eligible
for awards, and all others are processed in some other manner. Because the
ENDCASE precedes the LIST statement, all movies, regardless of year of release,
are listed. If the ENDCASE statement followed the LIST, only those movies
released in years other than 1996 or 1995 would be listed.

Nesting and CASE
You can nest one CASE structure within another; however, careful use of
indentation makes following the logic easier.

CASE Restrictions
There are certain VISION:Results commands that cannot be issued subordinate to
CASE. Any attempt to do so results in a validation error. The restricted commands
are:

SORT
ON END OF INPUT
ON END OF SORTING
ON CHANGE IN
ON FINAL
LIST (at control break or ON FINAL time)
tagname definition (reference point)

EXITCASE
EXITCASE is only valid if CASE is in effect. It causes control to pass to the first
statement following the ENDCASE for the CASE structure that is currently active.
Normally, if VISION:Results is processing subordinate to a WHEN, it passes
control to the statement following ENDCASE when it encounters another WHEN.
However, if a condition is detected that indicates processing should not continue
in the current WHEN, EXITCASE can be useful. This is typically required if an
error condition has been detected.
Structured Programming 8–13

Iterative Structure
In the following example, year of movie release is controlling processing within
the structure. If a movie released in the current year (1996) is not included in the
list of movies to be reviewed, the record is printed along with an error indication
and control exits from the CASE structure.

CASE YR_OF_RELEASE
WHEN EQ 96

IF REVIEW NE ’Y’
MOVE ’REVIEW ERR’ TO DYLPRTCOMM
PRINT MOVIEREC
EXITCASE

ENDIF
PERFORM REV TO REV_X

WHEN EQ 95
PERFORM NOREV TO NOREV_X

ELSE
PERFORM ALL_OTHER TO ALL_OTHR_X

ENDCASE
LIST TITLE REVIEW YR_OF_RELEASE

All records with a review error are listed along with all the other movies because
EXITCASE passes control to the statement following the ENDCASE (in this
example, the LIST statement).

Iterative Structure
VISION:Results provides two iterative structures, DOWHILE and DOUNTIL.
These two structures allow you to repeatedly execute a piece of code. For example,
continue processing input records until there are no more or scan a data record
until a particular value is found. Different circumstances dictate which of the two
structures should be used.

DOWHILE
DOWHILE tells VISION:Results to continue processing in the loop while the
specified condition is true. When the condition is false, VISION:Results exits from
the loop. VISION:Results evaluates the condition at the beginning of the loop. The
format of DOWHILE is:

DOWHILE condition
imperative

ENDDO

where condition is any valid IF condition as described in Chapter 7, Using the IF
Command. VISION:Results checks the specified condition. If the condition is false,
control passes to the statement following the ENDDO. When the condition is true,
the commands between DOWHILE and ENDDO are executed and then control
returns to the evaluation of the condition.
8–14 VISION:Results Reference Guide

Iterative Structure
Consider this example:

INX=0
DOWHILE INX LT 60

TOTAL=TOTAL+MONTH(INX)
INX=INX+5

ENDDO

Assuming that MONTH is defined as a 5-byte field, this DOWHILE loop adds 12
contiguous 5-byte fields to produce TOTAL (sum of 12 month’s data).

DOUNTIL
The DOUNTIL is similar to the DOWHILE. However, DOUNTIL continues
processing in the loop as long as the specified condition is false. DOUNTIL
evaluates the condition at the END of the loop; therefore, the commands specified
following DOUNTIL are always executed at least once regardless of the value of
the condition. The format of DOUNTIL is:

DOUNTIL condition
imperative

ENDDO

where condition is any valid IF condition as described in Chapter 7, Using the IF
Command. VISION:Results executes the commands between the DOUNTIL and
ENDDO. The specified condition is then evaluated. If the condition is true, control
passes to the statement following the ENDDO. When the condition is false,
VISION:Results executes the commands in the loop again and then evaluates the
condition.

Consider this example:

INX=0
DOUNTIL INX NOT LT 60

TOTAL=TOTAL+MONTH(INX)
INX=INX+5

ENDDO

Because this code is set up to loop through 12 iterations, this loop produces exactly
the same result as the DOWHILE loop coded in DOWHILE on page 8-14. Note,
however, that the condition specified on the DOUNTIL is the opposite of the
condition specified on the DOWHILE.

Placement of ENDDO
The placement of ENDDO indicates the range of the loop. Any code between the
DO and the ENDDO is executed on an iterative basis. Any code following the
ENDDO is executed only after control passes from the structure. Every DOWHILE
or DOUNTIL must have a corresponding ENDDO. If you forget to code the
ENDDO, a validation error results.

Nesting and DOWHILE or DOUNTIL
You can nest a DO within a DO. The use of indentation makes it much easier to
follow the logic.
Structured Programming 8–15

Iterative Structure
For example:

READ ARFILE
DOWHILE EOFSTAT NE ’E’

MOVE SPACES TO FIRSTNAME
INX=0
DOUNTIL INX GT 24

IF NAME(INX) EQ SPACE
EXITDO

ELSE
INX=INX+1

ENDIF
ENDDO
MOVE NAME TO FIRSTNAME LENGTH INX
LIST FIRSTNAME
READ ARFILE

ENDDO
STOP

In this example, a file ARFILE is defined with a STATUS byte of EOFSTAT. A field
NAME is defined on the file that references the first byte of a 25-byte name field.
A WORKAREA, FIRSTNAME, is set up to hold the first name only. This first name
is to be listed. A READ is issued for ARFILE to get the first record. The DOWHILE
loop indicates that control should remain in the loop until all the records have been
read from ARFILE, then STOP is executed. Within this loop, the NAME field is
scanned for a blank and then everything up to the blank is extracted as the first
name. This first name is then listed prior to reading the next record on ARFILE and
continuing in the loop.

DOWHILE or DOUNTIL Restrictions
There are certain VISION:Results commands that cannot be issued while
subordinate to DOWHILE or DOUNTIL. Any attempt to do so results in a
validation error. The restricted commands are:

SORT
ON END OF INPUT
ON END OF SORTING
ON CHANGE IN
ON FINAL
LIST (at control break or ON FINAL time)
tagname definition (reference point)

As with any loop, you must ensure that the condition that is being tested is
eventually met as a result of the execution of the loop.

EXITDO
EXITDO is valid only if a DO (DOUNTIL, DOWHILE) is in effect. It causes control
to pass to the first statement following the ENDDO for the currently active DO.
Normally, control passes to this statement when the loop has been completed
based on the specified condition. In some cases, however, a condition is detected
within the loop that indicates that processing should not continue within the loop.
For this purpose, EXITDO can be used.
8–16 VISION:Results Reference Guide

Iterative Structure
In the following example, columns 1 to 60 of the input record are being scanned to
find the first blank. Once it has been found, there is no need to continue looping.

INX=1
DOUNTIL INX GT 60

IF COLUMN(INX) EQ BLANK
EXITDO

ENDIF
INX=INX+1

ENDDO

On exit from this loop, INX contains the column number of the first blank. If there
are no blanks in columns 1 to 60, INX contains the value 61.

ITERATE
If, while in a DOWHILE or DOUNTIL loop, you want to skip lines of code from a
certain point to the end of the loop without exiting from the loop, you can use the
ITERATE command. Placed inside of the loop, when it is executed, control skips
all following code and branches to the ENDDO statement of the loop.

INX=0
DOUNTIL INX GT 12

INX=INX+1
MOVE COLUMN(INX) TO PRTCOL
IF PRTCOL EQ BLANK

PRINT ’COLUMN CONTENTS ERROR’
PRINT PRTCOL
ITERATE

ENDIF
LIST PRTCOL

.

.
ENDDO

If PRTCOL is blank, print the contents and a message. Then, bypass the LIST
statement (ITERATE), return to the beginning of the DOUNTIL statement, and
start another loop.
Structured Programming 8–17

Automatic Cycle
Automatic Cycle
When using the STRUCTURED option, you need to be aware of the automatic
cycle and its possible impact on structured code.

Cycle Without SORT
Note: In this flowchart, when VISION:Results reads all input files and writes all
output files, this only applies to those files that do not have READ/WRITE
commands.

If there are any detail LIST statements, the following takes place whenever the first
LIST statement is executed (before the detail report line is produced). If there are
no detail LIST statements, the following takes place as part of the automatic cycle
at the same point as output files are written.

Figure 8-7 Automatic Cycle – No SORT

Enter

Read All
Input
Files

All
Input Files

at End?

No

Reinitialize
Fields

REJECT

ACCEPT

Execute
User
Code

Write All
Output
Files

End Run

Do ‘ON END OF
INPUT’ Logic

Yes

Do ‘ON CHANGE/
ON FINAL’ Logic

Close
Files

End of Run
Statistics

See
Figure 8-8
8–18 VISION:Results Reference Guide

Automatic Cycle
The basic loop in VISION:Results consists of Read-Process-Write and then repeat.
A record is read from each of the input files (that do not have a READ statement),
your code is executed, and a record is written to each of the output files (that do
not have a WRITE statement). This loop is repeated until all the input files are at
end. When that occurs, VISION:Results does final processing and stops.

If you code a READ statement in the program, that particular file is read only when
the READ statement is executed, not as part of the automatic cycle. Similarly, any
output files that have WRITE statements specified for them are written only when
the WRITE is executed, not as part of the automatic cycle.

In STRUCTURED mode, you cannot issue an ACCEPT or REJECT (unless you use
OPTION STRUCTURED2), so the only way to enter the automatic cycle is to exit
at the bottom of the program. If you have set the program up with a DO indicating

Figure 8-8 Automatic Cycle — LIST Statement Processing

Roll Current
Totals to Next
Higher Level

No

Set to Next
Higher Level

Totals

Change
in Any Control

Fields?

Set to Lowest
Level Break

Do Appropriate
ON CHANGE

Logic

Zero Current
Level Totals

Higher
Level to

Do?

Yes

No

Add Current
Values to Lowest

Level Totals

List Detail
Line

Yes
Structured Programming 8–19

Automatic Cycle
a loop that should be executed until the input is exhausted, the automatic cycle is
not entered until all the input has been read. When this technique is used, you
must issue READs and WRITEs for all your files.

VISION:Results automatically terminates processing as soon as all input files are
at end. This includes automatically read files as well as those processed by a READ
command. Once all input files are at end, you do not get control again unless ON
END OF INPUT has been specified. This should not cause a problem. However, if
you have coded a DO loop specifying “process until files are at end,” you are not
able to execute wrap-up logic unless you use ON END OF INPUT or ON FINAL.

Remember, it is when all input files are at end that VISION:Results terminates.
Files processed in a skip sequential or random manner never go to end. Thus, with
any of these files in the program, VISION:Results does not terminate
automatically. In this case, you get control when the loop is complete and you must
issue your own STOP.

If you have only sequentially read files in your program but want to control when
to terminate processing, you can put a DUMMY file in your program.

FILE INFILE DUMMY

Because a DUMMY file is never read, it can never go to end. If it does not go to end,
there is always at least one file that is not at end and, therefore, VISION:Results
does not terminate automatically. You get control after all input files are at end, but
you must STOP the program yourself.

The logic to handle reinitializing fields is part of the automatic cycle. If the
program is not going through the automatic cycle because of a DO, the REINIT
function never executes.

Recommendations Without SORT:

� Use READ and WRITE commands for all files when in STRUCTURED mode.

� Do not use REINIT. If you need to have fields re-initialized, insert code to do it
at the beginning of your loop.

� If you have special processing requirements when all files are at end, make sure
that you have a DUMMY file and a STOP statement in your program.

Cycle with SORT
Note: In this flowchart, when VISION:Results reads all input files and writes all
output files, this only applies to those files that do not have READ/WRITE
commands.
8–20 VISION:Results Reference Guide

Automatic Cycle
The automatic cycle without SORT looks like a single circle: Read-Process-Write
and back to the read. The automatic cycle with SORT can be considered as a double
loop or a figure 8. VISION:Results loops in the top half of the figure 8 during the
input side of the SORT and in the bottom half during the output phase of the
SORT. The UNTIL clause on the SORT statement or end of file on the file to be
sorted determines when VISION:Results changes from one loop to the other.

Figure 8-9 Automatic Cycle — SORT

Do ON END OF
SORTING Logic

Do ON CHANGE/
ON FINAL Logic

Close
Files

End of Run
Statistics

End Run

Read All
Input
Files

Enter

Yes

Reinitialize
Fields

Output
Phase of
SORT?

No

User Logic
Prior to SORT

Yes

All Records
Returned?

SORT

No

ACCEPT

Write All
Output
Files

Execute User
Logic Following

SORT

REJECT

See Figure 8-8
Structured Programming 8–21

Structured Programming Techniques
Each record is passed to SORT during the input cycle and then VISION:Results
goes through the automatic cycle and enters your logic at the top again.

Records are retrieved on the output side of the SORT only as part of the automatic
cycle, so you must not set up a loop after the SORT that prevents code from
entering the automatic cycle.

VISION:Results does not allow the SORT command to be part of a DO loop. You
probably want to set up a loop ahead of the SORT statement to select records for
sorting and possible reformatting.

When SORT is used, VISION:Results terminates the program when all records
have been processed (when the sort program indicates that it is finished). All input
files being at end is not considered when terminating a VISION:Results program
with SORT. Therefore, you never need a DUMMY file if you have a SORT in your
program.

If you need special wrap-up logic when all the records have been returned from
SORT, you can use the ON END OF SORTING entry point to get control to do your
processing. You have to issue your own STOP if you do this.

Processing always goes through the automatic cycle during both input and output
phases of the SORT. REINIT can be used if needed in this case.

Recommendations with SORT:

� Use READ and WRITE commands for all files when in STRUCTURED mode.

� If you have special processing requirements when SORT has completed, make
sure that you have an ON END OF SORTING entry and a STOP statement in
your program.

Structured Programming Techniques
The following are some approaches to circumvent the use of commands that
cannot be issued while using structured programming.

Select Records for SORT
Because you cannot REJECT records that you do not want to sort, you must READ
past records that do not meet the selection criteria. You can use either a DOWHILE
or a DOUNTIL to accomplish this. If you use the DOWHILE, you must code a
READ followed by a DOWHILE specifying the inverse of the selection criteria.
Following the DOWHILE, you have another READ of the file.

READ INPFILE
DOWHILE NOT selection criteria

READ INPFILE
ENDDO
SORT INPFILE
8–22 VISION:Results Reference Guide

Structured Programming Techniques
A record is read. Because DOWHILE does the test at the beginning of the loop, that
record is checked against the selection criteria. (Note the use of NOT.) If the record
meets the criteria (that is, NOT selection criteria is false), control passes to the
SORT statement. VISION:Results then exits through the automatic cycle, reenters
the program at the top of the program, and reads the next record on the file. For
any record not meeting the selection criteria (that is, NOT selection criteria is true),
control remains in the loop and another record is read. This continues until end of
file is reached on the file and VISION:Results switches to the output phase of the
sort.

IF the DOUNTIL is used, you code DOUNTIL specifying the selection criteria. This
is followed by a READ statement, an ENDDO, and then the SORT.

DOUNTIL selection criteria
READ INPFILE

ENDDO
SORT INPFILE ...

With DOUNTIL, the test is done at the end of the loop. When the program is
entered, the file is read and then the record is tested to determine if it meets the
selection criteria. If it does, control passes to the SORT statement. If it does not meet
the criteria, control remains within the loop and the next record on the file is read.
This loop continues until a record is read that meets the criteria. Once a record has
been passed to SORT, VISION:Results exits through the automatic cycle and
reenters the program at the top. In this case, it enters the DOUNTIL loop again and
reads the next record.

With either the DOWHILE or DOUNTIL solution, you do not have to worry about
an infinite loop. Because there is a SORT in the program, when the file goes to end
of file, control automatically transfers to the output phase of the sort.

ACCEPT
The ACCEPT command is not valid in STRUCTURED mode. Before inserting code
in the VISION:Results program to duplicate this function, be aware of what
ACCEPT is doing. When ACCEPT is issued, all output files that do not have
WRITE specified are written. If there is no detail LIST statement, totaling and
control break checking is done. Control then enters at the beginning of your code
after all input files that do not have READ specified have been read. If there is a
SORT in the program, ACCEPT following the SORT statement causes another
record to return from SORT.
Structured Programming 8–23

Structured Programming Techniques
If you want to issue ACCEPT to cause records to be written, to cause records to be
read, or to cause control to return to the top of the program, code a large loop in
your program that has READ statements at the top and WRITE statements at the
bottom.

DOWHILE not all files at end
READ file1
READ file2
READ file3
.
.
.
WRITE file4
WRITE file5
WRITE file6

ENDDO

This simulates ACCEPT, but does not go through the automatic cycle.

If you need to go through the automatic cycle for totaling or control break checking
when there is no detail LIST statement, or to retrieve another record from SORT,
you must code the program to allow control to fall into the automatic cycle.
VISION:Results exits through the automatic cycle whenever control passes
beyond the last coded statement or whenever control reaches an ON END OF
INPUT, ON END OF SORTING, ON CHANGE, or ON FINAL. Remembering this,
you can code a DOWHILE or DOUNTIL loop that spans the program up to one of
these entry points and then, when you want to exit to the automatic cycle, code
EXITDO.

DOUNTIL ENDFLAG EQ ’X’
READ FILE1
.
.
.
IF condition1

EXITDO
ENDIF
.
.

ENDDO
ON END OF INPUT
STOP

In this example, the DOUNTIL condition is one that is never true; this is an infinite
loop unless some other condition occurs causing control to pass from the loop.
Control remains in this loop until all records on FILE1 are read. Control then
passes to the ON END OF INPUT entry point and STOP is executed. Whenever
EXITDO is executed, control passes from the loop. The first statement following
the loop is the ON END OF INPUT, therefore, control exits through the automatic
cycle and reenters at the top of the program. See Match Files Where One File Must
Be Sorted on page 8-30 for an additional example of this technique where SORT is
involved.
8–24 VISION:Results Reference Guide

Structured Programming Examples
REJECT
The REJECT command is not valid in STRUCTURED mode. REJECT exits through
the automatic cycle but bypasses the automatic writing of output files and any
control break checking and totaling that might otherwise be done. Then, it reads
input files (that do not have READ commands) prior to entering at the top of the
program. This can easily be simulated in STRUCTURED mode by bypassing
WRITE commands and continuing in a READ loop to bypass unwanted records.
In CONVENTIONAL mode, the DOUNTIL loop might be replaced by:

IF ACCOUNT NE ’NA’ ’EO’ THRU ’IO’ REJECT ENDIF

GOTO
The GOTO command is not valid in STRUCTURED mode. In most cases, GOTO is
not needed in a structured program. Careful use of nested IF statements, DO loops,
and PERFORM statements should eliminate the need for GOTO. While
subordinate to DOWHILE/DOUNTIL, EXITDO can be used to GOTO the first
statement following ENDDO. Within a CASE structure, EXITCASE can be
considered as a GOTO the code following ENDCASE.

Structured Programming Examples
The following examples illustrate the use of structured programming.

Example 1 Sequential File Update

OPTION STRUCTURED

FILE OLDMAST FB 77 1540 STATUS MAST_EOF
OM_RECORD 77
OM_SOCSEC 9 1

FILE TRANFIL FB 80 800 STATUS TRAN_EOF
TR_RECORD 80
TR_SOCSEC 9 1
TR_LASTNAME 15 20
TR_ADDRESS 35
TR_SALARY 7 NU 2
TRANCODE 1 80

FILE NEWMAST OUTPUT FROM NEWMAST FB 77 1540
NM_RECORD 77
NM_LASTNAME 15 20
NM_ADDRESS 35
NM_SALARY 7 NU 2

WORKAREA
OM_KEY 9 ;MASTER KEY HOLD
TR_KEY 9 ;TRANSACTION KEY HOLD
NEW_SW 1 VALUE ' '
DEL_SW 1 VALUE ' '

NEWPAGE
MAINLINE:

PERFORM READ_MAST TO RDM_EX
PERFORM READ_TRAN TO RDT_EX
DOWHILE MAST_EOF NOT EQ 'E' OR TRAN_EOF NE 'E'

IF OM_KEY LT TR_KEY
PERFORM WRITE_MAST TO WTM_EX

Figure 8-10 Sequential File Update (Page 1 of 3)
Structured Programming 8–25

Structured Programming Examples
IF NEW_SW EQ 'N'
MOVE SPACE TO NEW_SW
ELSE
PERFORM READ_MAST TO RDM_EX
ENDIF

ELSE
IF OM_KEY EQ TR_KEY

CASE TRANCODE
WHEN EQ 'A'

MOVE 'BAD ADD' TO DYLPRTCOMM
PRINT TR_RECORD

WHEN EQ 'C'
PERFORM CORRECTION TO COR_EX

WHEN EQ 'D'
MOVE 'D' TO DEL_SW
MOVE 'DELETED' TO DYLPRTCOMM
PRINT TR_SOCSEC

WHEN EQ 'U'
PERFORM UPDATE TO UPD_EX

ELSE
MOVE 'BAD TRAN' TO DYLPRTCOMM
PRINT TR_RECORD

ENDCASE
PERFORM READ_TRAN TO RDT_EX

ELSE
IF TRANCODE EQ 'A'

PERFORM ADDITION TO ADD_EX
ELSE

MOVE 'NO MATCH' TO DYLPRTCOMM
PRINT TR_RECORD

ENDIF
PERFORM READ_TRAN TO RDT_EX

ENDIF
ENDIF

ENDDO
STOP
ON END OF INPUT
IF NEW_SW EQ 'N'

WRITE NEWMAST
ENDIF
STOP
NEWPAGE
READ_MAST:

READ OLDMAST
MOVE OM_SOCSEC TO OM_KEY
IF MAST_EOF NE 'E'

MOVE OM_RECORD TO NM_RECORD
ENDIF

RDM_EX:

READ_TRAN:
READ TRANFIL
MOVE TR_SOCSEC TO TR_KEY

RDT_EX:

WRITE_MAST:
IF DEL_SW EQ 'D'

MOVE SPACE TO DEL_SW
ELSE

WRITE NEWMAST
ENDIF
IF NEW_SW EQ 'N'

MOVE OM_RECORD TO NM_RECORD
MOVE OM_SOCSEC TO OM_KEY

ENDIF
WTM_EX:
ADDITION:

MOVE 'N' TO NEW_SW
MOVE TR_RECORD TO NM_RECORD
MOVE TR_KEY TO OM_KEY

ADD_EX:
CORRECTION:

IF TR_LASTNAME NE SPACES
MOVE TR_LASTNAME TO NM_LASTNAME

ENDIF
IF TR_ADDRESS NE SPACES

MOVE TR_ADDRESS TO NM_ADDRESS

Figure 8-10 Sequential File Update (Page 2 of 3)
8–26 VISION:Results Reference Guide

Structured Programming Examples
Example 2 Random File Update

ENDIF
IF TR_SALARY NE 0

MOVE TR_SALARY TO NM_SALARY
ENDIF

COR_EX:

UPDATE:
NM_SALARY = NM_SALARY + TR_SALARY

UPD_EX:

Figure 8-10 Sequential File Update (Page 3 of 3)

OPTION STRUCTURED

FILE KMASTER KSDS IO RANDOM SEARCHKEY F 77
KEYLEN 9 ERASE ERASEFLG STATUS KSDS_STAT

KM_RECORD 77
KM_SOCSEC 9 1
KM_LASTNAME 15 20
KM_ADDRESS 35
KM_SALARY 7 NU 2

FILE TRANFIL FB 80 800 STATUS TRAN_EOF
TR_RECORD 80
TR_SOCSEC 9 1
TR_LASTNAME 15 20
TR_ADDRESS 35
TR_SALARY 7 NU 2
TRANCODE 1 80

MAINLINE:
PERFORM READ_TRAN TO RDT_EX
DOWHILE TRAN_EOF NOT EQ 'E'

PERFORM READ_KSDS TO RDK_EX
IF KSDS_STAT EQ 'Y'

IF TRANCODE EQ 'C'
PERFORM CHANGE_RTN TO CHG_EX

ELSE
IF TRANCODE EQ 'D'

MOVE 'E' TO ERASEFLG
PERFORM WRITE_KSDS TO WTK_EX

ELSE
PERFORM BAD_TRAN TO BAD_EX

ENDIF
ENDIF

ELSE
IF TRANCODE EQ 'A'

MOVE TR_RECORD TO KM_RECORD
PERFORM WRITE_KSDS TO WTK_EX

ELSE
PERFORM BAD_TRAN TO BAD_EX

ENDIF
ENDIF
PERFORM READ_TRAN TO RDT_EX

ENDDO
STOP

NEWPAGE

Figure 8-11 Random File Update (Page 1 of 2)
Structured Programming 8–27

Structured Programming Examples
Example 3 Two-File Merge

READ_KSDS:
MOVE TR_SOCSEC TO SEARCHKEY
READ KMASTER

RDK_EX:

READ_TRAN:
READ TRANFIL

RDT_EX:

WRITE_KSDS:
WRITE KMASTER

WTK_EX:
CHANGE_RTN:

IF TR_LASTNAME NE SPACES
MOVE TR_LASTNAME TO KM_LASTNAME

ENDIF
IF TR_ADDRESS NE SPACES

MOVE TR_ADDRESS TO KM_ADDRESS
ENDIF
IF TR_SALARY NE 0

MOVE TR_SALARY TO KM_SALARY
ENDIF

CHG_EX:

BAD_TRAN:
MOVE 'BAD TRAN' TO DYLPRTCOMM
PRINT TR_RECORD

BAD_EX:

Figure 8-11 Random File Update (Page 2 of 2)

OPTION STRUCTURED

FILE FILE1 STATUS F1_EOF FB 210 1680
F1_RECORD 210
F1_KEY 7 3

FILE FILE2 STATUS F2_EOF FB 210 1680
F2_RECORD 210
F2_KEY 7 3

FILE MERGED OUTPUT FROM MERGED FB 210 1680
OUTREC 210

PROC:
PERFORM READ_F1 TO RD1_EX
PERFORM READ_F2 TO RD2_EX

DOWHILE F1_EOF NOT EQ 'E' OR F2_EOF NOT EQ 'E'
IF F1_KEY LT F2_KEY

MOVE F1_RECORD TO OUTREC
PERFORM WRITE_OUT TO WRT_EX
PERFORM READ_F1 TO RD1_EX

ELSE
IF F1_KEY GT F2_KEY

MOVE F2_RECORD TO OUTREC
PERFORM WRITE_OUT TO WRT_EX
PERFORM READ_F2 TO RD2_EX

ELSE
MOVE F1_RECORD TO OUTREC
PERFORM WRITE_OUT TO WRT_EX
MOVE F2_RECORD TO OUTREC
PERFORM WRITE_OUT TO WRT_EX
PERFORM READ_F1 TO RD1_EX
PERFORM READ_F2 TO RD2_EX

ENDIF
ENDIF

ENDDO
STOP

NEWPAGE
READ_F1:

READ FILE1

Figure 8-12 Two-File Merge (Page 1 of 2)
8–28 VISION:Results Reference Guide

Structured Programming Examples
Example 4 Scan of PDS Members (OS/390 only)

RD1_EX:

READ_F2:
READ FILE2

RD2_EX:

WRITE_OUT:
WRITE MERGED

WRT_EX:

Figure 8-12 Two-File Merge (Page 2 of 2)

OPTION STRUCTURED
FILE FILEP1 FB 80 PDS INAREA1 MEMBER INMEM1 STATUS INSTAT

INREC1 80
SCANREC 10 7

WORKAREA
PRTMEM 8

READDIR FILEP1

DOWHILE INSTAT NE 'E'
READMEM FILEP1
DYLCOUNT1 = DYLCOUNT1 + 1
PRINT INSTAT
DOWHILE INSTAT NE 'E'
INX = 0
DOUNTIL INX GE 54
IF SCANREC(INX) EQ 'UNIT=SYSDA'
LIST SUPPRESS INMEM1 INREC1
EXITDO

ELSE
INX = INX + 1

ENDIF
ENDDO
READMEM FILEP1

ENDDO
INSTAT = ' '
READDIR FILEP1

ENDDO
STOP

T1 'COMPUTER ASSOCIATES' WITH 2 AFTER
T1+80 DYLDATE
FIN

Figure 8-13 Scan of PDS Members (OS/390 only)
Structured Programming 8–29

Structured Programming Examples
Example 5 SELECT for SORT and REPORT

Example 6 Match Files Where One File Must Be Sorted

OPTION STRUCTURED

FILE ARFILE FB 352 5280
ACCOUNT 2 182 NAME 25 85 TRANS 7 4 BALANCE 5 170 PD 2 A
WORKAREA COMMENT 3 (BALANCE'OVER $300.00) VALUE ' ' REINIT

CONTROL ACCOUNT

DOUNTIL ACCOUNT EQ 'NA' 'EO' THRU 'IO'
READ ARFILE

ENDDO
SORT ARFILE USING ACCOUNT TRANS
IF BALANCE GE 300

MOVE '***' TO COMMENT
ENDIF
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE COMMENT

ON CHANGE IN ACCOUNT
LIST SUM BALANCE WITH 2 BEFORE AND 2 AFTER

ON FINAL
LIST SUM BALANCE WITH 2 AFTER
LIST 'NUMBER OF RECORDS PRINTED:' AT ACCOUNT TALLY AT BALANCE

T1 'VISION:Results REPORT 8' WITH 2 AFTER
T1+30 DYLDATE
T1+90 DYLPAGE
FIN

Figure 8-14 SELECT for SORT and REPORT

OPTION STRUCTURED

FILE FILEA FB 352 5280 STATUS FILEASTAT
READKEY 7 4

.

.
FILE FILEB FB 352 10560
SORTKEY 7 8

.

.
WORKAREA
SORTSTAT 1

.

.
READ FILEB
SORT FILEB

ON ONE
READ FILEA

ENDONE
DOWHILE FILEASTAT NE 'E' OR

SORTSTAT NE 'E'
CASE SORTKEY

WHEN EQ READKEY
PERFORM MATCHIT TO MATCHITX
READ FILEA
EXITDO

WHEN LT READKEY
PERFORM NEWREC TO NEWRECX
EXITDO

ELSE
PERFORM COPMAST TO COPMASTX
READ FILEA

ENDCASE
ENDDO

NEWPAGE

Figure 8-15 Match Files Where One File Must Be Sorted (Page 1 of 2)
8–30 VISION:Results Reference Guide

Structured Programming Examples
MOVE 'E' TO SORTSTAT
DOWHILE FILEASTAT NE 'E'

PERFORM COPMAST TO COPMASTX
READ FILEA

ENDDO
STOP

MATCHIT:
; LOGIC FOR HANDLING TWO MATCHED RECORDS
MATCHITX:

NEWREC:
; LOGIC FOR HANDLING A SORTED RECORD
; WITH NO MATCHING FILE RECORD
NEWRECX:

COPMAST:
; LOGIC FOR HANDLING A FILE RECORD
; WITH NO MATCHING SORTED RECORD
COPMASTX:
FIN

Figure 8-15 Match Files Where One File Must Be Sorted (Page 2 of 2)
Structured Programming 8–31

Structured Programming Examples
8–32 VISION:Results Reference Guide

Chapter
9 U
SERDEFAULT Mode Programming
USERDEFAULT Option
The USERDEFAULT mode assumes certain defaults to simplify use of
VISION:Results. For novice programmers, the USERDEFAULT is a quick and easy
method to produce lists and reports.

The USERDEFAULT option requires a minimum of four statements to produce a
list or report. The four statements are:

� OPTION statement

� FILE statement

� Field definition statement

� LIST statement

Invoking USERDEFAULT Mode
Note: The keyword USERDEFAULT can only be used with the OPTION
command.

Specify the USERDEFAULT mode using the OPTION statement. When used, the
OPTION statement must precede all other statements. See Chapter 4, Using the
OPTION Command for exceptions to this rule.

The OPTION statement specifying the USERDEFAULT mode contains two
words — OPTION and USERDEFAULT.

OPTION USERDEFAULT
USERDEFAULT Mode Programming 9–1

FILE
FILE
The FILE statement immediately follows the OPTION statement. It provides
necessary information about file characteristics and processing mode, including
record format, length, block size, input or output mode, and sequential or random
access

The FILE statement defines the attributes of the input file you want to read and
report on.

This statement contains four words:

� The first word, FILE, is the command.

� The second word, EMPMSTR, is the name of the file you want to process (in
OS/390, it is called the ddname). The file name is generally arbitrary (you can
choose it); however, it is directly associated with the job control language
statements (JCL) in your program. JCL for the FILE statement is discussed in
Appendix B, Job Control Language. The name of your file is positional; that is, it
must follow the command, FILE.

� The third word, FB 80 800, is sometimes referred to as a keyword phrase. This
describes the format, the record size, and block size of the file, respectively. In
this instance, the record is a fixed block, 80-byte record and there are 10 records
to each block.

� The fourth word in the FILE statement is INPUT, which is the file you want to
read and report on. This file already exists. INPUT is a default keyword for a
FILE statement; therefore, it is not required. The FILE statement could have
been stated as follows:

FILE EMPMSTR FB 80 800

Record Format
FB is the keyword for FIXED BLOCKED, which means that the file contains
records that are equal in length and grouped into even multiples called blocks.
These multiples are divisible by the record size. For example, a record size of 100
bytes and block size of 1000 bytes means there are 10 records to a block.

Record Size
Immediately following the record format is the record size, 80, which must follow
the keyword FB. The record size is the length in bytes of each record on the
EMPMSTR file.

FILE EMPMSTR FB 80 800 INPUT

 word 1 word 2 word 3 word 4
9–2 VISION:Results Reference Guide

Field Definitions
Block Size
Block size is subordinate to record size. That is, the block size cannot be specified
unless it immediately follows the record size. In the example, the block size is 800.
This means that ten 80-byte records (80x10) make up one block.

Field Definitions
The third statement is the field definition statement. You can use more than one.
Along with the name of the field, you need to give its size. In this example, you are
defining only those fields you want to list or report on.

DIV 1
DEPT 3
EMPNO 5
NAME 20

In this example, you are defining four fields in field definition statements: DIV,
DEPT, EMPNO, and NAME. These are the names you have given the fields. Data
names can be from 2 to 50 characters long. The default type is character. See Edit
Codes on page 14-21 for a complete list of field types.

Size/Length
The number immediately following each data name is the size or length of the field
in the record, which is mandatory. DIV is 1 byte long, DEPT is 3 bytes long,
EMPNO is 5 bytes long, and NAME is 20 bytes long.

Unless otherwise specified, VISION:Results assumes that the beginning location of
the first field definition is position 1 of the record.

Because DIV is 1 byte long (assuming position 1 in the record), the beginning
location for DEPT would be position 2.

Procedure Logic
After you define the field definitions for the file, you can begin to write the
procedure logic. The procedure logic tells VISION:Results what you want it to do
(such as read the file, sort the records, and report on the fields as specified).

Length/Size 1 3 5 20

Data name DIV DEPT EMPNO NAME

Location in the record 1 2 5 10
USERDEFAULT Mode Programming 9–3

LIST
VISION:Results automatically reads the EMPMSTR file. You can do it yourself, but
this option should be used only in the other two modes of operation. Because there
are no selection (IF) statements in the procedure logic, all of the EMPMSTR records
are read and reported on.

You generate reports with the LIST command.

LIST
The last statement in the example defines the actual report. This is the only
statement specified in the procedure logic.

LIST DIV DEPT EMPNO NAME

The LIST command tells VISION:Results what should be printed and where it
prints.

The LIST statement in the example has five words. The first word is the command,
LIST, which defines the contents of the report line to be printed. The remaining
four words are the data names of fields that are to appear on the report. The first
field that prints (left to right) is DIV, followed by DEPT, EMPNO, and NAME.

01/15/01 PAGE
1

DIV DEPT EMPNO NAME

1 103 10692 W A ALTMAN
1 103 11967 R SPRUCE
1 103 12352 B B CRUTHERS
1 103 131Z6 J R LAWRY
1 209 00178 J WELL
2 108 01273 W P MATHERS
2 108 02289 S ALTENBERG
2 108 02413 M R ROSEN
2 108 03523 L A MARTIN
2 126 03007 C R SMITH
2 126 03106 B BLAKE
2 127 03132 F A CALLEY
3 106 04142 P R JONES
3 106 23415 S L HALPER
3 110 87214 S KRAN2
3 110 30241 P LING
3 110 00121 J NEWMAN

17 RECORDS LISTED
9–4 VISION:Results Reference Guide

USERDEFAULT Considerations
USERDEFAULT Considerations
With the exception of the items below, all commands and keywords are available
to users running in USERDEFAULT mode.

� SUM and NOSUM keywords can only be used with field definitions.

� SUM and NOSUM keywords are ignored by other modes of operation.

� SUM and SUMn cannot be used with any commands in procedure logic when
running in USERDEFAULT mode.

� ON CHANGE IN and ON FINAL cannot be used in USERDEFAULT mode.

� Summary reporting is not allowed when running in USERDEFAULT mode.

� A maximum of eight Tn (title) statements are available in USERDEFAULT
mode.

Examples of Programming in USERDEFAULT Mode
The programs on the following pages use two unique input files — an employee
master file (EMPMSTR) and an accounts receivable file (ARFILE). Examples of
programming in the USERDEFAULT mode are introduced, each one building on
the previous one. Commands and keywords are introduced and defined as you
progress.

The EMPMSTR File

Length or
Size

 1 3 5 20 4 3 20 6 18

Data name DIV DEPT EMPNO NAME FILLER HOURS SUPERVISOR HIREDATE FILLER

Location in
the Record

 1 2 5 10 30 34 37 57 63

Data name Size (length) Type Description

DIV 1 Division number

DEPT 3 Department number

EMPNO 5 Employee number

NAME 20 Employee name

FILLER 4 Not used

HOURS 3 Numeric Hours worked; maximum 99.9
USERDEFAULT Mode Programming 9–5

Examples of Programming in USERDEFAULT Mode
Example 1 Generate a Report Using the EMPMSTR

Produce a listing of all employees on the employee master file (EMPMSTR). Print
the division number, the department number, the employee number, the
employee name, and hours worked. Define only those fields needed to produce
the report. Use the data names defined in the table starting on page 9-5.

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800

DIV 1
DEPT 3
EMPNO 5
NAME 20
FILLER 4
HOURS 3 NU 1 E

LIST DIV DEPT EMPNO NAME HOURS

Each VISION:Results statement used to produce this report is reviewed.

OPTION Statement
The OPTION statement requires use of USERDEFAULT. It must be the first
statement in the program. A minimum of one space is required between the
command and keyword.

OPTION USERDEFAULT

FILE Statement
At least one FILE statement is always required. Its purpose is to define the file
name and its attributes.

FILE EMPMSTR FB 80 800

VISION:Results syntax has certain defaults, which lessen the coding task. You
need not code a keyword that is also defined as the default for a command.

The employee master file, EMPMSTR, is an input file. The default on a FILE
statement is input; therefore, you can exclude the keyword INPUT. If provided,
the FILE statement above would look like:

FILE EMPMSTR FB 80 800 INPUT

SUPERVISOR 20 Employee’s immediate
supervisor

HIREDATE 6 Numeric Date employee was hired

FILLER 18 Not used

Data name Size (length) Type Description
9–6 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
Field Definition Statements
These statements define the fields in the record of the input file that appears on the
report. The field definitions for any file must immediately follow the FILE
statement.

DIV 1
DEPT 3
EMPNO 5
NAME 20
FILLER 4
HOURS 3 NU 1 E

Note: The system assumes that the beginning location of the first field definition
is position 1 in the record.

The data type for DIV is character. The data type default is represented by the
keyword CH. For example, the data definition statement for DIV is as follows:

DIV 1 CH

DEPT 3

Because the first field definition defines DIV as 1 byte long (beginning with
position 1), the beginning location for DEPT is position 2.

A field definition between NAME and HOURS is required for the report. A data
name could have been used; however, the reserved word FILLER was used
instead.

FILLER 4

A reserved word is defined as belonging to the VISION:Results program. For
example, you can use the reserved word FILLER but only in field definitions.
FILLER can be used many times when defining fields, but it can never be used in
procedure logic. Some other reserved words can be used in both field definitions
and procedure logic. All commands, keywords, and special names (like FILLER)
have rules that govern them. They can only be used when the rules are followed.
See Appendix A, Reserved Words for a complete list of reserved words.

The default data type is CH for character data. When a field is defined or defaults
to character data, any value is acceptable. HOURS is a numeric (NU) field. Only
values 0 through 9 are valid. The numeric value following the data type defines the
number of digits to the right of an assumed decimal point. The edit code E
provides suppression of leading zeroes in the printed value. For example, the
value 055 prints as 5.5, the value 002 prints as .2, and the value 205 prints as 20.5.
See the VISION:Results Getting Started Guide for complete details.

HOURS 3 NU 1 E
USERDEFAULT Mode Programming 9–7

Examples of Programming in USERDEFAULT Mode
Note: Only the first 36 bytes of the record are defined, not the entire 80. The
remaining fields can be defined using data names, or FILLER with a length of 44
as shown in the following example.

LIST Statement
The LIST statement defines the actual report — what should be printed and where
it prints.

The LIST statement is the only statement specified in the procedure logic.
Therefore, because VISION:Results automatically reads the file, EMPMSTR, all
records are reported on.

LIST DIV DEPT EMPNO NAME HOURS

DIV 1 DIV 1
DEPT 3 DEPT 3
EMPNO 5 EMPNO 5
NAME 20 NAME 20
FILLER 4 FILLER 4
HOURS 3 NU 1 E OR HOURS 3 NU 1 E
SUPERVISOR 20 FILLER 44
HIREDATE 6 NU D
PHONE 7 NU
SOC_SEC 9 S
COSCTR 2
9–8 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
The first field that prints (from left to right) on the report is the contents of the field
called DIV, followed by DEPT, EMPNO, and so on. The contents of the field
HOURS are edited (zero suppression, decimal insertion) prior to being printed.

� The current date in mm/dd/yy format is automatically generated when using
the USERDEFAULT option, unless the DYLINSTL parameter DYL4YEAR is in
effect. In that case, the current date is in mm/dd/yyyy format instead.

� The current page number is printed and maintained automatically when using
the USERDEFAULT option.

� The EMPMSTR file is not in any particular sequence.

� Edit code E forces leading zero suppression and decimal point insertion. If the
E edit code is not used on the HOURS field definition, the leading zero appears
in front of the first significant digit (where a significant digit is 1 through 9).

� VISION:Results automatically totals and prints the contents of each record's
HOURS field and prints the literal GRAND TOTAL to the right of the
accumulated hours. All non-character fields are totaled automatically, unless
otherwise specified, when using the USERDEFAULT option.

� When using the USERDEFAULT option, an automatic count of all records
prints on the report.

Example 2 Using the SORT Statement

The report generated from the EMPMSTR file in the previous section is not in any
particular sequence. In order to print in division number sequence, add the SORT
statement to the procedure logic of the program. The SORT statement gives you
the ability within your program to sort data before it is reported on or written.

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800

DIV 1
DEPT 3
EMPNO 5
NAME 20

01/15/01 PAGE 1
DIV DEPT EMPNO NAME HOURS

1 103 10692 W A ALTMAN 40.0
2 108 02289 S ALTENBERG 39.5
2 126 03007 C R SMITH 40.0
1 103 12352 B B CRUTHERS 37.0
1 103 13126 J R LAWRY 32.0
1 209 00178 J WELL 40.0
1 103 11967 R SPRUCE 9.5
2 108 01273 W P MATHERS 38.0
2 108 02413 M R ROSEN 31.0
2 108 03523 L A MARTIN 33.0
3 110 00121 J NEWMAN 44.5
2 126 03106 B BLAKE 40.0
2 127 03132 F A CALLEY 35.5
3 106 04142 P R JONES 40.0
3 106 23415 S L HALPER 31.5
3 110 87214 S KRANZ 48.0
3 110 30241 P LING 51.0

630.5 GRAND TOTAL

17 RECORDS LISTED

Figure 9-1 Report Generated Using USERDEFAULT Mode
USERDEFAULT Mode Programming 9–9

Examples of Programming in USERDEFAULT Mode
FILLER 4
HOURS 3 NU 1 E

SORT EMPMSTR USING DIV
LIST DIV DEPT EMPNO NAME HOURS

SORT Statement
The SORT statement consists of the SORT command followed by the file name
telling VISION:Results where to find the record to be sorted. Following the file
name is the keyword USING, which always precedes the names of the fields you
are sorting on.

In the program, all records are sorted before they are printed. VISION:Results
automatically reads a record and releases it. A second record is read, released to
the sort, and so on, until there are no records left on the file. When it reaches the
end of the file, VISION:Results automatically sequences (sorts) all of the records on
the DIV field. Then it releases one record at a time to the statement(s) immediately
following the SORT statement. In this case, it is the LIST statement.

You can SORT sequential, DAM, BDAM, ISAM, or VSAM files. Entire records or
portions of records can be sorted at any point in your program.

SORT EMPMSTR USING DIV

USING is a keyword identifying that data names follow. DIV in this position of the
SORT statement means that the field is to be sorted in ascending order.

� The report is now in division (DIV) number sequence. Division 1 appears
before division 2, and division 2 appears before division 3.

� Department (DEPT) numbers are not in sequence within their respective
divisions (DIV).

01/15/01 PAGE 1
DIV DEPT EMPNO NAME HOURS

1 103 10692 W A ALTMAN 40.0
1 103 11967 R SPRUCE 9.5
1 209 00178 J WELL 40.0
1 103 13126 J R LAWRY 32.0
1 103 12352 B B CRUTHERS 37.0
2 126 03007 C R SMITH 40.0
2 108 01273 W P MATHERS 38.0
2 108 03523 L A MARTIN 33.0
2 108 02413 M R ROSEN 31.0
2 108 02289 S ALTENBERG 39.5
2 127 03132 F A CALLEY 35.5
2 126 03106 B BLAKE 40.0
3 110 00121 J NEWMAN 44.5
3 106 04142 P R JONES 40.0
3 110 30241 P LING 51.0
3 110 87214 S KRANZ 48.0
3 106 23415 S L HALPER 31.5

630.5 GRAND TOTAL

17 RECORDS LISTED

Figure 9-2 Sorted Report
9–10 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
Example 3 Using the CONTROL Statement

In this example, the total number of hours worked within each division is added
to the report. The CONTROL statement accomplishes this task.

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800

DIV 1
DEPT 3
EMPNO 5
NAME 20
FILLER 4
HOURS 3 NU 1 E

CONTROL DIV
SORT EMPMSTR USING DIV
LIST DIV DEPT EMPNO NAME HOURS

CONTROL Statement
The CONTROL statement defines subtotals or automatic spacing by specifying the
data name or data names of the field definitions involved.

A data name must follow a CONTROL statement.

When using the USERDEFAULT option, you can place the CONTROL statement
anywhere within the procedure logic.

A subtotal (more commonly called a control break) occurs whenever
VISION:Results recognizes a change in the value (contents) of the data names
specified in the CONTROL statement. In the program, the data name is DIV.

CONTROL DIV

The USERDEFAULT option automatically totals and prints all non-character fields
if the following occurs:

� A CONTROL statement is specified in the program.

� The LIST statement contains the data name of a field that is defined as
non-character.
USERDEFAULT Mode Programming 9–11

Examples of Programming in USERDEFAULT Mode
All of the field definitions in the example are character (CH) by default, with the
exception of the HOURS field, which is defined as numeric (NU).

� The department number (DEPT) within its respective division (DIV) is not in
sequence.

� The CONTROL DIV information generated the accumulated total by division
and the literal DIV TOTAL automatically. Note that only the HOURS field is
accumulated.

Example 4 Using the CONTROL Statement on Multiple Fields

The previous report is not quite complete. In this example, to be certain that the
proper totals are taken, the file is sorted by department (DEPT) within division
(DIV). The report also shows the accumulated hours (HOURS) by department
within division, as well as reporting on the cumulative hours by division.

To accomplish this, add the data name DEPT to both the CONTROL and SORT
statements.

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800

DIV 1
DEPT 3
EMPNO 5
NAME 20
FILLER 4
HOURS 3 NU 1 E

CONTROL DEPT DIV
SORT EMPMSTR USING DIV DEPT
LIST DIV DEPT EMPNO NAME HOURS

01/15/01 PAGE 1
DIV DEPT EMPNO NAME HOURS

1 103 13126 J R LAWRY 32.0
1 103 12352 B B CRUTHERS 37.0
1 103 11967 R SPRUCE 9.5
1 103 10692 W A ALTMAN 40.0
1 209 00178 J WELL 40.0

158.5 DIV TOTAL

2 108 01273 W P MATHERS 38.0
2 108 02413 M R ROSEN 31.0
2 108 02289 S ALTENBERG 39.5
2 127 03132 F A CALLEY 35.5
2 126 03106 B BLAKE 40.0
2 126 03007 C R SMITH 40.0
2 108 03523 L A MARTIN 33.0

237.0 DIV TOTAL

3 110 00121 J NEWMAN 44.5
3 110 30241 P LING 51.0
3 110 87214 S KRANZ 48.0
3 106 23415 S L HALPER 31.5
3 106 04142 P R JONES 40.0

215.0 DIV TOTAL

630.5 GRAND TOTAL

17 RECORDS LISTED

Figure 9-3 Report Generated Using the CONTROL Statement
9–12 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
CONTROL Statement
When specifying more than one data name in a CONTROL statement, the order in
which they are positioned is important. Remember that this statement is used to
produce control breaks, where subtotals or spacing is handled automatically.

The first data name specified in the CONTROL statement causes the minor control
break, and the last data name specifies the major control break. When any control
break occurs, all lower-level control breaks also occur.

Up to six data names are allowed in the CONTROL statement.

In the example, DEPT is the minor control break and DIV is the major control
break. All departments within their respective divisions are to be in sequence.

SORT Statement
The placement order of the data names specified on the SORT statement is
important. The SORT statement specification of data names is the reverse of the
CONTROL statement. The major field is sorted first, followed by the minor fields.
The number of fields that can be sorted is unlimited.

In the example, DEPT is to be sorted within DIV.
USERDEFAULT Mode Programming 9–13

Examples of Programming in USERDEFAULT Mode
� The SORT statement causes the department number (DEPT) to be in sequence
within each division (DIV).

� The CONTROL DEPT DIV generated the totals for DEPT within DIV and for
DIV itself. If the CONTROL statement is not used, only the grand total of
HOURS is printed.

Example 5 Using the SUPPRESS Keyword

The previous report is complete, however, you might want to make it easier to
read. You can accomplish this by suppressing the printing of redundant
information (for example, the division number).

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800

DIV 1
DEPT 3
EMPNO 5

01/15/01 PAGE 1
DIV DEPT EMPNO NAME HOURS

1 103 11967 R SPRUCE 9.5
1 103 10692 W A ALTMAN 40.0
1 103 13126 J R LAWRY 32.0
1 103 12352 B B CRUTHERS 37.0

118.5 DEPT TOTAL

1 209 00178 J WELL 40.0

40.0 DEPT TOTAL

158.5 DIV TOTAL

2 108 01273 W P MATHERS 38.0
2 108 03523 L A MARTIN 33.0
2 108 02413 M R ROSEN 31.0
2 108 02289 S ALTENBERG 39.5

141.5 DEPT TOTAL

2 126 03007 C R SMITH 40.0
2 126 03106 B BLAKE 40.0

80.0 DEPT TOTAL

2 127 03132 F A CALLEY 35.5

35.5 DEPT TOTAL

257.0 DIV TOTAL

3 106 23415 S L HALPER 31.5
3 106 04142 P R JONES 40.0

71.5 DEPT TOTAL

3 110 00121 J NEWMAN 44.5
3 110 30241 P LING 51.0
3 110 87214 S KRANZ 48.0

143.5 DEPT TOTAL

215.0 DIV TOTAL

630.5 GRAND TOTAL

17 RECORDS LISTED

Figure 9-4 Report Sorted and Subtotaled on Multiple Fields
9–14 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
NAME 20
FILLER 4
HOURS 3 NU 1 E

CONTROL DEPT DIV
SORT EMPMSTR USING DIV DEPT
LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS

Suppress Keyword
The SUPPRESS keyword is added to the LIST statement. When SUPPRESS
precedes a data name, VISION:Results prints the contents of this field only once,
unless the value of the field changes. A change in the value of a field specified on
a CONTROL statement also causes this suppressed field to print again.

Do not abbreviate the keyword SUPPRESS.

LIST SUPPRESS DIV DEPT EMPNO NAME HOURS

Using the SUPPRESS Keyword on Multiple Fields
The SUPPRESS keyword can also be used on multiple fields. Depending on the
order of the fields you want to suppress, you can use either one of the following
methods.

For example, to suppress printing of the DIV and DEPT fields, use the keyword
directly before each field:

LIST SUPPRESS DIV SUPPRESS DEPT EMPNO NAME HOURS

Or, you can use parentheses to suppress printing of fields, provided the fields
follow one another in the LIST statement. Because DIV and DEPT follow one
another (left to right) on the report, you can shorten the coding as follows:

LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS
USERDEFAULT Mode Programming 9–15

Examples of Programming in USERDEFAULT Mode
� Use the keyword SUPPRESS to make the report more readable.

� Both DIV and DEPT are suppressed when repeated and printed whenever a
change of value occurs in either DIV or DEPT.

Example 6 Overriding Default Column Headings

Rather than default to the data name as a column heading for the division and
department fields, provide column headings for DIV and EMPNO. For DIV, use
the column heading DIVISION and for EMPNO, use the column heading
EMPLOYEE NUMBER (place EMPLOYEE on top of NUMBER).

This is done by using the field definition statements.

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800

DIV 1 (DIVISION)
DEPT 3

01/15/01 PAGE 1
DIV DEPT EMPNO NAME HOURS

1 103 11967 R SPRUCE 9.5
10692 W A ALTMAN 40.0
13126 J R LAWRY 32.0
12352 B B CRUTHERS 37.0

118.5 DEPT TOTAL

1 209 00178 J WELL 40.0

40.0 DEPT TOTAL

158.5 DIV TOTAL

2 108 01273 W P MATHERS 38.0
03523 L A MARTIN 33.0
02413 M R ROSEN 31.0
02289 S ALTENBERG 39.5

141.5 DEPT TOTAL

2 126 03007 C R SMITH 40.0
03106 B BLAKE 40.0

80.0 DEPT TOTAL

2 127 03132 F A CALLEY 35.5

35.5 DEPT TOTAL

257.0 DIV TOTAL

3 106 23415 S L HALPER 31.5
04142 P R JONES 40.0

71.5 DEPT TOTAL

3 110 00121 J NEWMAN 44.5
30241 P LING 51.0
87214 S KRANZ 48.0

143.5 DEPT TOTAL

215.0 DIV TOTAL

630.5 GRAND TOTAL

17 RECORDS LISTED

Figure 9-5 Report Using the SUPPRESS Keyword on Multiple Fields
9–16 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
EMPNO 5 (EMPLOYEE'NUMBER)
NAME 20
FILLER 4
HOURS 3 NU 1 E

CONTROL DEPT DIV
SORT EMPMSTR USING DIV DEPT
LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS

Field Definition Statement
Unless otherwise specified, the column heading for any field is its data name. For
example, the data name DIV had a column heading of DIV in the previous
examples. Column heading overrides are denoted by parentheses ().

DIV 1 (DIVISION)

To override column headings with a two or more line heading, indicate line breaks
by using a single quotation mark (’):

EMPNO 5 (EMPLOYEE’NUMBER)

The heading will be placed and centered as follows:

EMPLOYEE
NUMBER

The maximum length of an overriding column heading is 30 characters between
parentheses, including any single quotation marks (’). Up to nine column headings
are allowed.

01/15/01 PAGE 1
DIVISION DEPT EMPLOYEE NAME HOURS

NUMBER

1 103 11967 R SPRUCE 9.5
10692 W A ALTMAN 40.0
13126 J R LAWRY 32.0
12352 B B CRUTHERS 37.0

118.5 DEPT TOTAL

1 209 00178 J WELL 40.0

40.0 DEPT TOTAL

158.5 DIVISION TOTAL

2 108 01273 W P MATHERS 38.0
03523 L A MARTIN 33.0
02413 M R ROSEN 31.0
02289 S ALTENBERG 39.5

141.5 DEPT TOTAL

2 126 03007 C R SMITH 40.0
03106 B BLAKE 40.0

80.0 DEPT TOTAL

2 127 03132 F A CALLEY 35.5

35.5 DEPT TOTAL

Figure 9-6 Report with Column Headings Overriden (Page 1 of 2)
USERDEFAULT Mode Programming 9–17

Examples of Programming in USERDEFAULT Mode
� Column heading overrides are specified in DIV and EMPNO field definitions.
The data name default is used on all other fields printed.

� The literal for division total is now DIVISION TOTAL rather than DIV TOTAL.
VISION:Results automatically uses the column heading specified or defaults to
the data name if used in a CONTROL statement.

Example 7 Using Title Statements

Add the title HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION to
the report. This requires a title statement.

1 OPTION USERDEFAULT
2 FILE EMPMSTR FB 80 800
3 DIV 1 (DIVISION)
4 DEPT 3
5 EMPNO 5 (EMPLOYEE’NUMBER)
6 NAME 20
7 FILLER 4
8 HOURS 3 NU 1 E
9 CONTROL DEPT DIV
10 SORT EMPMSTR USING DIV DEPT
11 LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS
12 T1 'HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION'
13 WITH 2 AFTER

Title Statements
Use title (T1) statements to enter the report title. In the USERDEFAULT mode, up
to eight title lines can be coded. They are automatically centered unless you specify
otherwise. Variable information, such as date, page number, and user data, can be
placed in title statements.

The title must be enclosed within single quotation marks and can be up to 132
characters long.

T1 ’HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION’
WITH 2 AFTER

WITH 2 AFTER is a keyword phrase that tells VISION:Results to double-space
after it prints the report title. Up to nine spaces after a title can be specified.

257.0 DIVISION TOTAL

3 106 23415 S L HALPER 31.5
04142 P R JONES 40.0

71.5 DEPT TOTAL

3 110 00121 J NEWMAN 44.5
30241 P LING 51.0
87214 S KRANZ 48.0

143.5 DEPT TOTAL

215.0 DIVISION TOTAL

630.5 GRAND TOTAL

17 RECORDS LISTED

Figure 9-6 Report with Column Headings Overriden (Page 2 of 2)
9–18 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
A maximum of eight title statements can be used in USERDEFAULT mode. This is
because one of the nine lines normally available in the standard mode is
automatically used for placement of the date and time on the report.

� The title, as specified with the T1 statement, is centered automatically on the
report.

Example 8 Using an IF Statement

An IF statement allows you to select data or certain records based on almost any
criteria. It is needed in those cases where you want to process only records of a
certain type, or you need to execute logic depending on conditions.

01/15/01 PAGE 1
HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION

DIVISION DEPT EMPLOYEE NAME HOURS
NUMBER

1 103 11967 R SPRUCE 9.5
10692 W A ALTMAN 40.0
13126 J R LAWRY 32.0
12352 B B CRUTHERS 37.0

118.5 DEPT TOTAL

1 209 00178 J WELL 40.0

40.0 DEPT TOTAL

158.5 DIVISION TOTAL

2 108 01273 W P MATHERS 38.0
03523 L A MARTIN 33.0
02413 M R ROSEN 31.0
02289 S ALTENBERG 39.5

141.5 DEPT TOTAL

2 126 03007 C R SMITH 40.0
03106 B BLAKE 40.0

80.0 DEPT TOTAL

2 127 03132 F A CALLEY 35.5

35.5 DEPT TOTAL

257.0 DIVISION TOTAL

3 106 23415 S L HALPER 31.5
04142 P R JONES 40.0

71.5 DEPT TOTAL

3 110 00121 J NEWMAN 44.5
30241 P LING 51.0
87214 S KRANZ 48.0

143.5 DEPT TOTAL

215.0 DIVISION TOTAL

630.5 GRAND TOTAL

17 RECORDS LISTED

Figure 9-7 Adding a Title to a Report
USERDEFAULT Mode Programming 9–19

Examples of Programming in USERDEFAULT Mode
Using an IF statement, select and sort only those records from the employee master
file, EMPMSTR, whose division number is 2.

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800

DIV 1 (DIVISION)
DEPT 3
EMPNO 5 (EMPLOYEE’NUMBER)
NAME 20
FILLER 4
HOURS 3 NU 1 E

CONTROL DEPT DIV
IF DIV EQ 2 NEXT ELSE REJECT ENDIF
SORT EMPMSTR USING DIV DEPT
LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS
T1 ’HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION’

WITH 2 AFTER

IF Statement
Only those records are selected in which DIV is 2. Any records that do not meet the
criteria are rejected; they are not sorted, reported on, or written to the output file.

EQ is the keyword that identifies the relational operator equal to.

The keyword NEXT in the statement means that if the compare is true (DIV equals
2), the next statement is to be executed. NEXT is a noise word and is never
required. Note, however, that the NEXT keyword uses extra code.

Note: Rejected records are not sorted, nor do they appear on the report.

The following statement has an implied NEXT keyword immediately following
the 2 and preceding the ELSE.

IF DIV EQ 2 ELSE REJECT ENDIF

The keyword ELSE signals to VISION:Results that a false condition directive
immediately follows. REJECT is a keyword indicating that if a false condition
occurs, VISION:Results rejects this record and gets another.

The ENDIF keyword is always required to terminate an IF statement.

The following are valid relational operators you can code in IF statements:

EQ Equal to

NE Not equal to

LT Less than

LE Less than or equal to

GT Greater than

GE Greater than or equal to
9–20 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
� Only division 2 is selected and printed on the report.

Example 9 Using an IF (IF-OR) Statement

Select and sort only those records from the employee master file, EMPMSTR, with
a division number of 2 or 3.

To do this, add additional code to the existing IF statement.

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800

DIV 1 (DIVISION)
DEPT 3
EMPNO 5 (EMPLOYEE’NUMBER)
NAME 20
FILLER 4
HOURS 3 NU 1 E

CONTROL DEPT DIV
IF DIV EQ 2 3 NEXT ELSE REJECT ENDIF
SORT EMPMSTR USING DIV DEPT
LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS
T1 ’HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION’

WITH 2 AFTER

IF Statement
This format of the IF statement implies that an OR is present. When expanded, the
IF says, “If the record read has a division field value of 2 or 3, continue processing
(sort the record); otherwise, ignore (reject) the record.”

You can also write the IF statement as follows:

IF DIV EQ 2 OR DIV EQ 3 NEXT ELSE REJECT ENDIF

01/15/01 PAGE 1
HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION

DIVISION DEPT EMPLOYEE NAME HOURS
NUMBER

2 108 02289 S ALTENBERG 39.5
01273 W P MATHERS 38.0
03523 L A MARTIN 33.0
02413 M R ROSEN 31.0

141.5 DEPT TOTAL

2 126 03106 B BLAKE 40.0
03007 C R SMITH 40.0

80.0 DEPT TOTAL

2 127 03132 F A CALLEY 35.5

35.5 DEPT TOTAL

257.0 DIVISION TOTAL

257.0 GRAND TOTAL

7 RECORDS LISTED

Figure 9-8 IF Statement Used in Generating a Report
USERDEFAULT Mode Programming 9–21

Examples of Programming in USERDEFAULT Mode
� Divisions 2 and 3 are the only divisions selected, sorted, and reported on.

Example 10 Using the THRU Keyword in an IF Statement

Select and sort only those records from the employee master file, EMPMSTR,
whose division number is 2 or 3. In this example, use the keyword THRU (or
THROUGH) in the IF statement to select divisions 2 and 3.

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800

DIV 1 (DIVISION)
DEPT 3
EMPNO 5 (EMPLOYEE’NUMBER)
NAME 20
FILLER 4
HOURS 3 NU 1 E

CONTROL DEPT DIV
IF DIV EQ 2 THRU 3 NEXT ELSE REJECT ENDIF
SORT EMPMSTR USING DIV DEPT
LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS
T1 ’HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION’

WITH 2 AFTER

IF Statement
These IF statements have the same meaning:

IF DIV EQ 2 THRU 3 NEXT ELSE REJECT ENDIF

IF DIV EQ 2 3 NEXT ELSE REJECT ENDIF

01/15/01 PAGE 1
HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION

DIVISION DEPT EMPLOYEE NAME HOURS
NUMBER

2 108 02289 S ALTENBERG 39.5
01273 W P MATHERS 38.0
03523 L A MARTIN 33.0
02413 M R ROSEN 31.0

141.5 DEPT TOTAL

2 126 03106 B BLAKE 40.0
03007 C B SMITH 40.0

80.0 DEPT TOTAL

2 127 03132 F A CALLEY 33.5

33.5 DEPT TOTAL

257.0 DIVISION TOTAL

3 106 04142 P B JONES 40.0
23415 S L HALPER 31.5

71.5 DEPT TOTAL

3 110 87214 S KRANZ 48.0
00121 J NEWMAN 44.5
30241 P LING 51.0

143.5 DEPT TOTAL

215.0 DIVISION TOTAL

472.0 GRAND TOTAL

12 RECORDS LISTED

Figure 9-9 Report Generated with an IF-OR Statement
9–22 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
2 THRU 3 tells VISION:Results to select all divisions between 2 and 3, inclusive.

Using the THRU keyword, you can shorten the following statement as indicated:

IF DIV EQ 2 3 4 5 6 7 8 NEXT ELSE REJECT ENDIF

IF DIV EQ 2 THRU 8 NEXT ELSE REJECT ENDIF

� Divisions 2 through 3 are selected, sorted, and reported on.

Example 11 Using SORTREC as a Tagname and as a Reference Point

Select all employees who worked 40 hours or more, regardless of whether they
work in division 2 or 3. Also, select all employees who work in division 2 and
division 3.

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800

DIV 1 (DIVISION)
DEPT 3
EMPNO 5 (EMPLOYEE’NUMBER)
NAME 20
FILLER 4
HOURS 3 NU 1 E

CONTROL DEPT DIV
IF HOURS GE 40.0 GOTO SORTREC ELSE NEXT REJECT ENDIF
IF DIV EQ 2 THRU 3 NEXT ELSE REJECT ENDIF
SORTREC:
SORT EMPMSTR USING DIV DEPT

01/15/01 PAGE 1
HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION

DIVISION DEPT EMPLOYEE NAME HOURS
NUMBER

2 108 02289 S ALTENBERG 39.5
01273 W P MATHERS 38.0
03523 L A MARTIN 33.0
02413 M R ROSEN 31.0

141.5 DEPT TOTAL

2 126 03106 B BLAKE 40.0
03007 C B SMITH 40.0

80.0 DEPT TOTAL

2 127 03132 F A CALLEY 33.5

33.5 DEPT TOTAL

257.0 DIVISION TOTAL

3 106 04142 P B JONES 40.0
23415 S L HALPER 31.5

71.5 DEPT TOTAL

3 110 87214 S KRANZ 48.0
00121 J NEWMAN 44.5
30241 P LING 51.0

143.5 DEPT TOTAL

215.0 DIVISION TOTAL

472.0 GRAND TOTAL

12 RECORDS LISTED

Figure 9-10 Report Generated with a THRU Statement
USERDEFAULT Mode Programming 9–23

Examples of Programming in USERDEFAULT Mode
LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS
T1 ’HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION’

WITH 2 AFTER

IF Statement
You can also state the 40 hours in the IF statement as:

IF HOURS GE 40 GOTO SORTREC ELSE NEXT ENDIF

This provides a second chance for the record to be selected by division (DIV)
number.

SORTREC as a Tagname
Without the colon, SORTREC is a tagname. Tagnames are generally used to branch
from one statement to another in procedure logic. When used in conjunction with
a GOTO, it is specified as:

GOTO SORTREC

Tagnames can be from 1 through 10 characters long. They may be alphabetic,
numeric, or a combination of both. For example:

100 REC100

A102 200REC

SORTREC: as a Reference Point
With the colon, SORTREC: is a reference point.

SORTREC:

All reference points must have the colon (:) appended to the rightmost character.
Thus, a 10-character tagname has a reference point length of 11.

ABCDEFGHIJ:

0123456789:
9–24 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
� The employees whose hours were greater than or equal to 40 now appear in the
report. Two employees from division 1 were selected along with those
employees who worked in divisions 2 and 3.

Example 12 Using the COPY Statement

In this example, the file and field definitions have been cataloged in a source
library, and the employee master file and field definitions have been given the
name of EMPMSTR. Because of this, you do not need to define the file and/or field
definitions again. To retrieve the definitions, you need only supply a COPY
statement in your program. This example is identical to the last example.

OPTION USERDEFAULT
COPY EMPMSTR
CONTROL DEPT DIV
IF HOURS GE 40.0 GOTO SORTREC ELSE NEXT REJECT ENDIF
IF DIV EQ 2 THRU 3 NEXT ELSE REJECT ENDIF
SORTREC:
SORT EMPMSTR USING DIV DEPT

01/15/01 PAGE 1
HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION

DIVISION DEPT EMPLOYEE NAME HOURS
NUMBER

1 103 10692 W A ALTMAN 40.0

40.0 DEPT TOTAL

1 209 00178 J WELL 40.0

40.0 DEPT TOTAL

80.0 DIVISION TOTAL

2 108 03523 L A MARTIN 33.0
02413 M R ROSEN 31.0
02289 S ALTENBERG 39.5
01273 W P MATHERS 38.0

141.5 DEPT TOTAL

2 126 03106 B BLAKE 40.0
03007 C R SMITH 40.0

80.0 DEPT TOTAL

2 127 03132 F A CALLEY 35.5

35.5 DEPT TOTAL

257.0 DIVISION TOTAL

3 106 04142 P R JONES 40.0
23415 S L HALPER 31.5

71.5 DEPT TOTAL

3 110 87214 S KRANZ 48.0
00121 J NEWMAN 44.5
30241 P LING 51.0

143.5 DEPT TOTAL

215.0 DIVISION TOTAL

552.0 GRAND TOTAL

14 RECORDS LISTED

Figure 9-11 Using SORTREC as a Reference Point
USERDEFAULT Mode Programming 9–25

Examples of Programming in USERDEFAULT Mode
LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS
T1 ’HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION’

WITH 2 AFTER

COPY Statement
Use the COPY statement when you code and catalog the file and/or field
definitions and want to include them as part of your program. This is typically
done when a particular file is used again and again to produce reports.

The COPY statement is not limited to file and field definitions. You can also use it
to copy in procedure logic.

If your source library is a Partitioned Data Set (PDS for OS/390) or a Source
Statement Library (SSL for VSE), use one of the following COPY commands.

Ask your data processing representative for the name of the library facility your
installation uses.

� Contents of the member name/book name EMPMSTR are identified in the
source listing by the word COPIED.

If your source library is on: use:

CA-Panvalet COPYP

CA-Librarian COPYL

CONDOR COPYC

OPTION USERDEFAULT
COPY EMPMSTR

COPIED FILE EMPMSTR FB 80 800
COPIED DIV 1
COPIED DEPT 3
COPIED EMPNO 5
COPIED NAME 20
COPIED FILLER 4
COPIED HOURS 3 NU 1 E
COPIED SUPERVISOR 20
COPIED HIREDATE 6 NU D
COPIED FILLER 18

CONTROL DEPT DIV
IF HOURS GE 40.0 GOTO SORTREC ELSE NEXT ENDIF
IF DIV EQ 2 THRU 3 NEXT ELSE REJECT ENDIF
SORTREC:
SORT EMPMSTR USING DIV DEPT
LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS

T1 'HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION' WITH 2 AFTER

Figure 9-12 Source Listing Showing File and Field Definitions Copied
9–26 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
Example 13 Using COBOL in the COPY Statement

In this example, COBOL definitions are maintained for the employee master file.
Instead of defining the field definitions with VISION:Results, you can use the
predefined COBOL data definitions. The FILE statement needs to be supplied, but
all field definitions come from the member name/book name, EMPMSTCO.

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800
COPY EMPMSTCO COBOL
CONTROL DEPT DIV
IF HOURS GE 40.0 GOTO SORTREC ELSE NEXT ENDIF
IF DIV EQ 2 THRU 3 NEXT ELSE REJECT ENDIF
SORTREC:
SORT EMPMSTR USING DIV DEPT
LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS
T1 ’HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION’

WITH 2 AFTER

01/15/01 PAGE 1
HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION

DIVISION DEPT EMPLOYEE NAME HOURS
NUMBER

1 103 10692 W A ALTMAN 40.0

40.0 DEPT TOTAL

1 209 00178 J WELL 40.0

40.0 DEPT TOTAL

80.0 DIVISION TOTAL

2 108 03523 L A MARTIN 33.0
02413 M R ROSEN 31.0
02289 S ALTENBERG 39.5
01273 W P MATHERS 38.0

141.5 DEPT TOTAL

2 126 03106 B BLAKE 40.0
03007 C R SMITH 40.0

80.0 DEPT TOTAL

2 127 03132 F A CALLEY 35.5

35.5 DEPT TOTAL

257.0 DIVISION TOTAL

3 106 04142 P R JONES 40.0
23415 S L HALPER 31.5

71.5 DEPT TOTAL

3 110 87214 S KRANZ 48.0
00121 J NEWMAN 44.5
30241 P LING 51.0

143.5 DEPT TOTAL

215.0 DIVISION TOTAL

552.0 GRAND TOTAL

14 RECORDS LISTED

Figure 9-13 Report Generated Using Source Listing
USERDEFAULT Mode Programming 9–27

Examples of Programming in USERDEFAULT Mode
COPY Statement
Using the COPY statement, add the keyword COBOL.

COPY EMPMSTCO COBOL

If your source library is a Partitioned Data Set (PDS for OS/390) or a Source
Statement Library (SSL for VSE), use one of the following COPY commands.

� The contents of the member name/book name EMPMSTCO are identified in
the source listing by the word COPIED.

If your source library is on: use:

CA-Panvalet COPYP

CA-Librarian COPYL

CONDOR COPYC

OPTION USERDEFAULT
FILE EMPMSTR FB 80 800
COPY EMPMSTCO COBOL

WARNING DYL-188W HYPHENS (-) IN COPIED DATANAMES WILL BE CHANGED INTERNALLY TO UNDERSCORES (_)
COPIED 01 EMPLOYEE-RECORD.
COPIED 05 DIV PIC X.
COPIED 05 DEPT PIC XXX.
COPIED 05 EMPNO PIC X(5).
COPIED 05 NAME PIC X(20).
COPIED 05 FILLER PIC X(4).
COPIED 05 HOURS PIC 9(6).
COPIED 05 SUPERVISOR PIC X(20).
COPIED 05 HIREDATE PIC 9(6).
COPIED 05 FILLER PIC X(18).

CONTROL DEPT DIV
IF HOURS GE 40.0 GOTO SORTREC ELSE NEXT ENDIF
IF DIV EQ 2 THRU 3 NEXT ELSE REJECT ENDIF
SORTREC:
SORT EMPMSTR USING DIV DEPT
LIST SUPPRESS (DIV DEPT) EMPNO NAME HOURS

T1 'HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION' WITH 2 AFTER

Figure 9-14 Source Library with COBOL

01/15/01 PAGE 1
HOURLY EMPLOYEES BY DEPARTMENT WITHIN DIVISION

DIVISION DEPT EMPLOYEE NAME HOURS
NUMBER

1 103 10692 W A ALTMAN 40.0

40.0 DEPT TOTAL

1 209 00178 J WELL 40.0

40.0 DEPT TOTAL

80.0 DIVISION TOTAL

2 108 03523 L A MARTIN 33.0
02413 M R ROSEN 31.0
02289 S ALTENBERG 39.5
01273 W P MATHERS 38.0

141.5 DEPT TOTAL

Figure 9-15 Report Generated Using COBOL Definitions (Page 1 of 2)
9–28 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
The ARFILE File
The following examples use the accounts receivable file (ARFILE), a fixed blocked
(FB) file. Each record is 352 bytes long, and there are 15 records per block (5280).

Details are given only when a new command or keyword is presented or the
example warrants more explanation.

The fields in the following examples are defined below.

2 126 03106 B BLAKE 40.0
03007 C R SMITH 40.0

80.0 DEPT TOTAL

2 127 03132 F A CALLEY 35.5

35.5 DEPT TOTAL

257.0 DIVISION TOTAL

3 106 04142 P R JONES 40.0
23415 S L HALPER 31.5

71.5 DEPT TOTAL

3 110 87214 S KRANZ 48.0
00121 J NEWMAN 44.5
30241 P LING 51.0

143.5 DEPT TOTAL

215.0 DIVISION TOTAL

552.0 GRAND TOTAL

14 RECORDS LISTED

Figure 9-15 Report Generated Using COBOL Definitions (Page 2 of 2)

Data name Description

NAME Name of account holder

BALANCE Balance due

ACCOUNT Account code

INSTLBAL Installment payment

Data name Size Location Data Type Decimal Places

NAME 25 85 CH (default)

BALANCE 5 170 PD 2

ACCOUNT 2 182 CH

INSTLBAL 6 191 PD 2
USERDEFAULT Mode Programming 9–29

Examples of Programming in USERDEFAULT Mode
Example 14 Using the IF Statement to Select Multiple Records

Using the existing example from the ARFILE, select, sort, and report on only those
records whose account code is NA, EO, or FO. All other accounts should be
rejected. Add the formal report title of CONTROL LISTING REPORT BY
ACCOUNT to the report.

OPTION USERDEFAULT
FILE ARFILE FB 352 5280

NAME 25 85 ACCOUNT 2 182
BALANCE 5 170 PD 2 (BALANCE’OWED)

CONTROL ACCOUNT
IF ACCOUNT EQ 'NA' 'EO' 'FO' NEXT
ELSE REJECT ENDIF

SORT ARFILE USING ACCOUNT
LIST SUPPRESS ACCOUNT NAME BALANCE
T1 'CONTROL LISTING REPORT BY ACCOUNT' WITH 2 AFTER

Example 15 Select, Sort, and Report on Specified Records

Select, sort, and report on all records with a balance due greater than $100.00.
Select account codes NA and EO THRU FO. Reject all other accounts.

OPTION USERDEFAULT
FILE ARFILE FB 352 5280

NAME 25 85 ACCOUNT 2 182
BALANCE 5 170 PD 2 (BALANCE’OWED)

CONTROL ACCOUNT
IF BALANCE GT 100.00 GOTO SORTREC ENDIF

01/15/01 PAGE 1
CONTROL LISTING REPORT BY ACCOUNT

ACCOUNT NAME BALANCE
OWED

EO SANTA FE HOSP ASSN 15.00
S.F.MEM.HOSP. 5.00
CHO PYUNG,SUH 32.00

52.00 ACCOUNT TOTAL

FO GENVARDI,G J 43.00
HUGHES,RAY 178.70
HILL,GARY E 3.80
CANO,MICHAEL S 15.00
CHAVEZ,RAY 15.00
SILVA,JULIAN .00
TODIPE,MICHAEL 45.24

300.74 ACCOUNT TOTAL

NA 310.75
64.96
1.04-
35.00
1.32-
3.32-
33.60-
2.46-

10,085.55-
256.12-
11.20-
19.54

9,964.36- ACCOUNT TOTAL

9,611.62- GRAND TOTAL

22 RECORDS LISTED

Figure 9-16 Report on Selected Records by Account Code
9–30 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
IF ACCOUNT EQ ’NA’ 'EO' THRU 'FO' NEXT
ELSE REJECT ENDIF

SORTREC:
SORT ARFILE USING ACCOUNT
LIST SUPPRESS ACCOUNT NAME BALANCE

T1 ’CONTROL LISTING REPORT BY ACCOUNT’ 2 AFTER

Example 16 Adding a Field to a Report

To the existing program and report, add the installment payment field
(INSTLBAL) to the right of BALANCE. Use the column heading INSTALLMENT
PAYMENT. Prior to releasing the record to sort, increase the BALANCE field by
50%.

Remember that all non-character fields are totaled automatically, and when a
control break occurs, the accumulated amount prints for those fields.

OPTION USERDEFAULT
FILE ARFILE FB 352 5280

NAME 25 85 ACCOUNT 2 182
BALANCE 5 170 PD 2 (BALANCE’OWED)
INSTLBAL 6 191 PD 2 A (INSTALLMENT'PAYMENT)

01/15/01 PAGE 1
CONTROL LISTING REPORT BY ACCOUNT

ACCOUNT NAME BALANCE
OWED

EO SANTA FE HOSP ASSN 15.00
S.F.MEM.HOSP. 5.00
CHO PYUNG,SUH 32.00

52.00 ACCOUNT TOTAL

FO GENVARDI,G J 43.00
HUGHES,RAY 178.70
HILL,GARY E 3.80
CANO,MICHAEL S 15.00
CHAVEZ,RAY 15.00
SILVA,JULIAN .00
TODIPE,MICHAEL 45.24

300.74 ACCOUNT TOTAL

IO AGUIERA,EMILIO 108.44
PLACIDO,ORTEGA 413.58
WILSON,HERNMAN 5,292.24

6,752.85 ACCOUNT TOTAL

WO TAUTRIM,RICHARD 140.00
KANGAROO R.ROAD CO. 352.80

01/15/01 PAGE 3
CONTROL LISTING REPORT BY ACCOUNT

ACCOUNT NAME BALANCE
OWED

WO ANDREWS,CHARLES 114.52
BADILY,NEIL 114.23
NARANJO,DELIA 115.60
INS CO OF NO AMER 108.25
KANGAROO R.ROAD CO. 265.74
KANGAROO R.ROAD CO. 121.55

1,332.69 ACCOUNT TOTAL

15,663.18 GRAND TOTAL

63 RECORDS LISTED

Figure 9-17 Report on Selected Records by Account Code and Balance
USERDEFAULT Mode Programming 9–31

Examples of Programming in USERDEFAULT Mode
CONTROL ACCOUNT
IF BALANCE GT 100.00 GOTO SORTREC ENDIF
IF ACCOUNT EQ ’NA’ ’EO’ THRU ’FO’ NEXT
ELSE REJECT ENDIF

SORTREC:
BALANCE=BALANCE * 1.5
SORT ARFILE USING ACCOUNT
LIST SUPPRESS ACCOUNT NAME BALANCE INSTLBAL

T1 ’CONTROL LISTING REPORT BY ACCOUNT’ WITH 2 AFTER

� Each BALANCE amount that printed is 50% more than the amount printed in
the previous example.

Example 17 Using the NOSUM Keyword in a Field Definition

Produce the same report as in the last example, but do not automatically total and
print the installment payment field when the account code value changes.

Remember that all non-character fields are totaled automatically and when a
control break occurs, the accumulated amount is printed for those fields. The
exception is when you use the NOSUM keyword in the field definition.

OPTION USERDEFAULT
FILE ARFILE FB 352 5280

NAME 25 85 ACCOUNT 2 182
BALANCE 5 170 PD 2 (BALANCE’OWED)

01/15/01 PAGE 1
CONTROL LISTING REPORT BY ACCOUNT

ACCOUNT NAME BALANCE INSTALLMENT
OWED PAYMENT

EO SANTA FE HOSP ASSN 22.50 2,230.17
S.F.MEM.HOSP. 7.50 272.78
CHO PYUNG,SUH 48.00 261.57

78.00 2,764.52 ACCOUNT TOTAL

FO GENVARDI,G J 64.50 419.48
HUGHES,RAY 268.05 47.88
HILL,GARY E 5.70 22.38
CANO,MICHAEL S 22.50 195.74
CHAVEZ,RAY 22.50 49.39
SILVA,JULIAN .00 273.99
TODIPE,MICHAEL 67.86 486.21

451.11 1,495.07 ACCOUNT TOTAL

IO AGUIERA,EMILIO 162.66 197.85
PLACIDO,ORTEGA 620.37 486.21

01/15/01 PAGE 3
CONTROL LISTING REPORT BY ACCOUNT

ACCOUNT NAME BALANCE INSTALLMENT
OWED PAYMENT

WO ANDREWS,CHARLES 171.78 196.87
BADILY,NEIL 171.34 201.46
NARANJO,DELIA 173.40 492.96
INS CO OF NO AMER 162.37 137.16
KANGAROO R.ROAD CO. 398.61 396.27
KANGAROO R.ROAD CO. 182.32 359.98

1,999.02 2,236.37 ACCOUNT TOTAL

23,494.71 39,393.48 GRAND TOTAL

63 RECORDS LISTED

Figure 9-18 Report with a Field Added
9–32 VISION:Results Reference Guide

Examples of Programming in USERDEFAULT Mode
INSTLBAL 6 191 PD 2 A (INSTALLMENT’PAYMENT) NOSUM
CONTROL ACCOUNT
IF BALANCE GT 100.00 GOTO SORTREC ENDIF
IF ACCOUNT EQ ’NA’ ’EO’ THRU ’FO’ NEXT
ELSE REJECT ENDIF

SORTREC:
BALANCE=BALANCE * 1.5
SORT ARFILE USING ACCOUNT
LIST SUPPRESS ACCOUNT NAME BALANCE INSTLBAL
T1 ’CONTROL LISTING REPORT BY ACCOUNT’ WITH 2 AFTER

NOSUM Keyword
INSTLBAL 6 191 PD 2 A (INSTALLMENT’PAYMENT) NOSUM

Note: This keyword is ignored in the standard and structured modes of operation.

The NOSUM keyword has meaning only when used in USERDEFAULT mode. All
non-character fields are accumulated and printed automatically when you use a
CONTROL statement and the non-character field is specified on a LIST statement,
unless you use a date (D) or social security (S) edit code. You can override this
automatic accumulation and subtotal printing with the NOSUM keyword on the
field definition statement.

� The subtotal did not accumulate or print for INSTLBAL because the NOSUM
keyword was used on the INSTLBAL field definition.

01/15/01 PAGE 1
CONTROL LISTING REPORT BY ACCOUNT

ACCOUNT NAME BALANCE INSTALLMENT
OWED PAYMENT

EO SANTA FE HOSP ASSN 22.50 2,230.17
S.F.MEM.HOSP. 7.50 272.78
CHO PYUNG,SUH 48.00 261.57

78.00 ACCOUNT TOTAL

FO GENVARDI,G J 64.50 419.48
CANO,MICHAEL S 22.50 195.74
CHAVEZ,RAY 22.50 49.39
SILVA,JULIAN .00 273.99
TODIPE,MICHAEL 67.86 486.21
HUGHES,RAY 268.05 47.88
HILL,GARY E 5.70 22.38

451.11 ACCOUNT TOTAL

IO AGUIERA,EMILIO 162.66 197.85
PLACIDO,ORTEGA 620.37 486.21

01/15/01 PAGE 3
CONTROL LISTING REPORT BY ACCOUNT

ACCOUNT NAME BALANCE INSTALLMENT
OWED PAYMENT

WO KANGAROO R.ROAD CO. 398.61 396.27
KANGAROO R.ROAD CO. 182.32 359.98
KANGAROO R.ROAD CO. 529.20 295.42
ANDREWS,CHARLES 171.78 196.87
BADILY,NEIL 171.34 201.46
NARANJO,DELIA 173.40 492.96

1,999.02 ACCOUNT TOTAL

23,494.71 GRAND TOTAL

63 RECORDS LISTED

Figure 9-19 Report Using NOSUM to Suppress Subtotals
USERDEFAULT Mode Programming 9–33

Examples of Programming in USERDEFAULT Mode
9–34 VISION:Results Reference Guide

Chapter
10 U
sing the MOVE Command
Use the MOVE command to:

� Transfer a field or group of fields from one area to another.

� Convert data from one type to another (for example, numeric to packed, binary
to packed, or packed to binary).

� Decrease or increase decimal positions of numeric, packed, or binary fields.

� Initialize fields.

The MOVE statement in its simplest form looks like this:

or:

In most instances, sending and receiving fields do not have to be of the same size,
data type, or have the same number of decimal positions. VISION:Results
automatically handles the data conversion and decimal alignment. Sending and
receiving fields with varied locations can have their addresses modified by
indexing. This permits entries in tables or segments in records to be moved from
one location to another.

MOVE DATA1 (INW) TO DATA2 (INX)

You can move a character field or a group of fields, varying the length of the
MOVE:

MOVE VARFIELD LENGTH INLEN TO XFIELD

MOVE statements can appear almost anywhere in your program logic, as either
independent statements or within IF statements.

MOVE datanamex TO datanamez

Figure 10-1 MOVE Statement Form Example 1

MOVE literal TO datanamez

Figure 10-2 MOVE Statement Form Example 2
Using the MOVE Command 10–1

The following program demonstrates the various aspects of data movement and
conversion:

The program is reformatting and generating a new master file from an existing file.
The customer number (ICUSTNO) is being converted from a 5-byte numeric field
(zoned decimal) to a 3-byte packed decimal field. The amount (IAMOUNT1
through IAMOUNT4) fields are being converted from 7-byte, 2-decimal numeric
fields (zoned decimal) to 4-byte, 2-decimal packed fields. The character field
INAME has the format of last name, first name. The ILNLEN field holds the length
of the last name; this length is used to move the last name portion of INAME to the
output record area.

One of the records on the input file appears as:

1000106MARTIN, JOHN H 1234567123456712345671234567

When it is reformatted, it appears in hex and graphics:

MARTIN
101DCDECD444444444444441357135713571357
00C41939500000000000000246C246C246C246C

FILE FILEIN FB 65 650
ICUSTNO 5 NU ILNLEN 2 NU INAME 30
IAMOUNT1 7 NU 2 IAMOUNT2 7 NU 2 IAMOUNT3 7 NU 2
IAMOUNT4 7 NU 2

FILE FILEOUT OUTPUT FROM FILEOUT FB 39 3900
OCUSTNO 3 PD ONAME 20
OAMOUNT1 4 PD 2 OAMOUNT2 4 PD 2 OAMOUNT3 4 PD 2
OAMOUNT4 4 PD 2

WORKAREA
AMTCNT 1 PD VALUE 0

PROCEDURE:
MOVE SPACES TO ONAME
MOVE ICUSTNO TO OCUSTNO
MOVE INAME LENGTH ILNLEN TO ONAME
MOVE 0 TO INW
MOVE 0 TO INX

LOOP:
MOVE IAMOUNT1 (INW) TO OAMOUNT1 (INX)
AMTCNT=AMTCNT+1
IF AMTCNT EQ 4
MOVE 0 TO AMTCNT
GOTO ENDLOOP ENDIF

INW=INW+7
INX=INX+4
GOTO LOOP

ENDLOOP:
ACCEPT

Figure 10-3 Data Movement and Conversion
10–2 VISION:Results Reference Guide

Move Field to Field
Move Field to Field
To transfer a field from one area to another (for example, from an input record area
to an output record area), define the sending and receiving fields where
appropriate, giving each a data name and stating the attributes, and then in your
procedure logic, code:

See Rules for Moving Fields on page 3-6 for a list of valid MOVE combinations and
the rules that govern them.

MOVE ICUSTNO TO OCUSTNO

You need to pay particular attention to the rules governing MOVE operations
between character fields of different lengths, especially when using indexing.

Move Field to Field — Variable Length
You can move a field or group of contiguous fields to another field where the
length of the move varies depending on conditions. Use one of the following
formats:

The sending and receiving fields must be defined as character type fields. The
length specified in the MOVE statement overrides what has been specified in the
field definition for both the sending and receiving fields. The sending field is
left-aligned in the receiving field. The receiving field is not padded with blanks.

In the programming example, the numeric field ILNLEN contains the length of the
last name portion of the field INAME. The length field is used in the MOVE
statement to transfer the last name to the output area:

MOVE INAME LENGTH ILNLEN TO ONAME

or:

MOVE INAME TO ONAME LENGTH ILNLEN

For example, to move six characters of the field to the output area, code:

MOVE INAME LENGTH 6 TO ONAME

or:

MOVE INAME TO ONAME LENGTH 6

MOVE datanamex TO datanamez

Figure 10-4 Transfer a Field

MOVE datanamex LENGTH datanamey TO datanamezdatanamey is the data name of a numeric,
packed, or binary field containing the
value 1 to 32767, and nnnnn is a numeric
literal value of 1 to 32767.

MOVE datanamex TO datanamez LENGTH datanamey
MOVE datanamex LENGTH nnnnn TO datanamez
MOVE datanamex TO datanamez LENGTH nnnnn

Figure 10-5 Move Field to Field — Variable Length
Using the MOVE Command 10–3

Move Literal to Field
The character data type requirement for both fields does not prevent you from
moving fields of various data types. For example, you can move a group of packed
counters using the variable move format by redefining the first byte of the group
and calling it character.

If the field you are applying the LENGTH phrase to is to be indexed, an example is:

MOVE INAME (INW) LENGTH ILNLEN TO ONAME

Move Literal to Field
You can MOVE a numeric, character, or hexadecimal literal to a field.

Move Numeric Literal to a Field
A 1- to 16-digit numeric literal can be moved to a 1- to 16-byte numeric, 1- to
16-byte packed, or 1- to 4-byte binary field. The format is:

The literal can include a leading minus sign (if negative), commas, and a decimal
point. The literal can have fewer decimal positions than the receiving field; decimal
alignment is performed automatically. If the literal value is too large to be held in
the receiving field, a validation error occurs. The receiving field can be indexed.

The following statement clears the binary index field INW to binary zeros:

MOVE 0 TO INW

Here are some other examples of numeric literal moves:

MOVE 0 TO BALANCE
MOVE -1 TO FIELDA
MOVE 1,234.55 TO BALANCE
MOVE 1.10 TO FACTOR (INW)

Move Character Literal to a Field
A 1- to 70-byte character literal can be moved to a 1- to 32767-byte character field.
The format is as follows:

MOVE nnnnn TO datanamez

Figure 10-6 Move Numeric Literal to a Field

MOVE 'literal' TO datanamez

Figure 10-7 Move Character Literal to a Field
10–4 VISION:Results Reference Guide

Move Literal to Field
The literal must be enclosed in single or double quotation marks and must fit on
one line. If the receiving field is longer than the literal value, the literal is
left-aligned in the receiving field and padded with blanks. The literal cannot be
longer than the receiving field. The receiving field can be indexed.

MOVE 'WASHINGTON' TO STATE
MOVE '2113-5' TO CODE
MOVE “2113-5” TO CODE (INW)

Move Hexadecimal Literal to a Field
A 1- to 9-byte literal expressed in hexadecimal notation can be moved to a 1- to
32767-byte character field. The format is:

If the receiving field is longer than the literal value, the literal is left-aligned in the
receiving field and padded with blanks. The literal cannot be longer than the
receiving field. The receiving field can be indexed.

MOVE X'01020304' TO TABLE1

The 4-byte hexadecimal literal is to be moved to TABLE1.

MOVE X'FF' TO SWITCH
MOVE X'00' TO FIELD2 (INW)

Considerations for MOVE literal

A variable-length MOVE cannot be performed if the sending field is a literal.

For example, this is not valid:

MOVE ' ' TO DATA1 LENGTH INLEN

A 1- to 4-byte literal expressed in hexadecimal notation can be moved to the same
length binary field if the binary field has zero decimals.

If the literal being moved is shorter than the receiving field and indexing is used,
data overlay could occur because the receiving field length is used to determine
how many blanks to use in padding. If this is a concern, MOVE the literal to an
intermediate field of the correct length, then MOVE the intermediate field to the
final, indexed field. To do this, use the LENGTH keyword to specify the actual
literal (intermediate field) size.

REC_FIELD 100
LITLEN 2 BI VALUE 5
LITHOLD 5

.

.

.
MOVE 'XXXXX' TO LITHOLD
INX=75
MOVE LITHOLD LENGTH LITLEN TO REC_FIELD(INX)

MOVE X'hhhh...hh' TO datanamez

Figure 10-8 Move Hexadecimal Literal to a Field
Using the MOVE Command 10–5

Move Blanks to Character Field
Move Blanks to Character Field
To clear a character field to blanks, the formats are:

Instead of SPACES, you can use the words SPACE, BLANK, or BLANKS. The field
being cleared can be from 1 to 32767 bytes long.

In the example, the 20-byte character field ONAME is cleared by this statement:

MOVE SPACES TO ONAME

Move Field or Literal to a Subtotal Field
During logic entered after ON CHANGE IN or ON FINAL, you can MOVE to or
from a totaled field:

ON CHANGE IN ACCOUNT
IF SUM BALANCE LT 0
MOVE 0 TO SUM BALANCE ENDIF

The command SUM preceding BALANCE indicates that the subtotal of
BALANCE for that particular account is to be accessed, not the current BALANCE
field.

MOVE NUMERIC
To transfer only the numeric portion of bytes from one field to another, the formats
are:

A 1- to 256-byte field of any data type can have its numeric bits moved to the
numeric bits of a 1- to 256-byte field of any data type. In other words, the low order
4 bits of each byte in the send field are placed in the low order 4 bits of the
corresponding byte of the receiving field. The high order 4 bits of each byte remain
unchanged. The fields must be of equal length.

MOVE NUMERIC DATA1 TO DATA2

MOVE ' ' TO datanamez
MOVE ' ' TO datanamez (index)
MOVE SPACES TO datanamez
MOVE SPACES TO datanamez (index)
MOVE SPACES TO datanamez LENGTH datanamey
MOVE SPACES TO datanamez LENGTH nnnnn (1 to 32767 bytes)
MOVE SPACES TO datanamez (index) LENGTH datanamey
MOVE SPACES TO datanamez (index) LENGTH nnnnn

Figure 10-9 Clear a Character Field to Blanks

MOVE NUMERIC datanamex TO datanamez
MOVE NUMERIC literal TO datanamez

Figure 10-10 Numerics From One Field to Another
10–6 VISION:Results Reference Guide

MOVE ZONE
Assume that DATA1 is a 3-byte field of numeric data type and contains the value
(hex notation) C1C2C3. DATA2 is a 3-byte field that contains the value F0F0F0.
After the MOVE NUMERIC operation, DATA2 contains the value F1F2F3.

The fields involved in the MOVE NUMERIC operation can be indexed:

MOVE NUMERIC DATA1 (INX) TO DATA2 (INY)

A variable-length MOVE NUMERIC is not valid.

MOVE ZONE
To transfer only the zone portion of bytes from one field to another, the formats
are:

A 1- to 256-byte field of any data type can have its zone bits moved to the zone bits
of a 1- to 256-byte field. The high order 4 bits of each byte in the send field are
placed in the high order 4 bits of the corresponding byte of the receiving field. The
low order bits remain unchanged. The fields must be of equal length.

MOVE ZONE DATA1 TO DATA2

Assume that DATA1 is a 3-byte numeric field and contains the value (hex notation)
F0F0F0 (that is, a positive 000). DATA2 is a 3-byte field that contains the value
C1C2C3. After the MOVE ZONE operation, DATA2 contains the value F1F2F3.

The fields involved in the MOVE ZONE operation can be indexed:

MOVE ZONE DATA1 (INX) TO DATA2 (INW)

A variable-length MOVE ZONE is not valid.

MOVE with OFFSET
To move a field and place it to the left of and adjacent to the low order 4 bits of a
receiving field, the formats are:

MOVE ZONE datanamex TO datanamez
MOVE ZONE literal TO datanamez

Figure 10-11 Zones From One Field to Another

MOVE OFFSET datanamex TO datanamez
MOVE OFFSET literal TO datanamez

Figure 10-12 MOVE with OFFSET
Using the MOVE Command 10–7

COMBINE BITS Using OR
A 1- to 16-byte field of any data type can be moved with offset to a 1- to 16-byte
field of any data type. The fields do not have to be of equal sizes. If the receiving
field is larger, it is filled with high order binary zeros. If the receiving field is too
short to contain all bytes of the sending field, the remaining information in the
sending field is ignored.

MOVE OFFSET DATA1 TO DATA2

Assume DATA1 is a 2-byte field containing the value (hex notation) of 1234.
DATA2 is a 3-byte field containing the value (hex notation) of 00000C. After the
MOVE OFFSET operation, DATA2 contains the value 01234C.

In the example above, the MOVE OFFSET command converts a packed unsigned
value to a valid packed signed value.

The fields involved in the MOVE OFFSET operation can be indexed:

MOVE OFFSET DATA1 (INW) TO DATA2 (INX)

A variable-length MOVE OFFSET is not valid.

COMBINE BITS Using OR
To turn certain bits on in a field, here are the formats:

You can also express an OR where the result of the OR operation is placed in a
third field. The contents of the original fields remain unchanged. These are the
formats:

An OR can combine a 1- to 256-byte field of any data type into a 1- to 256-byte field
of any data type.

An OR operation works in this manner: a bit position in the receiving field is set to
1 if the corresponding bit position in the sending field contains a 1.

COMBINE BITS DATA1 OR DATA2

Assume DATA1 is a 3-byte field with the value (hex notation) of 00000F and
DATA2 is a 3-byte field with the value of 12345C. After the OR operation, DATA2
contains the value 12345F. The two low order bits of the field have been set to ones.

COMBINE BITS X'00000F' OR DATA2

COMBINE BITS datanamex OR datanamez
COMBINE BITS literal OR datanamez

Figure 10-13 Turn Bits On

COMBINE BITS datanamew OR datanamex INTO datanamez
COMBINE BITS literal OR datanamex INTO datanamez

Figure 10-14 Combine Bits Using OR
10–8 VISION:Results Reference Guide

AND a Field or Literal with a Field
The same result occurs as in the previous example, except a hex literal sets the bits.

COMBINE BITS X'00000F' OR DATA2 INTO DATA3

In this example, the data in DATA2 is moved to DATA3 before the OR is done.
DATA2 remains unaltered.

The fields involved in the OR operation can be indexed:

COMBINE BITS DATA1 (INW) OR DATA2 (INX)

A variable-length OR operation is not valid.

AND a Field or Literal with a Field
To combine one field with another using AND, use these formats:

You can also express an AND where the result of the AND operation is placed in
a third field. The contents of the original fields remain unchanged. These are the
formats:

A 1- to 256-byte field of any data type can be combined using AND with a 1- to
256-byte field of any data type. The sending and receiving fields must be of equal
length.

An AND operation works in this manner: a bit position in the receiving field is set
to 1 if the corresponding bit positions in both the sending and receiving fields
contain a 1; otherwise, the receiving bit is set to 0. You would probably use AND
to a field when you want to turn bits off (set to 0).

Examples of AND operations:

COMBINE BITS DATA1 AND DATA2

Assume DATA1 is a 3-byte field containing the value (hex notation) of 010101.
DATA2 is a 3-byte field containing the value of 000011. After the AND operation,
DATA2 contains the value 000001.

COMBINE BITS X'010101' AND DATA2

The same result occurs as in the previous example, except that a hexadecimal
literal value modifies the receiving field.

COMBINE BITS X'010101' AND DATA2 INTO DATA3

COMBINE BITS datanamex AND datanamez
COMBINE BITS literal AND datanamez

Figure 10-15 Combine Fields Using AND

COMBINE BITS datanamew AND datanamex INTO datanamez
COMBINE BITS literal AND datanamex INTO datanamez

Figure 10-16 Express an AND
Using the MOVE Command 10–9

COMBINE BITS Using EXOR
In this example, the data in DATA2 is moved to DATA3 before the AND is
performed. DATA2 remains unaltered.

A variable-length AND operation is not valid.

COMBINE BITS Using EXOR
To combine fields using EXOR, use the following formats:

You can express an EXOR where the field to be altered is moved to another field
before the EXOR takes place:

Instead of EXOR, you can use the term EXCLUSIVE OR.

You can use an EXCLUSIVE OR between two 1- to 256-byte fields of any data type.
The sending and receiving fields must be of equal length.

An EXCLUSIVE OR operation works in this manner: a bit position in the receiving
field is set to 1 if the corresponding bit positions in the sending and receiving fields
are different; otherwise, the receiving field bit is set to 0.

COMBINE BITS DATA1 EXOR DATA1

Assume DATA1 is a 3-byte field with the value (hex notation) FFFFFF. Because the
field is being EXCLUSIVE OR'd with itself, the result is 000000. This is a useful
technique for clearing a field to binary zeros.

COMBINE BITS X'0F0F0F' EXOR DATA2

Assume DATA2 is a 3-byte field containing the value (hex notation) of FFFFFF.
After the EXCLUSIVE OR operation, DATA2 contains the value F0F0F0.

COMBINE BITS X'0F0F0F' EXOR DATA2 INTO DATA3

In this example, the data in DATA2 is moved to DATA3 before the EXOR is
performed. DATA2 remains unaltered.

COMBINE BITS DATA1 EXOR DATA2
COMBINE BITS DATA2 EXOR DATA1
COMBINE BITS DATA1 EXOR DATA2

COMBINE BITS datanamex EXOR datanamez
COMBINE BITS literal EXOR datanamez

Figure 10-17 Combine Fields Using EXOR

COMBINE BITS datanamew EXOR datanamex INTO datanamez
COMBINE BITS literal EXOR datanamex INTO datanamez

Figure 10-18 Express an EXOR
10–10 VISION:Results Reference Guide

MOVE CORRESPONDING Qualifier to Qualifier
This series of EXCLUSIVE OR operations causes a field or record to be exchanged
with another field or record. After the end of the operations, the DATA1 field holds
the original contents of the DATA2 field and the DATA2 field holds the original
contents of the DATA1 field. This has been accomplished without the use of an
intermediate work or hold area.

The fields involved in the EXCLUSIVE OR operation can be indexed:

COMBINE BITS DATA1 (INW) EXOR DATA2 (INX)

A variable length EXCLUSIVE OR operation is not valid.

MOVE CORRESPONDING Qualifier to Qualifier
This MOVE operation can only be requested if you are using qualified data names
in your program and have specified OPTION QLF or OPTION QUALIFIERS. For
more information, see Chapter 5, Data Name Qualification. MOVE
CORRESPONDING allows you to move a number of fields at the same time. The
format is:

A qualifier is any file name, table name, array name, or named WORKAREA.

The sending and receiving fields in the move must have different qualifiers and at
least one identical data name.

FILE SLSFILE FB 80 STATUS EOFFLAG
STORENAME 25
MANAGER 20
CITY 15
DAILYSLS 9 NU 2
DATE 6 NU

TABLE SLSTBL F 40 ENTRY TBENT STATUS TBSTAT
STORENAME 25
DAILYSLS 9 NU 2
DATE 4 NU

TABLOAD:
READ SLSFILE

.

.
MOVE CORRESPONDING SLSFILE TO SLSTBL
STORE SLSTBL
.
.

In this example, all fields in SLSFILE that have a CORRESPONDING field in
SLSTBL are moved. Three moves are accomplished simultaneously:

� SLSFILE.STORENAME is moved to SLSTBL.STORENAME.

� SLSFILE.DAILYSLS is moved to SLSTBL.DAILYSLS.

� SLSFILE.DATE is moved to SLSTBL.DATE.

MOVE {CORRESPONDING|CORR} qualifier TO qualifier [SUPPRESS]

Figure 10-19 MOVE CORRESPONDING Qualifier to Qualifier
Using the MOVE Command 10–11

MOVE UNSIGNED|ABSOLUTE|NORMALIZED
The sending and receiving fields do not have to be of the same data type, but must
conform to the standard rules for moves. For more information, see Chapter 3,
Syntax Rules.

Avoid defining overlapping fields when using MOVE CORRESPONDING. The
order of the MOVEs can be unpredictable.

When you use MOVE CORRESPONDING statements in your program, the
generated program listing shows the individual MOVE statements that were
accomplished by the MOVE CORRESPONDING statement. If you do not want to
see each MOVE statement, code:

MOVE CORRESPONDING SLSFILE TO SLSTBL SUPPRESS

or:

MOVE CORRESPONDING SUPPRESS SLSFILE TO SLSTBL

Only the MOVE CORRESPONDING statement is printed on the program listing.

Without SUPPRESS:

MOVE CORR SLSFILE TO SLSTBL

Program listing:

MOVE CORR SLSFILE TO SLSTBL
INSERT MOVE SLSFILE.STORENAME TO SLSTBL.STORENAME
INSERT MOVE SLSFILE.DAILYSLS TO SLSTBL.DAILYSLS
INSERT MOVE SLSFILE.DATE TO SLSTBL.DATE

With SUPPRESS:

MOVE CORR SLSFILE TO SLSTBL SUPPRESS

Program listing:

MOVE CORR SLSFILE TO SLSTBL SUPPRESS

MOVE UNSIGNED|ABSOLUTE|NORMALIZED
The MOVE statement allows for UNSIGNED, ABSOLUTE, and NORMALIZED
fields. Datanamex and datanamey can only be binary, character, numeric, or
packed decimal type fields.

UNSIGNED A packed-like field in which the rightmost half-byte is a digit
instead of a sign. For example, an unsigned field can contain
X’123456.’

ABSOLUTE A positive field. For numeric and packed decimal fields, the
sign is a Hex F.

NORMALIZED A field whose sign is Hex C if it is positive or Hex D if it is
negative.
10–12 VISION:Results Reference Guide

MOVE UNSIGNED|ABSOLUTE|NORMALIZED
The syntax for the MOVE statement is:

The MOVE command adjusts for differing numbers of digits to the right of the
decimal point in the sending and receiving fields.

The following examples show variations of the MOVE statement:

An unsigned packed number is converted to whatever type of number is contained
in the receiving field.

A number is forced to be positive in the receiving field.

This is similar to the previous example, but the sending field is an unsigned packed
decimal number.

The sign of the receiving field is forced to be either C (for positive) or D (for
negative).

This example is similar to the last example, but the sending field is an unsigned
packed decimal number.

This example converts a number into an unsigned packed decimal field.

MOVE [UNSIGNED] datanamex TO [UNSIGNED|ABSOLUTE|NORMALIZED] datanamey

Figure 10-20 MOVE UNSIGNED|ABSOLUTE|NORMALIZED

MOVE UNSIGNED datanamex TO datanamey

Figure 10-21 Variations of the MOVE Statement—Example 1

MOVE datanamex TO ABSOLUTE datanamey

Figure 10-22 Variations of the MOVE Statement—Example 2

MOVE UNSIGNED datanamex TO ABSOLUTE datanamey

Figure 10-23 Variations of the MOVE Statement—Example 3

MOVE datanamex TO NORMALIZED datanamey

Figure 10-24 Variations of the MOVE Statement—Example 4

MOVE UNSIGNED datanamex TO NORMALIZED datanamey

Figure 10-25 Variations of the MOVE Statement—Example 5

MOVE datanamex TO UNSIGNED datanamey

Figure 10-26 Variations of the MOVE Statement—Example 6
Using the MOVE Command 10–13

MOVE UNSIGNED|ABSOLUTE|NORMALIZED
The following table shows the valid field types for each type of MOVE command.

Datanamex Field Type Datanamey Field Type

standard BI, NU, PD UNSIGNED CH, PD

standard BI, NU, PD ABSOLUTE BI, NU, PD

standard BI, NU, PD NORMALIZED NU, PD

unsigned CH, PD standard BI, NU, PD

unsigned CH, PD UNSIGNED CH, PD

unsigned CH, PD ABSOLUTE BI, NU, PD

unsigned CH, PD NORMALIZED NU, PD
10–14 VISION:Results Reference Guide

Chapter
11 U
sing Arithmetic Commands
VISION:Results supports addition, subtraction, multiplication, division, and
exponentiation. You can code separate statements for each operator or you can
combine operators in a single statement. Calculations can be done anywhere in
your program, during regular or special (ON CHANGE, ON FINAL, ON END OF,
and so on) logic.

The format of an arithmetic statement is as follows:

Valid Arithmetic Operators
Neither the datanamew nor datanamex field is altered during the operation. The
result of the operation is placed in datanamez.

The valid arithmetic operators and operations are:

datanamez= {datanamew|literal} arithmetic operator {datanamex|literal}

Figure 11-1 Format of an Arithmetic Statement

+ ADD datanamex or literal to datanamew or literal. The result is stored in
datanamez.

– SUBTRACT datanamex or literal from datanamew or literal. The result is
stored in datanamez.

* MULTIPLY datanamex or literal by datanamew or literal. The result is
stored in datanamez.

/ DIVIDE datanamex or literal into datanamew or literal. The result is stored
in datanamez.

** Raise datanamew or literal to a power datanamex or literal. The result is
stored in datanamez.
Using Arithmetic Commands 11–1

Indexing
Fields in the arithmetic operation do not have to be of the same size, data type, or
have the same number of decimal positions. Arithmetic can be performed on
numeric (NU), packed (PD), or binary (BI) data. The data conversion and decimal
alignment are automatically handled.

AMOUNT3=AMOUNT2+AMOUNT1
AMOUNT3 = AMOUNT2 + AMOUNT1
BALANCE=AMOUNT*1.10
FOUR=2+2
AMOUNTX = AMOUNTY - 1,293.55
NEG=AMOUNT*-1
COUNTER=COUNTER+1
AVG=AMOUNT/COUNT
MTHBAL(INX)=MTHSAL(INX)*1.10
INT=SIZE**2/12

Indexing
Indexing can be used to allow calculations using entries in a table or segments in a
record. See Chapter 14, Using Procedural Commands for a full description of
indexing.

Example:

AMOUNT (INY) = AMOUNT2 (INY) + AMOUNT3 (INY)
MTHBAL (INX) = MTHSAL (INX) * 1.10
MTHSAL = DAILYSAL (INW) + .50

Rounding
The result of an arithmetic operation can be rounded:

AMOUNT1=AMOUNT2 * 1.10 ROUNDED

Assume AMOUNT2 is a 4-byte packed field with two decimals and contains the
value 512.55, which is being multiplied by 1.10 (AMOUNT2 is being increased by
10%). The product of this multiplication is 563.8050. Without rounding, the result
placed in AMOUNT1 (which, for this example, is defined as a 5-byte packed
2-decimal field), is 563.80.

If rounding is needed, the word ROUND or ROUNDED is coded with the
arithmetic expression and the figure 563.81 would be placed in AMOUNT1.

When you specify that the result be rounded, the result cannot be defined as
having over four decimal positions.
11–2 VISION:Results Reference Guide

Exponentiation
Exponentiation
VISION:Results supports exponentiation. A double asterisk (**) indicates that
exponentiation is to be performed. The two fields involved are converted to
floating point. Then, the exponentiation using the floating point values is
performed, and it converts the result back to decimal. If the result of the calculation
is too large to handle, an abend results with the error indicating that the result is
too large.

Positive and negative exponents are supported as well as integer and decimal
exponents.

When raising a non-integer number to a power, the result might not be precise.
This occurs because when converting from decimal to floating point, a small
degree of accuracy is sometimes lost.

If you elected to not allow exponentiation when you installed, using
exponentiation (**) results in an error message indicating that ** is not valid in your
system.

Order of Computation
Formulas or calculations can be expressed in one statement. Any number of
arithmetic operators and operands can be combined to produce a result:

AMOUNT1 = AMOUNT2 * 1.10 + 5.20

The value in AMOUNT2 is multiplied by 1.10, then 5.20 is added to the product
that is finally placed in the AMOUNT1 field.

Computation is performed according to the rules of algebra. Each of the operators
is assigned a priority.

This priority determines the order in which operations are performed. Priority 1 is
performed ahead of priority 2, and priority 2 ahead of priority 3.

Operations with the same priority are performed in the order in which they are
coded (except for exponentiation). Sequential exponentiation operators are
processed from right to left.

Parentheses can be used to change the order of computation.

Operation Priority

Exponentiation (**) 1

Multiplication and division (*, /) 2

Addition and subtraction (+, –) 3
Using Arithmetic Commands 11–3

Order of Computation
Again, as in arithmetic operations, only the final result field of a calculation is
changed. The fields taking part in the arithmetic do not change. All operations take
place in work areas.

AMOUNT1=AMOUNT2 + AMOUNT3 * 1.10

The AMOUNT3 value is multiplied by 1.10, then this result is added to the
AMOUNT2 value. The final result is placed in AMOUNT1.

CALC=AMT**5**2

5 is raised to the power 2 (squared) and then AMT is raised to the result of the
previous calculation (AMT**25). The final result is placed in CALC.

AMOUNT1=(AMOUNT2+AMOUNT3)*1.10

Because there are parentheses around the AMOUNT2+AMOUNT3 operation, it is
performed first. This result is then multiplied by 1.10 and the final result placed in
AMOUNT1.

AMOUNT1=(AMOUNT2+AMOUNT3)*1.10 ROUNDED

This is the same as the previous example, except that before the result is placed in
the AMOUNT1 field, it is rounded.

You can nest parentheses. The execution of each operation proceeds from left to
right, innermost to outermost parentheses:

AMOUNT1=AMOUNT2 * 1.10 - ((AMOUNT3 + 10)/3)

The sequence of execution here is as follows:

1. The AMOUNT2 value is multiplied by 1.10.
2. 10 is added to the AMOUNT3 value.

3. The result of the addition is divided by 3.

4. The result of the division is subtracted from the result of the multiplication.

5. The final result is placed in AMOUNT1.
11–4 VISION:Results Reference Guide

Arithmetic Restrictions
Arithmetic Restrictions
� All arithmetics are performed using internal work areas capable of handling a

maximum of 30 digits (21 whole numbers and 9 decimal digits), in packed
decimal format.

� When the number of digits involved in the calculation exceeds the maximum
allowable limit, all excess digits are truncated. For example, if the result of an
addition (+), subtraction (–), multiplication (*), or division (/) operation
requires more than 21 whole numbers or 9 decimal digits, truncation occurs. If
the operation is exponentiation (**), an execution time abend (USER 299)
occurs. In addition, an error message appears showing the contents of the fields
involved.

� A negative number can be raised to a power. However, if a fractional exponent
is specified, an execution time abend results, indicating that this is invalid.
Using Arithmetic Commands 11–5

Arithmetic Restrictions
11–6 VISION:Results Reference Guide

Chapter
12 U
sing the SORT Command
The SORT statement allows you to sort input file records or work area records in
any sequence before they are reported on, printed, or written to an output file.

The records being sorted can be from sequential (fixed, variable, spanned) files,
VSAM files, ISAM files, database files, or records built in a work area in your
program.

You can code your SORT statement at the very beginning of your procedure logic
to sort all input records, or you can select certain records or build work area
records before sorting.

The SORT statement can be logically divided into two phases:

� a release phase that precedes the SORT statement

� a return phase that follows the SORT statement.

All procedure logic statements above the SORT statement are executed
repetitively, releasing records to the SORT statement one at a time as they are
selected. When VISION:Results recognizes the end of the file on the file being
sorted, it returns records from the SORT, one at a time, and invokes the procedure
logic statements following the SORT statement, with the exception of any ON
CHANGE IN, ON FINAL, or ON END OF SORTING and their subordinate
statements. VISION:Results continues to return records from the SORT until the
sorted records have been exhausted or the user stops the SORT. It then terminates
program execution.

CONTROL ACCOUNT
IF ACCOUNT EQ 'AO' THRU 'FO' NEXT ELSE REJECT ENDIF
SORT ARFILE USING ACCOUNT
LIST ACCOUNT NAME BALANCE

ON CHANGE IN ACCOUNT
LIST SUM BALANCE WITH 2 BEFORE AND 2 AFTER

ON FINAL
LIST SUM BALANCE WITH 2 BEFORE

Figure 12-1 SORT Statement
Using the SORT Command 12–1

Sorting a File
There are three formats of the SORT statement:

� Sorting a file

� Sorting a file ...until

� Sorting a dataname ...until

VISION:Results uses standard SORT field formats that allow you to instruct SORT
to use portions of fields containing dates as a sort key. To use these Y2K SORT field
types, you must set up VISION:Results to REDEFINE the date fields and provide
definitions for the field subsets you want to use. Then, use the redefined name(s)
in the SORT statement syntax followed by the new SORT Y2K field format
reserved word(s) PD0, Y2C, Y2Z, Y2P, or Y2D.

In addition, the SORT command can be dynamically invoked using the RELSORT
and RETSORT commands. For more information, see RELSORT and RETSORT
Commands on page 12-28.

Sorting a File
You can sort an input file by one or more fields (keys). The sorted records can be
in ascending or descending order. The SORT filename in your VISION:Results
program causes your procedure logic prior to the SORT statement to be executed
for each input record until the end of the file is sensed. Records not rejected are
passed to SORT and arranged in order. The SORT statement then passes one sorted
record at a time to the remaining procedure logic.

Format 1 Syntax:

Format 1 Example:
SORT ARFILE 36K USING ACCOUNT TRANS
SORT ARFILE USING ACCOUNT TRANS NAME

Filename
When using Format 1, the SORT command is immediately followed by the
filename. The file name specifies where to find the records to be sorted.

SORT filename [nK]
USING ! dataname {PD0 | Y2C | Y2Z | Y2D | Y2P} {A | D}! [WORK nnn]

Figure 12-2 Format for Sorting a File
12–2 VISION:Results Reference Guide

Sorting a File
nK
Following the file name, you can optionally supply the amount of memory (in
thousands) to be given to sort. You specify this in the form nK, where n is an
integer from 12 to 999. If not specified, the system:

USING dataname
Following the file name (and the nK, if supplied) is the keyword USING, which
always precedes the data names/field names (sort keys). The sort keys describe the
field(s) to be sorted and the requested sequence of the sort. Code the data names
from left to right in decreasing order of sequence (from the most major to the most
minor). The number of data names (sort keys) following the USING keyword is
approximately 15.

SORT ARFILE USING ACCOUNT TRANS

ACCOUNT is the major key and TRANS is the minor key. All transaction numbers
are sorted within each sorted account code.

OS/390 Defaults to a minimum of 36K to a maximum 100K. These values can
be overridden by this DYLINSTL parameter SORTMEM= (minimum,
maximum). See the VISION:Results Installation Guide for details.

VSE Defaults to the available unused partition space.

ACCOUNT TRANS

CO 1234567

CO 1245678

CO 1870000

DE 0010000

FG 0000001

FG 0000003

FG 0008976
Using the SORT Command 12–3

Sorting a File

USING dataname for Y2K Formats

{PD0|SPT|Y2C|Y2Z|Y2P|YR2|SYR|Y2D|YR1|CMp|PMp|FMp}

The SORT-defined Y2K field formats are:

Code Format Description

PD0
or
SPT for CA-SORT 7.1

partial packed
decimal

Looks at parts of PD fields.

The sign (last) and first digits of
the field are ignored. Only the
underscored would be used by
SORT for the following: x’0102’
or ‘099C’. This can be used to
individually pass the month, day
and year portion of a PD date
field.

Y2C,
Y2Z ,

2-byte, 2-digit year for
a CH or NU field

Only the digit portion of each of
the two bytes is used; the zone is
ignored. Only the underscored
would be used by SORT as the
year value for the following:
x’F2F3’.

YR2 for CA-SORT 7.1 ,

or

2-byte, 2-digit year for
a CH, NU, or BI field

Y2S for CA-SORT 8.2
for VSE

2-byte, 2-digit year for
a CH, NU, or BI field

Y2P
or
SYR for CA-SORT 7.1

2-byte, 2-digit year for
a PD field

The sign (last) and first digits of
the field are ignored. Only the
underscored would be used by
SORT as the year value for the
following: x’099C’.

Y2D,
YR1 for CA-SORT 7.1,
or

1-byte, 2-digit year for
a PD field

The digits would be passed as an
unsigned PD or BI field. SORT
would use the following
underscored text as the year
value: x’99’.YR1 for CA-SORT 8.2

for VSE
1-byte, 2-digit year for
a BI field
12–4 VISION:Results Reference Guide

Sorting a File

CMp,
PMp,
FMp for CA-SORT 7.1

date fields in CH, PD,
BI, respectively

p is 0-9, A or B. The values of Mp
represent dates in the following
formats:

M0 = dddyy
M1 = yyddd
M2 = mmddyy
M3 = yymmdd
M4 = yyddmm
M5 = ddmmyy
M6 =dddyyy
M7 = yyyddd
M8 = mmddyyyy
M9 = ddmmyyyy
MA = yyyymmdd
MB = yyyyddmm

Code Format Description
Using the SORT Command 12–5

Sorting a File
� PD0 (partial packed decimal) or SPT for CA-SORT 7.1 to look at parts of PD
fields.

The sign (last) and first digits of the field are ignored. Only the underscored
would be used by SORT for the following: x’0102’ or ‘099C’. This can be used
to individually pass the month, day and year portion of a PD date field.

� Y2C, Y2Z (2-byte, 2-digit year for a CH or NU field), YR2 for CA-SORT 7.1
(2-byte, 2-digit year for a CH, NU, or BI field), or Y2S for CA-SORT 8.2 for VSE
(2-byte, 2-digit year for a CH, NU, or BI field).

Only the digit portion of each of the two bytes is used; the zone is ignored. Only
the underscored would be used by SORT as the year value for the following:
x’F2F3’.

� Y2P or SYR for CA-SORT 7.1 (2-byte, 2-digit year for a PD field).

The sign (last) and first digits of the field are ignored. Only the underscored
would be used by SORT as the year value for the following: x’099C’.

� Y2D, YR1 for CA-SORT 7.1 (1-byte, 2-digit year for a PD field), or YR1 for
CA-SORT 8.2 for VSE (1-byte, 2-digit year for a BI field).

The digits would be passed as an unsigned PD or BI field. SORT would use the
following underscored text as the year value: x’99’.

� CMp, PMp, FMp for CA-SORT 7.1 (date fields in CH, PD, BI, respectively),
where p is 0-9, A or B. The values of Mp represent dates in the following
formats:

FILE SAMPFL
DATEPD PD 4 VALUE 102099 ; X’0102099C’
DATEMO CH 2 1 ; X’0102’
DATEDA..CH 2 2 ; X’0209’
DATEYY CH 2 3 ; X’099C’
.
.
.
SORT SAMPFL USING DATEMO PD0 DATEDA PD0 DATEYY Y2P

A or D
After each data name, you can optionally supply a code letter to specify whether
the records are to be sorted in ascending (A) or descending (D) order for that field.
The system default is ascending (A) and does not need to be specified.

SORT ARFILE USING ACCOUNT A TRANS D
SORT ARFILE USING ACCOUNT TRANS D
SORT ARFILE USING ACCOUNT D TRANS

M0 = dddyy
M1 = yyddd
M2 = mmddyy
M3 = yymmdd
M4 = yyddmm
M5 = ddmmyy

M6 =dddyyy
M7 = yyyddd
M8 = mmddyyyy
M9 = ddmmyyyy
MA = yyyymmdd
MB = yyyyddmm
12–6 VISION:Results Reference Guide

Sorting a File
WORK n
Note: This section only applies to VSE.

If you are operating under VSE and you want to use more than one sort work file
(the default is one sort work file), you can specify how many you require using the
keyword WORK in the SORT statement.

SORT FILE USING ACCOUNT TRANS WORK 3

The number specified, WORK n, is directly associated with the number of sort
work files, SORTWK1-n, and DLBL/EXTENT JCL statements required. WORK 1
or the default requires DLBL/EXTENT for SORTWK1. WORK 3 requires JCL for
SORTWK1, SORTWK2, and SORTWK3. See VSE JCL Requirements on page 12-37
for more information.

A sample VISION:Results program containing the SORT statement is shown
below. In this example, the entire file is sorted in account code sequence.

Example 1

The following sequence takes place:

1. The automatic cycle of VISION:Results reads a record from ARFILE.

2. VISION:Results checks for end of file condition. If end of file, go to Step 5.

3. The record is released to the sort using the SORT statement.

4. VISION:Results automatically returns to Step 1.

5. A record is returned from the sort using the SORT statement.

6. VISION:Results automatically checks to see if the sorted records are
exhausted; if exhausted, go to Step 9.

7. VISION:Results automatically checks to see if a control break has occurred. If
so, the LIST statement subordinate to the ON CHANGE IN is executed.

8. A report line is printed using the LIST statement; go to Step 5.

9. End of job; any ON CHANGE logic is processed and the program is
terminated.

This VISION:Results program, besides giving additional information on the
report, also selects specific records to be sorted (that is, records where ACCOUNT
is equal to NA or EO through IO, inclusive).

FILE ARFILE FB 352 5280
ACCOUNT 2 182 NAME 25 85 TRANS 7 4
BALANCE 5 170 PD 2 A

CONTROL ACCOUNT
SORT ARFILE USING ACCOUNT <----
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE

ON CHANGE IN ACCOUNT
LIST SUM BALANCE WITH 2 BEFORE AND 2 AFTER

T1 'VISION:Results SORT REPORT 1' WITH 2 AFTER

Figure 12-3 SORT Statement Example 1
Using the SORT Command 12–7

Sorting a File
Example 2

The following sequence takes place:

1. The automatic cycle of VISION:Results reads a record from ARFILE. If end of
file, go to Step 5.

2. The record is rejected if it is not an NA, EO through IO account code; go to
Step 1.

3. The record is released to the sort using the SORT statement.

4. VISION:Results automatically returns to Step 1.

5. A record is returned from the sort using the SORT statement.

6. VISION:Results checks to see if the sorted records are exhausted; if
exhausted, go to Step 11.

7. If the BALANCE field is greater than or equal to 300, COMMENT field is set
to `***'; go to Step 9.

8. If the BALANCE field is less than zero, COMMENT field is set to `---.'

9. VISION:Results automatically checks to see if a control break has occurred. If
so, the LIST statement subordinate to the ON CHANGE IN is executed.

10. A report line is printed using the LIST statement; go to Step 5.

11. End of job; ON CHANGE and ON FINAL logic is processed and the program
is terminated.

The rest of this chapter deals with the more advanced techniques of the SORT
statement—ON END OF SORTING, SORT A FILE ... UNTIL, and Sorting a
Dataname ... UNTIL.

FILE ARFILE FB 352 5280
ACCOUNT 2 182 NAME 25 85 TRANS 7 4
BALANCE 5 170 PD 2 A

WORKAREA
COMMENT 3 (BALANCE'GE $300.00'OR'LT $0.00) VALUE ' ' REINIT

CONTROL ACCOUNT
IF ACCOUNT EQ 'NA' 'EO' THRU 'IO' NEXT ELSE REJECT ENDIF
SORT ARFILE USING ACCOUNT TRANS <----
IF BALANCE GE 300
MOVE '***' TO COMMENT GOTO LISTDET ENDIF

IF BALANCE LT 0
MOVE '---' TO COMMENT ENDIF

LISTDET:
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE COMMENT
ON CHANGE IN ACCOUNT
LIST SUM BALANCE WITH 2 BEFORE AND 2 AFTER

ON FINAL
LIST SUM BALANCE WITH 2 AFTER
LIST 'NUMBER OF RECORDS PRINTED:' AT ACCOUNT
TALLY AT BALANCE

T1 'VISION:Results SORT REPORT 2' WITH 2 AFTER

Figure 12-4 SORT Statement Example 2
12–8 VISION:Results Reference Guide

ON END OF SORTING
ON END OF SORTING
When the sorted input is exhausted, processing of the program is terminated. Any
ON CHANGE IN logic and ON FINAL logic is executed prior to closing the files.
You can intercede to do some additional wrap-up logic. This is accomplished using
the ON END OF SORTING command. Once used, you have complete control. You
must terminate processing using the STOP command.

Example 3 demonstrates the use of the ON END OF SORTING command to write
a trailer record when the records returned from the sort have been exhausted.

Example 3 :

ON END OF SORTING

Figure 12-5 ON END OF SORTING Command

FILE ARFILE FB 352 5280
ARREC 352 NAME 25 85
BALANCE 5 170 PD 2 A ACCOUNT 2 182

FILE OARFILE FB 352 5280 OUTPUT FROM ARFILE
WORKAREA
TBALANCE 5 PD 2 VALUE 0

CONTROL ACCOUNT
SORT ARFILE USING ACCOUNT <----
IF ACCOUNT EQ 'AO' THRU 'PZ'
TBALANCE=BALANCE+TBALANCE ENDIF

WRITE OARFILE
LIST SUPPRESS ACCOUNT BALANCE NAME

ON END OF SORTING <----
MOVE SPACES TO ARREC
MOVE 'ZZ' TO ACCOUNT
MOVE TBALANCE TO BALANCE
WRITE OARFILE

STOP
ON CHANGE IN ACCOUNT
LIST SUM BALANCE WITH 2 BEFORE AND 2 AFTER

T1 'REPORT 3' WITH 2 AFTER

Figure 12-6 SORT Statement Example 3
Using the SORT Command 12–9

ON END OF SORTING
Example 4

Example 4 demonstrates the use of the ON END OF SORTING command where
both input files must be exhausted before the program terminates. A step-by-step
description follows.

FILE FILEA FB 352 5280 STATUS FILEASTAT
READKEY 7 4

.

.
FILE FILEB FB 352 10560
SORTKEY 7 8

.

.
WORKAREA SORTSTAT 1
.
.
READ FILEB
SORTREC:
SORT FILEB USING SORTKEY <----
ON ONE
READ FILEA

ENDONE
CHECK:
IF SORTKEY EQ READKEY
GOTO MATCHIT ENDIF

IF SORTKEY LT READKEY
AND SORTSTAT NE 'E'
GOTO SORTREC ENDIF

; ASSUMED GT ...
READ FILEA
IF FILEASTAT EQ 'E' AND SORTSTAT EQ 'E'

STOP ENDIF
GOTO CHECK
MATCHIT:
.
.
ON END OF SORTING <----
IF FILEASTAT EQ 'E' STOP ENDIF
MOVE 'E' TO SORTSTAT
MOVE X'FFFFFFFFFFFFFF' TO SORTKEY
GOTO CHECK

ON CHANGE IN
.
.

Figure 12-7 SORT Statement Example 4
12–10 VISION:Results Reference Guide

ON END OF SORTING
The following sequence takes place:

1. A record is read from FILEB.

2. VISION:Results checks for an end of file condition; if end of file, go to Step 5.

3. The record is released to the sort using the SORT statement.

4. VISION:Results returns to Step 1.

5. A record is returned from the sort using the SORT statement.

6. One-time-only read of FILEA; if you have been here before, go directly to Step
7.

7. The sorted record's SORTKEY is compared to FILEA's READKEY; if they are
equal, go to Step 12.

8. The sorted record's SORTKEY is compared to FILEA's READKEY; if
SORTKEY is less and the sorted records have not been exhausted, go to Step
5.

9. Read a record from FILEA.

10. Check FILEA's status indicator FILESTAT and the sorted record’s status
indicator SORTSTAT to see if end of file has been reached on both. If end of
file has been reached on both files, STOP; otherwise, go to Step 7.

11. Match logic takes place here. VISION:Results returns to Step 5 when it
encounters the ON END OF SORTING statement.

12. Entered only (ON END OF SORTING) when sorted records are exhausted.
FILEA's status is checked for end of file. If end of file has been reached, STOP.

13. The sorted record’s status indicator is set to an E to indicate an end of file
condition.

14. High-values are moved to SORTKEY, so comparisons against the READKEY
are always greater than and FILEA continues to be processed until end of file
is reached. If end of file has been reached, go to Step 7.

The same logic and constraints of the ON END OF SORTING apply to the sections
that follow.

See Limitations and Constraints on page 12-34 for further information about ON
END OF SORTING considerations.
Using the SORT Command 12–11

SORT A FILE ... UNTIL
SORT A FILE ... UNTIL
You can terminate the input phase of the sort prior to reaching end of file on the
file being sorted. Three approaches are possible. You can terminate the input phase
using a data name, using the file name of the file being sorted, or using a file name
other than the file being sorted.

Format 2 Syntax:

With the exception of the UNTIL {filename} {dataname}, all other keywords are
described in Sorting a File on page 12-2 and are not described here.

UNTIL
UNTIL is required when using this format of the SORT. It must follow all data
names (sort keys) specified after the USING keyword in the SORT statement.

SORT ARFILE USING ACCOUNT TRANS UNTIL ...

Immediately following UNTIL, you can specify a file name or data name.

UNTIL filename
You can specify the file name of the file being sorted or the file name of another file.
In either case, the input phase of sort terminates only when end of file is detected
on the specified file.

The following two programs produce the same results.

Example 5

SORT filename [nK]
USING ! dataname {PD0 | Y2C | Y2Z | Y2D | Y2P} {A | D}! [WORK nnn]

UNTIL {filename} [WORK n]
{dataname}

Figure 12-8 Format for SORT a File... UNTIL

FILE ARFILE FB 352 5280
ACCOUNT 2 182 BALANCE 5 170 PD 2 A

SORT ARFILE USING ACCOUNT <----
LIST ACCOUNT BALANCE
T1 'REPORT 1' WITH 2 AFTER

Figure 12-9 SORT Statement Example 5a

FILE ARFILE FB 352 5280
ACCOUNT 2 182 BALANCE 5 170 PD 2 A

SORT ARFILE USING ACCOUNT UNTIL ARFILE <----

LIST ACCOUNT BALANCE
T1 'REPORT 1' WITH 2 AFTER

Figure 12-10 SORT Statement Example 5b
12–12 VISION:Results Reference Guide

SORT A FILE ... UNTIL
The first program uses Format 1 and the second program uses Format 2. The SORT
statement in the second program has the UNTIL ARFILE, but this is not required.
In both programs, VISION:Results terminates the input phase of the sort when end
of file is detected on ARFILE. See Figure 12-11. The flowchart logic applies to both
of these program examples.

SORT ARFILE USING ACCOUNT

SORT ARFILE USING ACCOUNT UNTIL ARFILE
Using the SORT Command 12–13

SORT A FILE ... UNTIL

Figure 12-11 SORT Flow Diagram

Clean Up
ON CHANGE

ON FINAL
Closing Logic

EOJ

A

Read a
Record

Sort All
Records

Return a
Record

from Sort

A Release Record
to Sort

No

YesEnd of
File?

No

Yes

Continue Processing
Procedure Logic

Below Sort Statement
(One Record at a Time)

SORT LOGIC

Has
VISION:Results

started returning
records from
the SORT?

Yes

End
of Sorted
Records?

A

No
12–14 VISION:Results Reference Guide

SORT A FILE ... UNTIL
Terminating the input phase using an end of file condition can be triggered from a
second file.

Example 6 demonstrates the merging of two similar files (block size is the only
difference) and terminating the input phase of the sort when end of file is detected
on the second file.

Example 6

Figure 12-13, Merging Two Files With SORT Flow Diagram, illustrates the logic,
both user and internal, in the above program.

FILE ARQ1FIL FB 352 5280 STATUS ARQ1EOF
ARQ1REC 352 ACCOUNT 2 182 BALANCE 5 170 PD 2 A

FILE ARQ2FIL FB 352 10560
ARQ2REC 352

READ ARQ1FIL
IF ARQ1EOF EQ 'E' GOTO READQ2 ENDIF
GOTO SORTREC
READQ2:
READ ARQ2FIL
MOVE ARQ2REC TO ARQ1REC

SORTREC:
SORT ARQ1FIL USING ACCOUNT UNTIL ARQ2FIL <----
LIST ACCOUNT BALANCE

T1 'REPORT MERGE' WITH 2 AFTER

Figure 12-12 SORT Statement Example 6
Using the SORT Command 12–15

SORT A FILE ... UNTIL
Figure 12-13 Merging Two Files With SORT Flow Diagram

Yes
C

Yes

No

No Is ARQ1FIL
at EOF?

Has
VISION:Results

started returning records
from the SORT?

Read
ARQ1FIL

Read
ARQ2FIL

A

No

Is ARQ2FIL
at EOF?

Move ARQ2REC
to ARQ1REC

Yes

B
Yes

Sort All
Records

Continue Processing
Procedure Logic

Below Sort Statement
(One Record at a Time)

SORT LOGIC

A

Yes
End

of Sorted
Records? EOJ

Clean Up
ON CHANGE

ON FINAL
Closing Logic

A

No

Is ARQ2FIL
at EOF?

Release a
Record

from Sort

B

C

Return a
Record

from Sort

No
12–16 VISION:Results Reference Guide

SORT A FILE ... UNTIL
UNTIL dataname
This section discusses the use of a data name after the UNTIL keyword in a SORT
statement. The data name can be a field defined in a record or work area. You must
manually set (MOVE) the data name's value to E and execute the SORT statement
for the input phase of the sort to be terminated. You can also prematurely end the
output phase of the sort by placing a value of C into the data name during the
output phase of SORT. See Example 10.

Example 7

Note: This example and Figure 12-15 demonstrate the use of a data name (placed
after the UNTIL keyword in the SORT statement) to end the input phase. When the
account code is WO, the release phase of SORT terminates. The record with an
account code of WO is not released to SORT (see Figure 12-15, SORT UNTIL Flow
Diagram on page 12-18). The logic of the program falls into the SORT statement
after the E is moved to EOFEQE.

The LIST logic (return phase) is not executed until the UNTIL EOFEQE is satisfied
(equal to an E).

FILE ARFILE FB 352 5280
ACCOUNT 2 182
BALANCE 5 170 PD 2 A

WORKAREA
EOFEQE 1

READ ARFILE
IF ACCOUNT EQ 'WO'
MOVE 'E' TO EOFEQE ENDIF

SORT ARFILE USING ACCOUNT <----
UNTIL EOFEQE

LIST ACCOUNT BALANCE
T1 'REPORT 1' WITH 2 AFTER

Figure 12-14 SORT Statement Note:
Using the SORT Command 12–17

SORT A FILE ... UNTIL
Figure 12-15 SORT UNTIL Flow Diagram

Yes

Yes
C

No

Has
VISION:Results

started returning records
from the SORT?

A

Is
ACCOUNT

Equal to
‘WO ’?

Move ‘E ’
to EOFEQE

Sort All
Records

Continue Processing
Procedure Logic

Below Sort Statement
(One Record at a Time)

SORT LOGIC

A

Return a
Record

from Sort

No

Yes
End

of Sorted
Records? EOJ

Clean Up
ON CHANGE

ON FINAL
Closing Logic

B

C

Yes
B

No

Is
EOFEQE
Equal to

‘E ’?

A

Read a
Record

No
12–18 VISION:Results Reference Guide

SORT A FILE ... UNTIL
Once a data name (field name) is specified in the UNTIL of a SORT statement, you
have control. VISION:Results cannot terminate the input phase of the sort itself. If
the condition is not met and an E is not moved to the data name specified after the
UNTIL, your program goes into an endless loop. OS/390 users eventually
time-out. VSE users must have a computer operator cancel their job.

The only exception is if the data name used in the UNTIL of a SORT statement is
associated with the STATUS keyword (shown in Example 8) of a file. If that file
goes to end of file, it automatically is set to E by VISION:Results, causing the
release phase of the SORT to terminate when the SORT command (or RELSORT
command) is next executed.

Example 8

In the above program the release phase of the sort would terminate normally on
one of two conditions:

� If a WO account code is detected.

� If an end of file is detected (no WO accounts are encountered on the file).

An E in a data name does not terminate the release phase of the SORT in and of
itself. This is true even if the data name is associated with the STATUS keyword.
The logic of the program must proceed to the SORT statement, as it does in
Example 9, for VISION:Results to terminate the release phase of SORT.

FILE ARFILE FB 352 5280 STATUS EOFEQE
ACCOUNT 2 182
BALANCE 5 170 PD 2 A

READ ARFILE
IF ACCOUNT EQ 'WO'
MOVE 'E' TO EOFEQE ENDIF

SORT ARFILE USING ACCOUNT UNTIL EOFEQE <----

LIST ACCOUNT BALANCE
T1 'REPORT 1' WITH 2 AFTER

Figure 12-16 SORT Statement Example 8
Using the SORT Command 12–19

SORT A FILE ... UNTIL
Example 9

In Example 9, an E is moved to the STATUS data name under the same conditions
as in Example 8. However, if there are no ACCTCODEs with a value of ’XX,' the
program goes into an infinite loop because the logic of the program never proceeds
to the SORT statement.

The program shown in Example 10 and Figure 12-19, SORT UNTIL Dataname
Flow Diagram on page 12-21 demonstrates the use of a data name (placed after the
keyword UNTIL, in the SORT statement) to prematurely end the output phase of
SORT. When an account code of WO is encountered, the return phase of SORT
terminates. SORT does not actually receive the value placed into EOFEQE until
one additional SORT cycle has taken place. Any record with an account code of
WO or greater is not listed on the report.

Example 10

The entire input file is sorted until end of file. Then the records are listed, as they
are being returned from SORT, until a record with an account code of WO is
detected. SORT then terminates immediately without listing the record.

One additional cycle must take place in order for SORT to receive the C placed into
EOFEQE. This is required for the correct premature termination of SORT.

FILE ARFILE FB 352 5280 STATUS EOFEQE
BALANCE 5 170 PD 2 A
ACCTCODE 2 182

READ ARFILE
IF ACCTCODE EQ 'WO'

MOVE 'E' TO EOFEQE ENDIF
IF ACCTCODE NE 'XX'

REJECT ENDIF

SORT ARFILE USING ACCTCODE UNTIL EOFEQE

LIST ACCTCODE BALANCD
TI 'REPORT 2' WITH 2 AFTER

Figure 12-17 SORT Statement Example 9

FILE ARFILE FB 352 5280 STATUS AREOF
ACCOUNT 2 182
BALANCE 5 170 PD 2 A

WORKAREA
EOFEQE 1

READ ARFILE
IF AREOF EQ 'E'
MOVE 'E' TO EOFEQE ENDIF

SORT ARFILE USING ACCOUNT
UNTIL EOFEQE

IF EOFEQE EQ 'C'
STOP ENDIF

IF ACCOUNT EQ 'WO'
MOVE 'C' TO EOFEQE

REJECT ENDIF
LIST ACCOUNT BALANCE

Figure 12-18 SORT Statement Example 10
12–20 VISION:Results Reference Guide

SORT A FILE ... UNTIL
Figure 12-19 SORT UNTIL Dataname Flow Diagram

Yes

Yes
C

No

No

Has
VISION:Results

started returning records
from the SORT?

A

Is
AREOF
Equal to

‘E’?

Move ‘E’
to EOFEQE

Yes

No

Is
EOFEQE
Equal to

‘E’?

Read a
Record

C

Sort All
Records

Return a
Record

from Sort

No

End
of Sorted
Records?

No

Yes

EOJ

Clean Up
ON CHANGE

ON FINAL
Closing Logic

Move ‘C’
to EOFEQE A

D

D

List
Account Balance

A

Release a
Record
to Sort

Is
EOFEQE
Equal to

‘C’?

Is
ACCOUNT
Equal to

‘WO’?
No

Yes

Yes

A

Using the SORT Command 12–21

Sorting a Dataname ... UNTIL
Sorting a Dataname ... UNTIL
The two previous sections described sorting entire input records in a file until the
end of file is encountered or until certain qualifying conditions force the
termination of the input phase of the sort. There are times, however, when the
amount of information needed for processing or reporting does not require an
entire input record or the information needed comes from any number of different
files. VISION:Results provides this feature using the format shown below:

Format 3 Syntax:

Format 3 Example:
SORT ACCOUNT USING ACCOUNT UNTIL ARFILE
SORT TRANS 200 USING ACCOUNT UNTIL ARFILE
SORT WACCT 50 USING WACCT UNTIL WEOF

When using the above format, the SORT command is immediately followed by a
data name (field name). The data name can be a field in an input record or a field
defined in a work area in your VISION:Results program. The data name tells
VISION:Results where to find the beginning of the record area to be passed to the
sort.

Record Size
In the previous examples, the length of the record to be sorted was always
determined by the file's attributes, its record size. Because a record area—not a
file—is being sorted, the length of the area to be sorted is determined by one of two
factors:

� The record size in the SORT statement that immediately follows the data name.

SORT WACCT 30 USING WACCT UNTIL ...

or

� The length of the data name, as defined in the VISION:Results program, if the
record size is not specified.

SORT WACCT USING WACCT UNTIL ...

The above two SORT statements are not the same unless WACCT is defined with
a length of 30.

The data name specified, after the SORT command, is the beginning of the record
area to be passed to the sort but does not necessarily have to be a sort key.

SORT dataname [recordsize] [nK]
USING ! dataname {PD0 | Y2C | Y2Z | Y2D | Y2P} {A | D}! [WORK nnn]

UNTIL {filename} [WORK n]
{dataname}

Figure 12-20 Format for Sorting a Dataname ... UNTIL
12–22 VISION:Results Reference Guide

Sorting a Dataname ... UNTIL
For example, assume that the following were defined in a work area:

WORKAREA
WACCT 2
WBALANCE 5 PD 2 A
WTRANS 7
WDATE 6 D
WDESC 10

The following SORT statement starts with a beginning location of WACCT and
releases a 30-byte record to the sort, sorting in WACCT sequence.

SORT WACCT 30 USING WACCT UNTIL ...

While the SORT statement starts with a beginning location of WACCT, it releases
only a 2-byte record to the sort, the length of WACCT.

SORT WACCT USING WACCT UNTIL ...

USING
The keyword USING must always precede the data names (field names) of the
fields (sort keys) on which you are sorting. VISION:Results validates the data
names following the USING keyword to make sure that they are completely
contained within the area to be sorted.

Taking the same work area plus an additional definition:

WORKAREA
WACCT 2
WBALANCE 5 PD 2 A
WTRANS 7
WDATE 6 D
WDESC 10
WCODE 3

Code the data names from the most major sort key to the most minor sort key.

SORT WACCT 33 USING WACCT WCODE UNTIL ...

UNTIL
The keyword UNTIL follows the sort key(s) and is required when using Format 2
or 3. Immediately following the UNTIL, you can specify either a file name or a data
name. The concept behind the use of a file name or data name after the UNTIL is
described in SORT A FILE ... UNTIL on page 12-12. In addition, following are
program examples and flowcharts for the above format.

UNTIL filename
Example 11 illustrates the sorting of a partial record from an input file. The input
phase of the sort is terminated when end of file is detected as specified in the SORT
statement. A 100-byte record is released to the sort. In this example, the sort key
(ACCOUNT) is not the first byte (position) of the record area to be released to the
sort.
Using the SORT Command 12–23

Sorting a Dataname ... UNTIL
Example 11

FILE ARFILE FB 352 5280
NAME 25 85 BALANCE 5 170 PD 2 A
ACCOUNT 2 182

IF BALANCE GE 300
BALANCE=BALANCE*1.10 ENDIF

SORT NAME 100 USING ACCOUNT UNTIL ARFILE <----

LIST ACCOUNT NAME BALANCE
T1 'REPORT ACCOUNT WITH NAME' WITH 2 AFTER

Figure 12-21 SORT Statement Example 11
12–24 VISION:Results Reference Guide

Sorting a Dataname ... UNTIL
Figure 12-22 SORT UNTIL Filename Flow Diagram

Yes
B

A

Read a
Record

Yes
C

No

No

Has
VISION:Results
started returning

records from
the SORT?

A

End of
File?

Is
Balance
GE 300?

Sort All
Records

Continue Processing
Procedure Logic

Below Sort Statement
(One Record at a Time)

SORT LOGIC

A

Return a
Record

from Sort

No

Yes
End

of Sorted
Records?

EOJ

Clean Up
ON CHANGE

ON FINAL
Closing Logic

B

C

No

Yes

Multiply
Balance
by 1.10

Release
Record
to Sort
Using the SORT Command 12–25

Sorting a Dataname ... UNTIL
Example 12

The following example demonstrates merging partial records from two files and
terminating the input phase of the sort when end of file is detected on the second
file.

Figure 12-24 illustrates the logic, both user and internal.

FILE ARQ1FIL FB 352 5280 STATUS ARQ1EOF
ARQ1REC 352 NAME 25 85
BALANCE 5 170 PD 2 A ACCOUNT 2 182

FILE ARQ2FIL FB 352 10560
ARQ2REC 352

READ ARQ1FIL
IF ARQ1EOF EQ 'E' GOTO READQ2 ENDIF
GOTO SORTREC
READQ2:
READ ARQ2FIL
MOVE ARQ2REC TO ARQ1REC

SORTREC:
SORT NAME 100 USING ACCOUNT UNTIL ARQ2FIL <----
LIST ACCOUNT BALANCE

T1 'REPORT MERGE' WITH 2 AFTER

Figure 12-23 SORT Statement Example 12
12–26 VISION:Results Reference Guide

Sorting a Dataname ... UNTIL
Figure 12-24 Merge Partial Records from Two Files with SORT Flow Diagram

Ye s
C

Ye s

N o

N o Is A R Q 1 F IL
a t E O F ?

H a s
V IS IO N :R e s u l ts

s ta r te d r e tu r n in g r e c o r d s
f r o m th e S O R T ?

R e a d
A R Q 1 F IL

R e a d
A R Q 2 F IL

A

N o

Is A R Q 2 F IL
a t E O F ?

M o v e A R Q 2 R E C
to A R Q 1 R E C

Ye s

B
Ye s

S o r t A l l
R e c o r d s

C o n t in u e P r o c e s s in g
P r o c e d u r e L o g ic

B e lo w S o r t S ta te m e n t
(O n e R e c o r d a t a T im e)

S O R T L O G IC

A

Ye s
E n d

o f S o r te d
R e c o r d s ?

E O J

C le a n U p
O N C H A N G E

O N F IN A L
C lo s in g L o g ic

A

N o

Is A R Q 2 F IL
a t E O F ?

R e le a s e a
R e c o r d

f r o m S o r t

B

C

R e tu r n a
R e c o r d

f ro m S o r t

N o
Using the SORT Command 12–27

RELSORT and RETSORT Commands
UNTIL dataname
If the data name used in the UNTIL of a SORT is associated with the STATUS
keyword (Example 13) of a file and that file goes to end of file, it automatically is
set to an E by VISION:Results, therefore terminating the input phase of the SORT.

Example 13

RELSORT and RETSORT Commands
The RELSORT and RETSORT commands alleviate the programming difficulties
that occur when using the SORT command in a sophisticated VISION:Results
program. The RELSORT command releases a record to SORT and then the logic
flows directly to the next instruction below the RELSORT command. The
RETSORT command retrieves a record from SORT and then the logic flows
directly to the next instruction below the RETSORT command.

One or more RELSORT and RETSORT commands can be included in the
VISION:Results program. The RELSORT and RETSORT commands can be used
subordinate to an IF statement. They can be included within performed logic, and
they can be used in conjunction with executing the actual SORT command to
release and retrieve sorted records. However, if you use a mixture of SORT,
RELSORT, and RETSORT commands to handle your sorted records, you must be
thoroughly familiar with the rules governing these commands.

FILE ARFILE FB 352 5280 STATUS EOFEQE
ACCOUNT 2 182
BALANCE 5 170 PD 2 A

WORKAREA
WBALANCE 5 PD 2 E (BALANCE'AMOUNT)
WACCOUNT 2 (ACCOUNT'NUMBER)
WDESC 22 (REMARKS)

READ ARFILE
IF ACCOUNT EQ 'WO'
MOVE 'E' TO EOFEQE GOTO SORTREC ENDIF

MOVE ACCOUNT TO WACCOUNT
MOVE BALANCE TO WBALANCE
MOVE SPACES TO WDESC
IF BALANCE LE 0 MOVE 'BALANCE TO BE EXAMINED' TO
WDESC GOTO SORTREC ENDIF

SORTREC:
SORT WBALANCE 29 USING WACCOUNT UNTIL EOFEQE
LIST WACCOUNT WBALANCE WDESC

T1 'REPORT 1' WITH 2 AFTER

Figure 12-25 SORT Statement Example 13

RELSORT

Figure 12-26 RELSORT Command

RETSORT

Figure 12-27 RETSORT Command
12–28 VISION:Results Reference Guide

RELSORT and RETSORT Commands
The rules and considerations for using the RELSORT and RETSORT commands
are:

� Only one SORT command can be included in the program. The SORT
command can be placed in a non-executable place within the program.

� The output (retrieval) phase of SORT is initiated the first time the following
conditions occur:

– A RETSORT command is executed.

– A read is issued (either explicitly using a READ command or implicitly by
VISION:Results automatic cycle) in which end of file occurs and the format
of the SORT statement is either:

– The SORT command is executed; the format of the SORT command is either:

� Once the output (retrieval) phase of SORT is initiated, the RELSORT command
should not be executed. Any attempt to do so results in a 500 code abend.

� The RETSORT command cannot be issued in ON END OF SORTING logic. Any
attempt to do so results in a 500 code abend.

Example 1 Accounts Receivable File Sorted Into Two Distinct Groups

The first group represents all MO accounts. The second group represents all
accounts with a balance greater than $100.00. All other records are not included in
the sort. It is possible that there are records that are MO with a balance greater than
$100.00. In these cases, the record is passed to sort twice: once for the MO group
and once for the over $100.00 group.

SORT filename USING field1 field2 ...

or

SORT filename USING field1 field2 ...
UNTIL filename

In this case, immediately after the detection of the end of file occurs on
the file being sorted or the file used in the UNTIL keyword, the flow of
logic transfers directly to the SORT command and the first record is
retrieved from SORT. The logic then flows to the statement directly
below the SORT command.

SORT filename USING field1 field2 ...
UNTIL dataname

or

SORT workarea USING field1 field2 ...
UNTIL dataname

and the UNTIL data name contains the value E. In this case, when the
SORT command is executed, a record is retrieved from SORT and then
the flow of logic is to the statement directly below the SORT command.
Using the SORT Command 12–29

RELSORT and RETSORT Commands
Program Narrative
The record to sort is defined in a work area as shown in Statements 8 through 13.
The MO group is given a group code of 1 while the over $100.00 group is given a
group code of 2. The records are sorted by group code, account code, and account
number, as shown in Statement 33. UNTIL ARFEND is included because the
record to be sorted is in a work area. The ARFEND data name is the STATUS data
name for the input file and consequently contains the value E when the file is at
end of file. The testing for the value E in ARFEND is automatically done at the time
the SORT command is executed. This condition initiates the retrieval phase of
SORT. This means that the program must branch to the SORT command when the
input file comes to end of file as shown in Statement 16; otherwise, the program
loops endlessly, never entering the SORT retrieval phase.

The MO records are formatted and released to SORT using the RELSORT
command (Statement 23) as shown in Statements 18 through 23. The over $100.00
group is formatted and released to SORT by falling through and executing the
SORT command as shown in Statements 26 through 33.

The retrieval logic is represented by the statements below the SORT command
exactly as the SORT command normally works. Statements 35 and 36 are executed
for each record retrieved from SORT.

Program Listing

1 FILE ARFILE FB 352 5280 STATUS ARFEND
2 ACCTNO 7 4
3 NAME 25 85
4 BALANCE 5 170 PD 2
5 ACCTCODE 2 182
6
7 WORKAREA
8 WKREC 40 1
9 WGROUP 1 1 (GROUP)
10 WACCTCODE 2 (ACCOUNT'CODE)
11 WACCOUNT 7 (ACCOUNT'NO.)
12 WNAME 25 (NAME)
13 WBALANCE 5 PD 2 E (BALANCE)
14
15 CONTROL WGROUP
16 IF ARFEND EQ 'E' GOTO SORTCMD ENDIF
17 IF ACCTCODE EQ 'MO'
18 MOVE '1' TO WGROUP
19 MOVE ACCTCODE TO WACCTCODE
20 MOVE ACCTNO TO WACCOUNT
21 MOVE NAME TO WNAME
22 MOVE BALANCE TO WBALANCE
23 RELSORT ; <----
24 ENDIF
25 IF BALANCE LT 100.00 REJECT ENDIF
26 MOVE '2' TO WGROUP
27 MOVE ACCTCODE TO WACCTCODE
28 MOVE ACCTNO TO WACCOUNT
29 MOVE NAME TO WNAME
30 MOVE BALANCE TO WBALANCE
31
32 SORTCMD: ; <----
33 SORT WKREC USING WGROUP WACCTCODE WACCOUNT UNTIL ARFEND
34

Figure 12-28 Program Listing (Page 1 of 2)
12–30 VISION:Results Reference Guide

RELSORT and RETSORT Commands
Sysout

Example 2 Master File to be Updated

A transaction file contains the information that is to be used to update the master
file. However, the transaction file must first be sorted into key sequence. The
transaction file can contain more than one record for a given key.

35 LIST SUPPRESS (WGROUP WACCTCODE) WACCOUNT WNAME
WBALANCE

36 ACCEPT
37
38 ON CHANGE IN WGROUP
39 LIST ' ' WITH EJECT AFTER
40 T1 'VISION:RESULTS REPORT 1' WITH 2 AFTER
41 T1+30 DYLDATE
42 T1+90 DYLPAGE

Figure 12-28 Program Listing (Page 2 of 2)

01/15/99 VISION:RESULTS REPORT 1 PAGE 1

GROUP ACCOUNT ACCOUNT NAME BALANCE
CODE NO.

1 MO 2002922 FLOWERS, ETHEL 2,541.70 <----
6001327 CARLON, MR MARIANO 118.00 <----
6007724 HARRINGTON, RUTH 37.60
6012132 ZENZOLA, MICHAEL 30.20
6017479 BERSON, ANNA 3.00

Figure 12-29 System Output for Listing Page 1

01/15/99 VISION:RESULTS REPORT 1 PAGE 2

GROUP ACCOUNT ACCOUNT NAME BALANCE
CODE NO.

2 FO 8011508 HUGHES, RAY 178.70
IO 2002299 PLACIDO, ORTEGA 413.58

6218113 AGUIERA, EMILIO 108.44
KO 1014021 WOOD, ROGER D 1,702.42

2005131 WICINSKI, ALEXANDER 848.71
6088678 TYLER, JAMES 305.64
7014996 OLVERA,CLEMENTINE 106.74
7072694 WARTON, LEE 224.00

MF 1013904 HINDERLICH, PAUL 1,142.31
1014889 SULLIVAN, JOSEPH C 337.70
4003896 PETERSON, WALTER 196.00

MI 2004739 STEIDLEY, GURTHA N 136.23
6008321 YEAGER, CLIFFORD M 140.00

MN 2005956 SOTO, RUFINO 125.29
MO 2002922 FLOWERS, ETHEL 2,541.70 <----

6001327 CARLON, MR MARIANO 118.00 <----
MT 2014017 HERNANDEZ, CARLOS 258.00
MU 1014706 HOLLENBECK, HOME TR 406.46

6105904 CRESS,NELLIE 176.00

Figure 12-30 System Output for Listing Page 2
Using the SORT Command 12–31

RELSORT and RETSORT Commands
Program Narrative
This program is an example of using the RELSORT and RETSORT commands
without actually executing the SORT command. Therefore, the SORT command is
in a never-executed position (Statement 76) within the VISION:Results program.
The program consists of a very short main-line piece of logic (Statements 23
through 25) that performs the input-to-sort logic and then performs the
output-to-sort logic, and finally issues a STOP command. The input-to-sort logic
(Statements 27 through 33) reads a record from the input file. If the record is an A
type record, it is passed to SORT using the RELSORT command. When the input
file comes to end, the performed logic is exited.

The output-to-sort logic (Statements 35 through 66) is composed of retrieving
transaction records from SORT using the RETSORT command, reading the master
file, and keeping both files in sync on the key field. When the first execution of the
RETSORT command occurs (Statement 36), the SORT automatically enters its
output (retrieval) phase. The ON END OF SORTING logic (Statements 78 through
80) moves high-values into the transaction key, so the match/merge logic
continues to operate correctly when the branch back into the performed logic is
taken (GOTO OUTSORT2).

Program Listing

1 FILE TRANFILE FB 80 STATUS TRANEND
2 TRANKEY 3 1
3 TRANCODE 1 4
4 TRANFLDS 76 5
5 TRANFLD1 5 5
6 TRANFLD2 4
7
8 FILE MSTRFILE FB 80 STATUS MSTREND
9 MSTRREC 80 1
10 MSTRKEY 3 1
11 MSTRFLDS 76 4
12 MSTRFLD1 5 4
13 MSTRFLD2 4
14
15 FILE OUTMSTR FB 80 OUTPUT FROM OUTMSTR
16 OUTREC 80 1
17 OUTKEY 3 1
18 OUTFLDS 76 4
19 OUTFLD1 5 4
20 OUTFLD2 4
21
22 MAIN:
23 PERFORM INPSORT TO INPSORTX
24 PERFORM OUTSORT TO OUTSORTX
25 STOP
26
27 INPSORT:
28 READ TRANFILE
29 IF TRANEND EQ 'E' GOTO INPSORTX ENDIF
30 IF TRANCODE EQ 'A' RELSORT ENDIF ; <----
31 GOTO INPSORT
32
33 INPSORTX:
34
35 OUTSORT:
36 RETSORT ; <----
37 OUTSORT1:

Figure 12-31 Program Listing (Page 1 of 2)
12–32 VISION:Results Reference Guide

RELSORT and RETSORT Commands
38 READ MSTRFILE
39 IF MSTREND EQ 'E'
40 AND TRANKEY EQ X'FFFFFF'
41 STOP
42 ENDIF
43 OUTSORT2:
44 IF MSTRKEY LT TRANKEY
45 MOVE MSTRREC TO OUTREC
46 WRITE OUTMSTR
47 GOTO OUTSORT1
48 ENDIF
49 IF MSTRKEY GT TRANKEY
50 MOVE TRANKEY TO OUTKEY
51 MOVE TRANFLDS TO OUTFLDS
52 WRITE OUTMSTR
53 RETSORT ; <----
54 GOTO OUTSORT2
55 ENDIF
56 IF MSTRKEY EQ X'FFFFFF'
57 GOTO OUTSORTX
58 ENDIF
59 OUTSORT3:
60 IF MSTRKEY NE TRANKEY
61 MOVE MSTRREC TO OUTREC
62 WRITE OUTMSTR
63 READ MSTRFILE
64 GOTO OUTSORT2
65 ENDIF
66 PERFORM UPDATEREC TO UPDATERECX
67 RETSORT ; <----
68 GOTO OUTSORT3
69
70 OUTSORTX:
71
72 UPDATEREC:
73 MOVE TRANKEY TO OUTKEY
74 MOVE TRANFLDS TO OUTFLDS
75 * . .
76 * . .--- ADDITIONAL UPDATE LOGIC
77 * . .
78 UPDATERECX:
79
80 SORT TRANFILE USING TRANKEY UNTIL TRANEND ; <----
81
82 ON END OF SORTING
83 MOVE X'FFFFFF' TO TRANKEY
84 GOTO OUTSORT2

Figure 12-31 Program Listing (Page 2 of 2)
Using the SORT Command 12–33

Limitations and Constraints
Limitations and Constraints
� Only one SORT command is allowed per VISION:Results program request.

For OS/390 only, if the record length is not coded on the FILE statement,
VISION:Results accesses the information from the JCL or file label at compile
time and places the record length into the generated SORT control statement.
Otherwise, the record length must be coded on the FILE statement.

� The SORT command cannot be subordinate to an IF statement.

IF ACCOUNT EQ 'WO' REJECT ENDIF
SORT ARFILE USING ACCOUNT

� The SORT command cannot be subordinate to an ON ONE command.

� A file that is USED in a secondary request cannot be specified as the operand of
the UNTIL Filename on a SORT statement.

USE ARFILE

� The SORT command can only be used at detail time processing. It cannot be
subordinate to an ON CHANGE, ON FINAL, ON END OF SORTING, or ON
END OF INPUT statement.

� The SORT command and the ON END OF INPUT command are mutually
exclusive. They cannot be used in the same program. SORT users must use the
ON END OF SORTING command.

� When using the ON END OF SORTING command, a STOP command must be
issued.

� The ON END OF SORTING command must precede any ON CHANGE IN or
ON FINAL commands.

� Never use the ACCEPT or REJECT commands subordinate to ON END OF
SORTING.

� If trailer records, and so on, are generated at ON END OF SORTING, use the
WRITE command throughout your procedure logic.

� Because ON END OF SORTING is a detail-time process, the SUM, SUMn, or
PRIOR of any field is prohibited.

� Do not use SORT within a STOP statement in a VISION:Results program.
Because of the structure of the SORT facility, unpredictable results can occur
when a SORT command is performed. Use the RELSORT and RETSORT
commands instead.

� A sort key cannot be greater than 255 bytes in length.

� The starting location of a sort key must be within the first 4092 bytes of the
record or work area being sorted.
12–34 VISION:Results Reference Guide

Problem Areas
Problem Areas
A return code of 500 is issued by VISION:Results when a non-zero return code has
been returned from your installation's sort/merge program. Generally this occurs
when large records being sorted have exceeded available memory, there is not
enough memory available to begin with, or insufficient space has been allocated
for the sort work files. If this occurs, take one of the following actions.

OS/390
� VISION:Results for OS/390 defaults to a minimum of 36K and a maximum of

100K for sort work memory. These values can be overridden by the DYLINSTL
parameter SORTMEM=(minimum, maximum). See the VISION:Results
Installation Guide for more information on the DYLINSTL macro.

� When using SORT, increase the region size to at least 250K to maximize full
memory utilization.

� Add or increase the nK keyword on your SORT statement. A 300K region is
required for this example:

SORT ARFILE 200K USING ACCOUNT TRANS

� Increase the number of SORT work files (JCL for OS/390).

VSE
� VISION:Results for VSE defaults to the available unused partition space for sort

work memory.

� Increase the partition size from 200K to 250K. Virtual users should increase the
SIZE parameter on the EXEC statement (for example, SIZE=250K). Increase the
number of sort work files (JCL and WORK n for VSE).

An abend of 4001 occurs when the user reenters the SORT after all sorted records
have been exhausted.

OS/390/VSE
Specify ON END OF SORTING and set a status indicator to E. When
VISION:Results senses that all sorted records have been exhausted, it enters this
logic, setting the status indicator. In your program logic, an IF statement can be
used to check the status indicator and take the necessary action. Example 10 on
page 12-20 demonstrates this technique.

Under OS/390, you can periodically run into an 0C4 or 0C5 abend because the sort
has not been completed (that is, all the records were not returned from the SORT
before a STOP was executed). This condition normally occurs when two or more
files are being processed in the same program. Example 4 on page 12-10 shows you
how to prevent this condition. To prematurely end the output phase of the SORT,
see Example 10 on page 12-20.
Using the SORT Command 12–35

Sort Considerations
Sort Considerations

VSE
� The sort facility of VISION:Results starts the sort program with a LOAD

instruction using the program name SORT. If the sort/merge program is
named something other than SORT, indicate the name using the DYLINSTL
parameter SORTNAM when creating your customizing module. See the
VISION:Results Installation Guide for information on the DYLINSTL macro.

� Because of the combined memory requirements of VISION:Results and SORT,
conserve memory as much as possible. If memory is limited, your
VISION:Results input and output FILE statements should indicate single
buffering (ONEBUF).

OS/390
� The sort facility of VISION:Results starts the sort program with LINK using the

program name SORT. If the sort/merge program is other than SORT, indicate
the name using the DYLINSTL parameter SORTNAM when creating your
customizing module. See the VISION:Results Installation Guide for information
on the DYLINSTL macro.

� Because of the combined memory requirements of VISION:Results and SORT,
conserve memory as much as possible. If memory is limited, your
VISION:Results input and output file DD statements should indicate single
buffering in the DCB parameter (DCB=BUFNO=1).
12–36 VISION:Results Reference Guide

OS/390 JCL Requirements
OS/390 JCL Requirements
The OS/390 JCL requires SORTLIB, SYSOUT, and SORTWK01-nn DD statements
in addition to those required by VISION:Results and your FILE definitions.
SORTIN and SORTOUT DD statements are not needed.

VSE JCL Requirements
The VSE JCL requires SORTWK1-n DLBL/EXTENT statements in addition to
those required by VISION:Results. The SYS number begins with SYS001. SORTIN
and SORTOUT DLBL/EXTENT statements are not required.

DISK input and output

Required only if using the
letter writing, sampling,
or regression functions

Required only if SORT is
used

Input file JCL if DISK

Output file JCL if DISK

//RESULTS JOB (accounting information...)
//STEP01 EXEC PGM=DYL280,REGION=250K,TIME=2
//STEPLIB DD DSN=your.load.library,DISP=SHR
//SYSCOPY DD DSN=your.copylib,DISP=SHR
//SYS280R DD SYSOUT=A
//SYSPRINT DD SYSOUT=A
//AUDPRINT DD SYSOUT=A
//AUDWORK DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//AUDEPF DD UNIT=SYSDA,SPACE=(TRK,(10,5)),
// DCB=(BLKSIZE=800,LRECL=80,RECFM=FB)
//AUDCBF UNIT=SYSDA,SPACE=(TRK,(10,5)),
// DCB=BLKSIZE=1000

//SYSOUT DD SYSOUT=A
//SORTLIB DD DSN=your.sortlib.dataset,DISP=SHR
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)

//FILEA DD DSN=your.VISION:Results.demofile,DISP=SHR

//FILEB DD DSN=your.output.file,DISP=(,PASS),
// UNIT=SYSDA,SPACE=(TRK,(5,5))

//SYSIN DD *

your VISION:Results program

/*
//

Figure 12-32 OS/390 JCL Requirements
Using the SORT Command 12–37

CMS FILEDEF Requirements
CMS FILEDEF Requirements

Note: AUDPRINT, AUDWORK, AUDCEF, and AUDEPF file definitions are only
required when using the letter writing, sampling, and regression functions.

INPUT file JCL if
DISK

Output file JCL

Assign only if
IJSYS04 is not a
standard label file

Bold text is required
only if using the
letter writing,
sampling, or
regression functions

 Required only if
SORT is used

// JOB RESULTS

// ASSGN SYS012,X'cuu'
// DLBL FILEA,'your.input.file'
// EXTENT SYS012,...extent information

// ASSGN SYS021,X'cuu'
// DLBL FILEB,'your.output.file'
// EXTENT SYS021,...extent information

// ASSGN SYS004,X'cuu'
// DLBL IJSYS04,'VISION:RESULTS WORK FILE',0
// EXTENT SYS004,111111,1,0,20,20

// ASSGN SYS008,X'cuu'
// DLBL SYS008,'WORK FILE2',0
// EXTENT,SYS008,...extent information

// ASSGN SYS009,X'cuu'
// DLBL SYS009,'LETTERS ETC SYSLST',0
// EXTENT,SYS009,...extent information

// ASSGN SYS010,X'cuu'
// DLBL SYS010,'WORK FILE3',0
// EXTENT,SYS010,...extent information

// ASSGN SYS011,X'cuu'
// DLBL SYS011,'WORK FILE4',0
// EXTENT,SYS011,...extent information

// ASSGN SYS001,X'cuu'
// ASSGN SYS002,X'cuu'
// ASSGN SYS003,X'cuu'
// DLBL SORTWK1,'VISION:RESULTS SORT WORK 1',0
// EXTENT SYS001,...extent information
// DLBL SORTWK2,'VISION:RESULTS SORT WORK 2',0
// EXTENT SYS002,...extent information
// DLBL SORTWK3,'VISION:RESULTS SORT WORK 3',0
// EXTENT SYS003,...extent information

// EXEC DYL280,SIZE=250K
OPTION DISK dddd *

your VISION:Results program
/*
/&

Figure 12-33 VSE JCL Requirements

'cuu' refers to the
device address.

ERASE SYSPRINT LISTING
ERASE AUDPRINT LISTING
ERASE SYS280R LISTING
ERASE SYS004 DATA
ERASE AUDWORK DATA
ERASE AUDCBF DATA
ERASE AUDEPF DATA

FILEDEF SYSPRINT DISK SYSPRINT LISTING A (DISP MOD)
FILEDEF AUDPRINT DISK AUDPRINT LISTING A (DISP MOD)
FILEDEF SYS280R DISK SYS280R LISTING A

FILEDEF SYS004 DISK SYS004 DATA A
FILEDEF AUDWORK DISK AUDWORK DATA A
FILEDEF AUDCBF DISK AUDCBF DATA A
FILEDEF AUDEPF DISK AUDEPF DATA A
FILEDEF INFILE DISK DYLDATA DATA A
FILEDEF SYSIN DISK DYLPROG DATA A
DYL280

Figure 12-34 CMS FILEDEF Requirements

Tells CMS that a disk file
with the file name
DYLDATA and the file
type DATA is referred to
as INFILE in your
VISION:Results program.
In this example, this is
your input data file.

Tells CMS that a disk file with
the file name DYLPROG and
the file type DATA is referred
to as SYSIN by
VISION:Results. This data set
contains your program
statements.
12–38 VISION:Results Reference Guide

Chapter
13 U
sing the CALL Command
VISION:Results allows external subroutines and subprograms to be started using
the CALL command. In this chapter, the term subroutine refers to those external
routines COBOL programmers often called subprograms. External subroutines
can be written in COBOL, FORTRAN, PL/I, or Assembler language. The function
of the external subroutine is dependent upon the particular application. Special
input and output considerations, database files, and Julian to Gregorian date
conversion are just a few of the functions that can be handled by an external
subroutine.

The CALL statement indicates the external subroutine to be started and,
optionally, a parameter list of data areas (data names) required by the called
subroutine.

The format of the CALL command is:

Subroutine Name
The subroutine name immediately follows the CALL command. This is the phase
name of the subroutine in VSE; in OS/390, it is the member name of the subroutine
in a load library.

CALL subroutine name [nK] [CDLOAD | NOCDLOAD] [USING |dataname|literal|
D'dataname|E'dataname|L'dataname|O'dataname|P'dataname| T'dataname]

Figure 13-1 CALL Command Format
Using the CALL Command 13–1

nK
nK
Note: This section only applies to VSE.

If CDLOAD is coded on the CALL statement, or was specified on the OPTION
statement or in the DYLINSTL macro, the nK (size) parameter is not required. If
CDLOAD is not in effect, the following applies:

� The VSE user additionally is required to supply the memory requirements for
the subroutine in nK, where nK is in 1K increments from 1 to 999.

� VISION:Results defaults to 4K on the CALL statement. Use the default unless
memory constraints require that you specify a smaller memory size.

CDLOAD, NOCDLOAD
Note: This section only applies to VSE.

The CDLOAD parameter causes the named subroutine to be loaded using the VSE
CDLOAD facility. The subroutine is loaded into the partition’s dynamic area,
rather than into storage reserved by the compiler. Because of this, the size
parameter on the CALL is not needed—VSE determines the storage required.

If the size parameter was previously used to reserve additional storage at the end
of the phase for the subroutine’s use, this storage is no longer available. In this case,
the CALL should specify NOCDLOAD and use the size value as before. CDLOAD
or NOCDLOAD on the CALL statement overrides any OPTION statement or
DYLINSTL specification.

To further assist you, a table containing names of phases that should not be loaded
with CDLOAD has been provided. VISXLOAD is a phase that can be modified by
your installation by adding any phase names that must not be loaded using
CDLOAD. Two macros, VISXLOAD and VISXEND, have been provided for this
purpose and were added to the same library containing the DYLINSTL macro
during the compiler’s installation. Use the following example to add new names to
the VISXLOAD table.

// JOB (installation standard job statement)
13–2 VISION:Results Reference Guide

USING
See the VISION:Results for VSE Installation Guide for an example of JCL used to
assemble and link edit a phase.

// OPTION CATAL
PHASE VISXLOAD,0

// EXEC ASSEMBLY
COPY VISXLOAD
COPY VISXEND
VISXLOAD
VISXLOAD PHASE=sub1
VISXLOAD PHASE=sub2
.
.

VISXEND
END

/*
// EXEC LNKEDT
/&

In this example, subroutines sub1 and sub2 are excluded from the CDLOAD
process. A subroutine’s name in the VISXLOAD table prevents it from being
included in the CDLOAD process and overrides any CDLOAD specification in the
CALL or OPTION statements or the DYLINSTL macro.

USING
The keyword USING, followed by the parameter list, is optional and need not be
used if the called subroutine does not require a parameter list. If a parameter list is
required, the data names must be separated by spaces. The data names must be
coded in the order expected by the subroutine.

Parameters
Your system is the only limit to the number of parameters that can be passed.

CALL CHECKPT
CALL CHECKR 6K VSE
CALL CHECKIT USING FIELD1 FIELD2 OS/390
CALL CHECKIT CDLOAD USING FIELD1 FIELD2 VSE
CALL CHECKIT 1K USING FIELD1, FIELD2, FIELD3, OS/390 & VSE

FIELD4, FIELD5, FIELD6,
FIELD7

CALL DATBAS USING FIELD1 FIELD2 FIELD3 FIELD4 OS/390
FIELD5 FIELD6 FIELD7

CALL RUNSUB USING DATAFLD1 'LITERAL 1' DATAFLD2 L'DATAFLD3
Using the CALL Command 13–3

Parameters
Attributes of data fields can be passed to a subroutine. This is achieved by using a
parameter composed of the data field name preceded by an apostrophe and a
specific letter. The special attributes are as follows:

dataname The dataname can be from 2 to 50 alphanumeric characters and
must start with an alphabetic character. The installation default
is 50 characters.

literal A character or alphanumeric value expressed by enclosing it in
single or double quotation marks. The parameter passed consists
of the literal, preceded by a 2-byte binary field containing the
length of the literal.

D’dataname The parameter passed is 2 bytes—the letter D followed by a
1-byte zoned-decimal number that represents the number of
digits to the right of the assumed decimal point in the data name
field.

E’dataname The parameter passed is 2 bytes—the letter E followed by the
letter (E, A, Z, B, P, D, S, and so on) that represents how the data
name field is to be edited when listed in the report.

L’dataname The parameter passed is 3 bytes—the letter L followed by a
2-byte binary number that represents the length of the data name
field.

O’dataname The parameter passed is 3 bytes—the letter O followed by a
1-byte zoned-decimal number that represents the number of
digits to the right of the printed decimal point when the data
name field is listed in the report. If the number of digits to print
to the right of the decimal point is not specified, the 1-byte
number is blank.

P’dataname The parameter passed is 4 bytes—the letter P followed by a
3-byte zoned-decimal number that represents the size of the
print field when the data name field is listed in the report. If the
print field size is not specified, the 3-byte number is blank.

T’dataname The parameter passed is 2 bytes—the letter T followed by a letter
(N for numeric, C for character, P for packed, and B for binary)
that describes the data name field type.
13–4 VISION:Results Reference Guide

Return Code RETCODE
Return Code RETCODE
You can gain accessibility to the return code RETCODE (in register 15) from a
called subroutine. In the DYLINSTL macro, code:

RETCODE=Y

In addition, include the following program logic:
WORKAREA
XX 2
REDEFINE XX
YY 2 BI

CALL subroutine USING parameters
MOVE DYLCOMRG TO XX
IF YY NE 0
handle non-zero return-code

ENDIF

See the VISION:Results Installation Guide for more information on the DYLINSTL
macro.

External Subroutine Considerations
The link set up by VISION:Results to an external subroutine conforms to COBOL,
Assembler, PL/1, and FORTRAN conventions. See subsequent sections for a more
information about linkage conventions.

External subroutines must be link edited into a Phase/Core Image Library (VSE)
or a load library (OS/390). Under OS/390, the load library must be defined by a
JOBLIB or STEPLIB DD statement if it is not a library that is automatically
referenced by the system. Under VSE, external subroutines to be invoked by
VISION:Results must be relocated dynamically by a special routine or loader.

During the initialization phase, all subroutines named in CALL statements are
loaded into memory. During the execution phase, they are entered whenever the
associated CALL statement is encountered. Only one copy of an external
subroutine is ever loaded even though it can appear in more than one CALL
statement.

Multiple entry points are not supported, so the external subroutine must have only
one entry point.

Language Environment Considerations
You can CALL subroutines written in any LE-compliant language, including
COBOL, C, PL/I, FORTRAN, and Assembler. You can also CALL the IBM LE
Service Routines, such as CEEDATE and CEEDAYS.
Using the CALL Command 13–5

COBOL Subroutine Considerations
You can request this as a default by coding the DYLINSTL parameter LE=Y, which
overrides the DYLINSTL parameter COBENV=Y. If both are specified,
VISION:Results issues a warning message which states that the COBENV option
will be ignored.

You can specify or override this for a single run by specifying LE | NOLE on the
OPTION statement.

OPTION LE causes VISION:Results to establish the LE environment even if the
DYLINSTL macro did not specify LE=Y. OPTION NOLE prevents VISION:Results
from establishing the LE environment even if the DYLINSTL macro did specify
LE=Y. The options can be specified with OPTION FREEZE and OPTION
RESTORE; however, the RESTORE with LE only works if the program was frozen
with VISION:Results Release 5.0 or later.

See the VISION:Results Installation Guide for more information on the DYLINSTL
macro.

COBOL Subroutine Considerations
When a COBOL subroutine is called, its LINKAGE SECTION must describe data
areas that correspond to those passed in the parameter list. These are the data
fields the COBOL external subroutine is USING upon entry.

The following is an OS/390 VISION:Results program invoking an ANSI COBOL
subroutine to move an input record to two WORKAREAs defined in the program.

FILE SYSIN CARDS <---- OS/390
RECORDAREA 80

WORKAREA
REC_WORK_1 80
REC_WORK_2 80

CALL COBPGM USING RECORDAREA REC_WORK_1 REC_WORK_2
PRINT REC_WORK_1
FIN

The following is a VSE VISION:Results program invoking an ANSI COBOL
subroutine to move an input record to two WORKAREAs defined in the program.

FILE SYSIPT CARDS <---- VSE
RECORDAREA 80

WORKAREA
REC_WORK_1 80
REC_WORK_2 80

CALL COBPGM 8K USING RECORDAREA REC_WORK_1 REC_WORK_2
PRINT REC_WORK_1
FIN

OPTION [LE | NOLE]

Figure 13-2 LE or NOLE
13–6 VISION:Results Reference Guide

COBOL Subroutine Considerations
ANSI COBOL also allows the entry statement.

If VISION:Results is to use this entry, COBENT (which is identified by the
ENTRY ’COBENT’ in the previous program) must be included in the link edit
control statements.

IDENTIFICATION DIVISION.
PROGRAM-ID. COBTST.
ENVIRONMENT DIVISION.

.

.

.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
77 AREAA PICTURE X(80).
77 AREA1 PICTURE X(80).
77 AREA2 PICTURE X(80).
PROCEDURE DIVISION.
COBENT.

ENTER LINKAGE.
ENTRY 'COBENT' USING AREAA AREA1 AREA2.
ENTER COBOL.

PROCESS-REC.
MOVE AREAA TO AREA1.
MOVE AREAA TO AREA2.

RETURN-LINKAGE.
GOBACK.

Figure 13-3 F COBOL Example

//LKED.SYSIN DD *
ENTRY COBENT
NAME COBPGM

Figure 13-4 COBENT OS/390 Example

COMPILE AND LINK
// JOB
// OPTION CATAL
PHASE COBPGM,*

// EXEC FCOBOL
.
.

Cobol program
/*
ENTRY COBENT

// EXEC LNKEDT
/&

LINK (OBJECT MODULE OF COBOL PROGRAM
IN RELOCATABLE LIBRARY)

// JOB
// OPTION CATAL
PHASE COBPGM,*
INCLUDE object module name
ENTRY COBENT

// EXEC LNKEDT
/&

Figure 13-5 COBENT VSE Example
Using the CALL Command 13–7

COBOL Subroutine Considerations
If the PROCEDURE DIVISION USING format is used in an ANSI COBOL
program, the ENTRY statement need not be included in the link edit JCL.
However, Computer Associates recommends that you always supply the ENTRY
statement when the PROCEDURE DIVISION USING statement is the
PROGRAM-ID name.

//LKED.SYSIN DD * <---- OS/390
ENTRY COBTST
NAME COBPGM

Note: If the LE option is chosen, the rest of this section does not apply.

Under VSE, ANSI COBOL, and VS COBOL II for VSE/ESA, programs must know
whether they are main programs or called subroutines. These COBOL programs
consider themselves to be main programs unless informed otherwise. The
AUTOLINK feature of the linkage editor automatically includes the relocatable
module, ILBDMNS0, that identifies the COBOL program as a main program. The
module following must therefore be assembled as an object deck identifying the
COBOL program as a called subroutine. This CSECT, when included at link edit
time, defines the COBOL program as a called subroutine. A program called by
VISION:Results is considered a subroutine.

// EXEC ASSEMBLY
ILBDMNS0 CSECT

DC X'FF000000000000000000000000000000'
END

/*

Note: This module can be cataloged in your object or relocatable library using a
name other than ILBDMNS0, such as DUMYMNS0.

IDENTIFICATION DIVISION.
PROGRAM-ID. COBTST.
ENVIRONMENT DIVISION.

.

.

.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
77 AREAA PICTURE X(80).
77 AREA1 PICTURE X(80).
77 AREA2 PICTURE X(80).
PROCEDURE DIVISION USING AREAA AREA1 AREA2.
PROCESS-REC.

MOVE AREAA TO AREA1.
MOVE AREAA TO AREA2.

RETURN-LINKAGE.
GOBACK.

Figure 13-6 ANSI COBOL Example
13–8 VISION:Results Reference Guide

COBOL Problem Areas
This version of ILBDMNS0 must be cataloged in the same phase with your COBOL
program in the Core Image Library.

// JOB <---- VSE
// OPTION CATAL
PHASE COBPGM,*
INCLUDE COBTST object module
INCLUDE DUMYMNS0
ENTRY COBTST

// EXEC LNKEDT
/*
/&

The reference to ILBDMNS0 from the COBOL program is resolved by the
AUTOLINK feature automatically unless the above is performed.

Under OS/390, VS COBOL II subroutines can be called by VISION:Results after
the COBOL environment is set up. VS COBOL II and LE/370 COBOL require a
COBOL run-time environment to be established prior to the first CALL of the
COBOL program if the program is to be treated as a subroutine.

Failing to establish the environment can result in U1044, U1010, S0C1, or S0C4
abends, as well as reinitialization of the environment on every CALL (causing
excessive CPU usage, and loss of data being maintained in COBOL working
storage). The COBOL run-time environment is automatically established by
VISION:Results if the DYLINSTL macro parameter COBENV=Y was specified. See
the VISION:Results Installation Guide for more details.

If you do not want the automatic establishment of the COBOL environment, the
VISION:Results program must call IBM routine ILBOSTP0 to set the environment
prior to calling any VS COBOL II subroutine. The automatic establishment is the
preferred method.

An additional DYLINSTL macro parameter, COB2NR=Y, is available to allow
proper execution when calling COBOL II subroutines compiled with the NORES
option. Because the COBOL run-time library is not used in a NORES application,
specifying COB2NR overrides the COBENV automatic environment option.
Specifying COB2NR on the OPTION statement overrides a DYLINSTL-specified
COBENV for a given program.

COBOL Problem Areas
� An 0C1 occurs in an OS/390 environment (or an 0C4 with IBM/VS 2.4 COBOL

Compiler) if the COBOL program (external) has been compiled with the
ENDJOB option; the input/output block (IOB) appears to have been released
by the VS system. To eliminate this problem, recompile the subroutine without
the ENDJOB option.

� An unpredictable system interrupt occurs at execution time if the VSE ANSI
user does not make the subroutine a called program.

� See COBOL Subroutine Considerations on page 13-6.
Using the CALL Command 13–9

Assembler Subroutine Considerations
Assembler Subroutine Considerations
Upon entry to an Assembler external subroutine, the register contents are as
follows.

In addition to procedure logic functions, your external subroutines written in
Assembler can read and write records. They can also CALL, LOAD, or LINK
(OS/390) to other external subroutines. Under VSE, if your module has to LOAD
any other phase, byte 36 (hex 24) of the VSE Partition Communications Region
contains the address of the uppermost byte of memory used by VISION:Results.

Because SPIE (OS/390) and STXIT/PC (VSE) macros are used by VISION:Results
for error recovery and analysis, avoid using these macros in an external
subroutine.

Register Contents

1 Address of the parameter list. The list is composed of fullword
addresses of each data item passed in the VISION:Results parameter
list. The last address in the list has its high order bit set to 1.

2-12 VISION:Results’ registers. They must be saved and restored by the
external subroutine.

13 Address of an 18-fullword save area in the calling program. This can
be used by the external subroutine to hold VISION:Results’
registers.

14 Return address. The external subroutine returns to the calling
program using register 14.

15 Entry point of the called external subroutine.
13–10 VISION:Results Reference Guide

Assembler Subroutine Considerations
The following example demonstrates a VISION:Results program invoking an
Assembler external subroutine. VISION:Results calls a table search subroutine to
locate a designated entry (ARGUMENT) in a table (TABLE) and places it in the
work area ENTRY. The ARGUMENT, TABLE, and ENTRY data area addresses are
being passed to one subroutine, TBLSRCH.

TBLSRCH CSECT
STM 14,12,12(13) *SAVE REGISTERS
LR 3,15 *ENTRY POINT ADDRESS TO BASE REG
USING TBLSRCH,3 *ESTABLISH ADDRESSABILITY
ST 13,SAVE+4 *SAVE CALLING PROGRAMS REG 13
LA 5,SAVE *ADDRESS OF CALLED SAVE AREA
ST 5,8(,13) *CALLED PGM SAVE AREA SAVED IN

* *CALLING PROGRAM SAVE AREA
LR 13,5 *REG 13 POINT TO CALLED SAVE AREA
LM 9,11,0(1) *LOAD PARAMETER ADDRESSES

* REGISTER 9 = ADDRESS OF ARGUMENT
* REGISTER 10 = ADDRESS OF TABLE
* REGISTER 11 = ADDRESS OF ENTRY

.

.

.
(table search logic) .

.
TBLEXIT L 13,SAVE+4 *RESTORE CALLER'S REGISTERS

LM 14,12,12(13)
BR 14 *RETURN TO CALLING PROGRAM

SAVE DC 18F'0'
END

FILE ARMSTR FB 520 2600
.
.

FILE SYSIN CARDS <---- OS/390
.
.

FILE SYSIPT CARDS <---- VSE
.
.

WORKAREA
TABLESP 2000
ARGUMENT 10

WORKAREA
ENTRYSP 40
.
.
.

(load table information into work area TABLESP)
.
.
.

CALL TBLSRCH USING ARGUMENT TABLESP ENTRYSP
.
.
.

Figure 13-7 Assembler External Subroutine
Using the CALL Command 13–11

PL/I Subroutine Considerations
PL/I Subroutine Considerations
If a PL/I subroutine is called, you must call an Assembler language subroutine that
supplies the necessary linkage to the PL/I program. An Assembler language
subroutine called PL1EXIT has been supplied with VISION:Results in the source
library created during the installation process. See the VISION:Results Installation
Guide for details.

PLIEXIT must be assembled and the object module placed in an object library.

OS/390

VSE

The PL/I program can be compiled and link edited with the PLIEXIT program as
illustrated in the following example.

OS/390

//ASM EXEC PGM=IEV90,REGION=3072K,PARM='OBJECT,NODECK'
//SYSPRINT DD SYSOUT=*
//SYSPUNCH DD DUMMY
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//SYSIN DD DSN='YOUR.RESULTS.SOURCE.LIB(PLIEXIT)',DISP=SHR
//SYSLIN DD DSN=OBJECT.LIB(PLIEXIT),DISP=SHR

Figure 13-8 OS/390 PL/I Subroutine

// DLBL IJSYSPH,'==OBJECT',0
// EXTENT SYSPCH,VVVVVV,1,0,1,20

ASSGN SYSPCH,DISK,VOL=VVVVVV,SHR
// OPTION DECK
// EXEC ASSEMBLY

PUNCH 'ACCESS SUBLIB=DYLLIB.OBJ'
PUNCH 'CATALOG PLIEXIT.OBJ REPLACE=YES'

(PLIEXIT source)
/*

CLOSE SYSPCH,PUNCH
// DLBL DYLLIB,'DYL.LIBRARY'
// EXTENT SYS006,VVVVVV
// ASSGN SYS006,DISK,VOL=VVVVVV,SHR
// DLBL IJSYSIN,'==OBJECT'
// EXTENT SYSIPT,VVVVVV

ASSGN SYSIPT,DISK,VOL=VVVVVV,SHR
// EXEC LIBR
/*

CLOSE SYSIPT,READER

Figure 13-9 VSE PL/I Subroutine

//COMP EXEC PGM=IEL0AA,REGION=500K,
// PARM='A(F),M,MAP,NC(E),NEST,NUM,
// OF,STG,X(F),NIS,LIST,OPT(2)'
//SYSPRINT DD SYSOUT=*
//SYSIN DD DSN=SOURCE.LIB(PLILKUP),DISP=SHR
//SYSLIN DD DSN=&&SYSLIN,DISP=(MOD,PASS),UNIT=SYSDA,

Figure 13-10 OS/390 PL/I Program Compiled and Link Edited with PLIEXIT (Page 1
of 2)
13–12 VISION:Results Reference Guide

PL/I Subroutine Considerations
VSE

The following example demonstrates a VISION:Results program invoking a PL/I
external subroutine. The program calls a code lookup subroutine (PLILKUP) to
locate a code (WKCODE) in a table and place the result in the work area
(WKDESC).

// SPACE=(CYL,(2,1,0)),DCB=(BLKSIZE=400)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1),,CONTIG),
// DCB=BLKSIZE=1024
//LKED EXEC PGM=IEWL,PARM='MAP,LET,LIST'
//SYSLMOD DD DSN=LOADLIB,DISP=SHR
//SYSLIB DD DSN=SYS1.PLIBASE,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(2,1))
//SYSPRINT DD SYSOUT=*
//OBJLIB DD DSN=OBJECT.LIB,DISP=SHR
//PLIMOD DD DSN=&&SYSLIN,DISP=(OLD,DELETE)
//SYSLIN DD *
INCLUDE OBJLIB(PLIEXIT)
INCLUDE PLIMOD
NAME PLILKUP

/*

Figure 13-10 OS/390 PL/I Program Compiled and Link Edited with PLIEXIT (Page 2
of 2)

// OPTION CATAL
PHASE PLILKUP,*
INCLUDE PLIEXIT

// EXEC PLIOPT,SIZE=64K
(PL/I source)

/*
// DLBL DYLLIB,'DYL.LIBRARY'
// EXTENT SYS006,VVVVVV
// ASSGN SYS006,DISK,VOL=VVVVVV,SHR
// LIBDEF OBJ,SEARCH=DYLLIB.OBJ
// LIBDEF PHASE,CATALOG=DYLLIB.PHASE
// EXEC LNKEDT
/*

Figure 13-11 VSE PL/I Program Compiled and Link Edited with PLIEXIT

FILE MASTER FB 520 2600
:

WORKAREA
WKCODE 4
WKDESC 32

:
:

(load code information into work area WKCODE)
:
:

CALL PLILKUP USING WKCODE WKDESC
:
:

FIN

Figure 13-12 Starting a PL/I External Subroutine
Using the CALL Command 13–13

PL/I Subroutine Considerations
The following is an example of the PL/1 program PLILKUP:

PL1EXIT Source Program

PLILKUP : PROC(PARM1) REORDER OPTIONS(MAIN);
DCL PARM1 PTR;
DCL 1 PARMLST BASED(PARM1),

2 CODEPTR PTR INIT(NULL),
2 DESCPTR PTR INIT(NULL);

DCL CODE1 BASED(CODEPTR) CHAR(4);
DCL DESC1 BASED(DESCPTR) CHAR(32);
DCL I FIXED BIN(15,0);
DCL 1 LIST (5) STATIC,

2 CODE CHAR(4) INIT ('0011','0022','1133',
'2244','4567'),

2 DESC CHAR(32) INIT ('POST OFFICE','SCHOOL','BANK'
'HOSPITAL','POLICE STATION');

DO I = 1 TO 5 UNTIL(LIST.CODE(I) = CODE1);
END; /* DO I = 1 ... */
IF I <= 5 THEN DESC1 = LIST.DESC(I);

ELSE DESC1 = '';
END; /* PLILKUP */

Figure 13-13 Example of the PL/1 Program PLILKUP

*** ***
*** PROGRAM: PLIEXIT ***
*** DATE WRITTEN: AUGUST, 1995 ***
*** AUTHOR: COMPUTER ASSOCIATES ***
*** ***
*** FUNCTION: THIS PROGRAM IS CALLED FROM A VISION:RESULTS ***
*** PROGRAM WHICH IN TURN CALLS A PL/I MAIN PROGRAM ***
*** . ***
*** ITS PURPOSE IS TO ELIMINATE THE NEED OF THE ***
*** VISION:RESULTS PROGRAMMER TO SET UP ALL OF THE ***
*** PARAMETERS NEEDED BY PL/I. ***
*** ***

PLIEXIT START 0

B 12(R15)
DC CL8'PLIEXIT ' PROG ID
STM R14,R12,12(R13) SAVE CALLING PROGS REGISTERS
LR R11,R15 OUR BASE
USING PLIEXIT,R11
ST R13,SAVE+4 SAVE CALLING PROGS R13
LA R2,SAVE ADDR OF OUR SAVE AREA
ST R2,8(R13) IN CALLING PROGS AREA
LR R13,R2
ST R1,PARM280 ADDR OF PARM LIST FROM VISION:RESULTS
LA R1,PARM280 ADDR OF ADDR OF PARM LIST
ST R1,PARMPLI
LA R1,PARMPLI ADDR FOR PL/I
ST R1,ALIST
LA R1,ALIST ARGUMENT ADDR
L R15,=V(PLICALLB) CALL PL/I LOAD MODULE
BALR R14,R15
L R13,SAVE+4 RESTORE CALLING PROGS REGISTERS
LM R14,R12,12(R13)
BR R14 RETURN TO CALLING PROGRAM

SAVE DS 9D REGISTER SAVE AREA
LTORG

PARM280 DS A
PARMPLI DS A
ALIST DC A(*-*) ADDR OF ARGUMENT LIST

DC A(ISALEN) ADDR OF LENGTH OF ISA STORGE
DC A(ISAADDR) ADDR OF ISA POINTER

Figure 13-14 PL1EXIT Source Program (Page 1 of 2)
13–14 VISION:Results Reference Guide

Writing a Modify Module
Writing a Modify Module
A module written to use the MODIFY keyword of the FILE statements can be
written in COBOL or Assembler. It must follow the suggestions and limitations for
modules named in CALL statements described in this chapter. Control is passed to
the module immediately following an input operation or immediately prior to an
output operation. Upon entry to the user module, register 13 points to a save area
and register 1 points to a parameter list.

DC A(0) TASK ISA - NOT USED
DC A(0) NUMBER OF CONCURRENT SUBTASKS - NONE
DC A(OPTIONS) ADDR OF OPTIONS WORD
DC A(HPSIZE) ADDR SIZE OF HEAP
DC A(HEAP) ADDR OF HEAP
DC A(HEAPINC) ADDR OF HEAP INCREMENT
DC A(0) ADDR OF SUBTASK HEAP INCREMENT
DC A(ISAINC) ADDR OF ISA INCREMENT
ORG *-4
DC X'80' END OF LIST
ORG

ISALEN DC A(1024*14) ISA LENGTH = 14K
ISAADDR DC A(ISASTOR) ADDR OF ISA

DS 0D
ISASTOR DC 1024XL14'00' ISA, 14K
HEAP DC 1024F'0' HEAP 4K
HPSIZE DC A(*-HEAP) HEAP SIZE = 4K
HEAPINC DC F'4096' HEAP INCREMENT 4K
ISAINC DC F'4096' ISA INCREMENT 4K
*
OPTIONS DC AL1(NOREPORT+STAE,FREEHEAP+BELHEAP,0,0)
*
* DEFINITIONS OF BITS IN OPTIONS BYTE
*
REPORT EQU X'80' FIRST BYTE
NOREPORT EQU X'40'
SPIE EQU X'20'
NOSPIE EQU X'10'
STAE EQU X'08'
NOSTAE EQU X'04'
COUNT EQU X'02'
NOCOUNT EQU X'01'
*
FLOW EQU X'80' SECOND BYTE
NOFLOW EQU X'40'
KEEPHEAP EQU X'20'
FREEHEAP EQU X'10'
ANYHEAP EQU X'08'
BELHEAP EQU X'04'
MKEPHEAP EQU X'02'
MFREHEAP EQU X'01'
*
MANYHEAP EQU X'80' THIRD BYTE
MBELHEAP EQU X'40'
*
R1 EQU 1
R2 EQU 2
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END PLIEXIT

Figure 13-14 PL1EXIT Source Program (Page 2 of 2)
Using the CALL Command 13–15

Writing an EXIT Module
To implement a modify module for a file, use the following phrase in the FILE
statement:

[MODIFY modulename [nK] [SIZE nnnnn] [PARM (IOAREA | WORK |
!dataname!)]]

PARM
If you have supplied a PARM keyword in the FILE statement, the parameters are
passed to the MODIFY subroutine. If no PARM is specified, a default parameter
list is created based on the presence of a SIZE parameter.

SIZE
If there is no SIZE 2 specified, the default parameter list for MODIFY contains one
entry, the address of the record. For an Assembler subroutine, you must reference
the data using the address passed in the parameter list. For COBOL modules, you
must define the record in the LINKAGE SECTION and specify this description in
the ENTRY statement or in the PROCEDURE DIVISION USING statement. In
either language, the user module must modify the record in place.

If a SIZE parameter is specified, the default parameter list for MODIFY contains
two entries: the address of the record and the address of the work area. For an
Assembler subroutine, you can set up addressability to these two areas by using
the addresses in the parameter list.

For COBOL modules, you must describe the record and the work area in the
LINKAGE SECTION and specify these descriptions in the ENTRY statement or in
the PROCEDURE DIVISION USING statement.

For input files, the user module must act upon the data in the first parameter and
place it in the second parameter. For output files, the data must be moved from the
second parameter to the first. VISION:Results read/writes using the first area, but
for logic purposes, is only able to reference the second area.

If you have coded your own PARM, the rules differ. However, if SIZE is specified,
it is still necessary to move to or from the work area in the user module.

Writing an EXIT Module
A module to perform FILE EXIT processing can be written in either COBOL or
Assembler. It must follow the suggestions and limitations outlined for modules
named in CALL statements described in this chapter. The module is invoked
whenever an I/O operation on the specified file is required. When the module is
entered, register 13 points to a save area and register 1 points to a parameter list.
13–16 VISION:Results Reference Guide

Writing an EXIT Module
To implement an EXIT module for a file, use the following phrase in the FILE
statement:

PARM
If you have supplied a PARM keyword on your FILE statement, the parameter list
corresponds to the PARM operands specified there. If there has been no parameter
specified, then VISION:Results sets up a default parameter.

If you have not supplied a PARM keyword on your FILE statement, the parameter
list contains three entries. The first entry is the area where the input record is to be
placed or where the output record is to be written from. The second entry is a
1-byte status field allocated by VISION:Results. It is your responsibility to set this
byte to E when an input file goes to the end of file. During the termination
processing, VISION:Results places an E in this byte and invokes the routine one
last time. It is your responsibility to allow for this and to make sure the file is
closed. The third entry is a 17-byte area containing file characteristics as described
in the FILE statement. The layout of this parameter is as follows.

[EXIT modulename [nK] [SIZE nnnnn] [PARM (IOAREA | WORK |
!dataname!)]]

Figure 13-15 Writing an EXIT Module

Column Description

1-8 file name

9-10 record format

11-12 logical record length in binary

13-14 block length in binary

15 operation type

I input

O output

B both (IO was specified)

16 system number in binary

17 device type

blank tape

X’00’ 2311

X’01’ 2314

X’04’ 3330

X’08’ 3340

X’07’ 3350

X’08’ 3375

X’08’ 3380
Using the CALL Command 13–17

Subroutines Link Edited as AMODE(31)
STATUS
VISION:Results always allocates a STATUS byte for every EXIT-processed FILE,
even if you are providing your own PARM. You can specify a data name for this
byte using the STATUS keyword in the FILE statement. For an input file, it is the
user module’s responsibility to place an E in this byte when the file goes to end of
file. If this is not done, VISION:Results can go into a loop when an attempt is made
to SORT this file.

When a user module is written, check the status byte on entrance to the module. If
the byte contains an E, the module must close the file. This is because:

� During final wrap-up, VISION:Results moves an E to the status byte of each
EXIT-processed FILE and then passes control to each EXIT module. This is
done to give the user module an opportunity to close files during shutdown.

� Whenever a CLOSE command is executed, the user module is called with an E
in the STATUS byte of the FILE statement.

Subroutines Link Edited as AMODE(31)
VISION:Results can be customized to support calling subroutines that have been
linked with AMODE(31) and RMODE(any). Because the most recent releases of
IBM COBOL can easily create such subroutines, VISION:Results allows you to run
on an OS/390 system, or VSE/ESA 1.3 or later, and CALL subroutines created
with COBOL or Assembler that run above the 16-megabyte line.

Subroutines running above the 16-megabyte line can return to VISION:Results
with either a BSM 0,14 or a BR 14 instruction. Subroutines link edited to run below
the 16-megabyte line continue to work without modifications.
13–18 VISION:Results Reference Guide

Chapter
14 U
sing Procedural Commands
This chapter shows you how to get in, around, and out of your VISION:Results
program using the GOTO, NEXT, PERFORM, ACCEPT, REJECT, STOP, and QUIT
commands.

Instructions in the procedure section of your VISION:Results program are
typically executed one after the other:

MOVE FIELDA TO FIELDB
COUNTER1=COUNTER1+1
MOVE FIELDC TO FIELDD
.
.
.

First the MOVE statement is executed, then COUNTER1 is incremented by 1,
followed by another MOVE. When there are no more instructions to execute or a
special logic section (ON END, ON CHANGE, ON FINAL) other than ON ONE is
encountered, an automatic ACCEPT occurs and the logic is exited. The output
phase of the VISION:Results cycle is then entered.

In many of your programs, you can branch backward or forward to execute
statements in other parts of the procedure. Or, you can terminate the run yourself
when you have finished processing. This chapter shows you how to accomplish
these tasks.

This chapter also explains how to use the Dynamic Allocation feature. Dynamic
Allocation allows input and output files to be allocated without providing the JCL
to do so in an OS/390 operating environment, primarily to support APPC/MVS,
which is described in the VISION:Results Toolkit Guide.

Details for using Dynamic Allocation can be found in Dynamic Allocation on
page 14-24, which also contains other commands affected by Dynamic Allocation
and an explanation of error processing.

Commands on page 14-3 discusses directing program execution through and out
of procedure logic. Figure 14-1 demonstrates the methods. Figure 14-2 on
page 14-5 shows how to use the PERFORM statement.
Using Procedural Commands 14–1

Example:

In this example, a file assumed to be in account number sequence is being
processed. Records containing account numbers 03001 through 03999 are listed in
the report. Any record going to the report with an amount over $200.00 is flagged.

Additionally, the status of each selected account is being checked by exiting to a
user routine that returns the status code of the account number being passed to it.
This status code is also listed in the report. An output file of all records except those
containing the account numbers 01029 and 99999 is written. When the 99999 record
is encountered, the run terminates.

FILE ACCFLEI FB 80 800 SYS011; <---- VSE
ACCNUM 5 CH (ACCOUNT’NUMBER) FILLER 56
ACCAMT1 5 PD 2 A (AMOUNT’1)

FILE ACCFLEO OUTPUT FB 80 800 SYS021 FROM ACCFLEI

WORKAREA
OVEFLAG 1 (OVER’200.00) VALUE ’ ’ REINIT
STACODE 1 (ACCOUNT’STATUS) VALUE ’ ’ REINIT

CONTROL ACCNUM

PROCEDURE:
IF ACCNUM EQ ’99999’ STOP ENDIF
IF ACCNUM EQ ’03001’ THRU ’03999’ NEXT
ELSE GOTO DELCHECK ENDIF

CALL GETSTAT USING ACCNUM STACODE
IF ACCAMT1 GT 200.00
MOVE ’*’ TO OVEFLAG

ENDIF
LISTDET:
LIST ACCNUM ACCAMT1 OVEFLAG STACODE
ACCEPT

DELCHECK:
IF ACCNUM EQ ’01029’ REJECT ENDIF

*
ON CHANGE IN ACCNUM
LIST ACCNUM SUM ACCAMT1 WITH 2 BEFORE AND 3 AFTER

ON FINAL
LIST SUM ACCAMT1 ’GRAND TOTAL’

Figure 14-1 Directing Program Execution Example
14–2 VISION:Results Reference Guide

Commands
Commands
This section describes the commands.

GOTO
The command GOTO followed by a tagname causes execution to jump to the
statement immediately following the tagname specified. You can branch
backward or forward in your logic. Do not try to branch to logic that is part of ON
CHANGE or ON FINAL logic or to branch to any logic that is coded after these
kinds of logic.

In the example, the GOTO DELCHECK is branched to if the account number is not
in the range 03001 through 03999. IF ACCNUM EQ 03001 THRU 03999 NEXT
ELSE GOTO DELCHECK ...

A GOTO does not have to be part of an IF statement. It can be an independent
statement:

MOVE FIELDA TO FIELDB
GOTO PROCB

NEXT
The keyword NEXT can appear only in an IF statement. It directs the execution for
either a true or a false condition, but it is not required. It means that if the condition
is met, the statement following the ENDIF terminator is to be executed. NEXT is
used for readability; if left out, it is implied.

In the example, the statement specifies that if the account number is in the range of
03001 through 03999, the CALL GETSTAT statement is executed.

IF ACCNUM EQ 03001 THRU 03999 NEXT ELSE GOTO DELCHECK ENDIF
CALL GETSTAT USING ACCNUM STACODE

ACCEPT
The command ACCEPT specifies that the procedure logic is to be exited at that
point and that the output phase of the VISION:Results cycle is to be entered. If a
record or records are to be written or a record is printed because file print has been
specified in the OPTION statement, these events take place.

In the example, an ACCEPT appears after the LIST statement identified by the
tagname LISTDET. The program is exited at this time before falling through into
the DELCHECK logic. No file print is in effect, but an output file (ACCFLEO) has
been specified, so a record is now written to it.

Even if you do not code an ACCEPT in your program, an ACCEPT occurs under
the following conditions:

� When the end of your logic statements has been reached:

.

.

.

Using Procedural Commands 14–3

Commands
MOVE FIELDA TO FIELDB
MOVE FIELDC TO FIELDD
T1 ’ACCOUNT REPORT’

� When special logic (not including ON ONE) such as ON CHANGE, ON
FINAL, or ON END has been encountered.

In the prior example, during the DELCHECK logic, an implied ACCEPT exists
after the IF ACCNUM statement. That is because the logic that follows is part
of ON CHANGE IN ACCNUM. This implied ACCEPT causes all of the records
going through this logic to be written to the output file (except 01029 records).

REJECT
The REJECT command specifies that the procedure logic is to be exited at that
point and the output phase of the VISION:Results cycle is not to be entered. If the
file print option is in effect, a record is not printed. Any files that are being written
during the output phase are not written to in this cycle.

In the example, during the DELCHECK logic, the REJECT is used in an IF
statement. If the account number is equal to 01029, the program is exited using
REJECT. Any 01029 accounts are not written to the ACCFLEO file.

STOP
The STOP command terminates processing. When it is executed, the output phase
of the VISION:Results cycle is bypassed. No record is printed if the file print option
has been specified, and no records are written to any defined output files. If a
report is being produced, the ON CHANGE IN and ON FINAL logic is executed.
The end-of-run statistics are printed and all active files are closed. The run is then
terminated.

In the example, the STOP command is issued when the 99999 trailer record is read
on the input file. This record is not written to the ACCFLEO because the output
phase is bypassed. The ON CHANGE IN ACCNUM logic is executed one last time
to list the subtotals for the last detail series. Then the ON FINAL logic is executed
to list the grand totals. The I/O counts are printed, files are closed, and the run is
terminated.

STOPALL
The STOPALL command terminates an entire VISION:Results run. When it is
executed, the output phase of the VISION:Results cycle is bypassed and the ON
CHANGE IN and ON FINAL logic is executed (like a normal STOP operation); in
addition, no further processing occurs on the existing request or any subsequent
request that is part of this VISION:Results run.
14–4 VISION:Results Reference Guide

Commands
QUIT
Like the STOP command, QUIT terminates further processing, but does so without
executing any ON CHANGE IN or ON FINAL logic. This is especially useful when
there are no more input records to process or when the program logic decides to
bypass a report or an entire step. All active files are closed and the run is
terminated.

QUITALL
Like the STOPALL command, QUITALL terminates an entire VISION:Results run,
but does so without executing any ON CHANGE IN or ON FINAL logic (like a
normal QUIT operation). In addition, no further processing occurs on any
subsequent request that is part of this VISION:Results run.

PERFORM
The PERFORM statement executes an instruction or series of instructions located
somewhere else in your program and then returns to the next statement after the
PERFORM statement. This is particularly useful when you need to execute the
same series of instructions from various points in your program.

The format of this statement is as follows:

where tagname1 is the tagname that identifies the first instruction to be performed,
and tagname2 is the tagname that must immediately follow the last instruction to
be executed before returning to the next statement after the PERFORM statement.

The VARYING keyword can be used as a counter for the PERFORM statement.
Starting from an initial value, you can PERFORM this statement until an end value.
The name entry must be a field name. The initial, ending, and increment values can
be either field names or literals and can contain up to nine digits to the right of the
assumed decimal point. The increment can be positive or negative. If the BY
increment value is not specified, the default is 1.

PERFORM tagname1 [TO tagname2]
[VARYING name FROM initial TO ending [BY increment]]

Figure 14-2 PERFORM Statement Example

FILE ACCFLEI FB 80 800
ACCNUM 5 CH FILLER 56 ACCAMT1 5 PD 2

FILE SYSIN CARDS
ACCNUMT 5 CH

FILE ACCFLEO OUTPUT FROM ACCFLEI FB 80 800

READMST:
READ ACCFLEI

READMSTX:
READTRAN:
READ SYSIPT

COMPAREMT:
IF ACCNUM EQ ACCNUMT
PERFORM CHGMST TO WRITEMSTX
PERFORM READMST TO READMSTX
GOTO COMPAREMT ENDIF

Figure 14-3 VARYING Keyword in the PERFORM Statement Example (Page 1 of 2)
Using Procedural Commands 14–5

Commands
In the example, a file in account number sequence is read and updated. The
transaction file (SYSIN) contains the account numbers of those records that are to
be modified. The modification consists of increasing the ACCAMT1 field by 10%.
There can be more than one account with the same account number.

The PERFORM statement is employed in several places. Initially, it is coded to
cause execution of the instructions that modify the master record and write it:

PERFORM CHGMST TO WRITEMSTX

Here, the instructions that follow the CHGMST tagname are executed until
WRITEMSTX is encountered. Then, control returns to the statement following the
PERFORM statement, which happens to be another PERFORM statement
(PERFORM READMST TO READMSTX).

You can issue your PERFORM statement as part of an IF statement, or it can be an
independent statement.

If tagname2 is not specified, PERFORM starts at tagname1 and continues to the
next tag encountered.

You can increment a variable while the PERFORM is taking place. The variable is
given an initial value before the loop is first performed. At the end of each cycle
through the loop, the variable is incremented and compared against the ending
value. As soon as it is greater than (or less than if the increment is negative) the
ending value, the loop is terminated.

PERFORM Considerations
You can branch out while you are in the middle of a series of instructions using
PERFORM, but you must eventually get yourself back to the TO tagname that was
specified in the PERFORM statement.

� It is illegal at detail time to PERFORM logic that appears after ON CHANGE or
ON FINAL.

� You can do a PERFORM within a PERFORM, but the second PERFORM must
get to its exit point and return to the original PERFORM, which must also exit
using the TO tagname.

IF ACCNUM LT ACCNUMT
PERFORM WRITEMST TO WRITEMSTX
PERFORM READMST TO READMSTX
GOTO COMPAREMT ENDIF

GOTO READTRAN
CHGMST:
ACCAMT1=ACCAMT1*1.10

WRITEMST:
WRITE ACCFLEO

WRITEMSTX: ...

Figure 14-3 VARYING Keyword in the PERFORM Statement Example (Page 2 of 2)
14–6 VISION:Results Reference Guide

Commands
READ filename
The READ command causes a record to be read from the specified file.
VISION:Results normally reads all sequential files when it goes through the
automatic cycle. If a READ command is specified for any file, that particular file is
read only when the READ command is executed.

When the specified file goes to end of file, the status byte is set to E. Issuing READ
commands for any or all files does not affect when VISION:Results terminates.
When there is more than one file in the run, Computer Associates recommends
that you check the status byte after every READ command.

When the READ command is used, the input buffer area is not initialized until the
first READ command executes. Any attempt to move data to this area prior to the
READ command being issued results in an 0C4 ABEND or otherwise
unpredictable results.

For any input file, the record area cannot be referenced until a record has been
read. With a VSAM file using any kind of random retrieval, the space is not
allocated for a record being read until the record has been found. This means that
any attempt to reference a record that a VSAM READ could not find leads to
unpredictable consequences, probably an abend.

VISION:Results automatically reads all sequential files that do not have READ
specified. However, it does not automatically read any IO, RANDOM, or SKIP
files. To read any of these file types, you must code a READ command.

WRITE filename
The WRITE command causes a record to be written to the specified file.
VISION:Results normally writes to all sequential files when it goes through the
automatic cycle. If a WRITE command is specified for any file, that particular file
is written to only when the WRITE command is executed.

VISION:Results automatically writes to all sequential files that do not have WRITE
specified. VISION:Results does not automatically write to any IO files. To write to
this file type, you must code a WRITE command.

CLOSE filename
CLOSE is valid only with EXIT-processed files. It causes an E to be moved to the
STATUS data name byte associated with the specified file. Then it issues a CALL
to the EXIT module, passing the specified parameter list (specified by PARM in the
FILE statement or by default). It is not necessary to close EXIT-processed files.
VISION:Results automatically calls the EXIT module at end of job to close the file.
If you need to reprocess a file in the same program that created it, a CLOSE is
required.
Using Procedural Commands 14–7

Commands
For OS/390, if you want to sequentially process many different files in the same
program using the same DD name, use the following steps in conjunction with the
CLOSE command:

1. Specify DYNAM on the FILE statement containing EXIT DYLIOU.
2. Include FREE=CLOSE in the JCL which will be used to allocate the EXIT

DYLIOU file.

3. Issue the ALLOCATE command for the EXIT DYLIOU file.

4. Process the file.

5. Issue the CLOSE command for the file.

6. Change the DSN in the JCL used to allocate the file, to identify the new file to
process.

7. Re-execute steps 3 through 6 for each additional file to process.
14–8 VISION:Results Reference Guide

Procedures
Procedures
This section describes the procedures.

ON ONE, ENDONE
To execute a procedure only once in a program, preface your statements with ON
ONE and terminate them with ENDONE. When execution reaches one of these
sections for the first time, the statements within it are executed. The next and
subsequent times through, they are bypassed and the statement following the
ENDONE terminator is executed.

In this OS/390 example, the instream data is being read to obtain the date to go in
the report heading and to obtain the account number to be selected and reported
on. ON ONE logic moves the date and account number to a hold area the first time
through the program logic. On the next cycle, the IF statement following the
ENDONE terminator is the first instruction executed.

If you code a READ immediately for the SYSIN in the ON ONE section rather than
have it read as part of the automatic cycle, a problem occurs because the instream
data never reaches end of file as it does on the second program cycle under control
of the automatic read. Because VISION:Results does not terminate a run
automatically unless all input files are at end, your program goes into a loop when
the account file is completed. To prevent this, put in additional coding to check and
terminate the run when the account file is exhausted.

FILE SYSIN CARDS
CARDATE 6 NU CARACCT 5

FILE ACCFLEI INPUT FB 80 800
ACCNUM 5 1 CH FILLER 56 ACCAMT1 5 PD 2

WORKAREA
DATHOLD 6 NU D
ACCHOLD 5

ON ONE
MOVE CARDATE TO DATHOLD
MOVE CARACCT TO ACCHOLD

ENDONE
IF ACCNUM EQ ACCHOLD NEXT ELSE REJECT ENDIF

LIST ACCNUM (ACCOUNT’NUMBER) ACCAMT1 (AMOUNT’1)
ON FINAL
LIST SUM ACCAMT1 ’ACCOUNT TOTAL’ WITH 3 BEFORE

T1 ’ACCOUNT REPORT’ WITH 2 AFTER
T1+1 ACCHOLD
T1+124 DATHOLD
FIN
05308103004

Figure 14-4 ON ONE and ENDONE Example
Using Procedural Commands 14–9

Procedures
ON ONE Considerations
� If you branch out of an ON ONE procedure, the statement following the

ENDONE is executed the next time through. You cannot execute any
incomplete ON ONE statements.

� You cannot code a SORT statement within ON ONE logic.

� You can have a maximum of 100 ON ONE procedures within your program.

ON END OF INPUT
VISION:Results normally initiates termination procedures when all input files
defined in the program reach end of file. It then executes all ON CHANGE IN and
ON FINAL (report) logic if present in the program, closes all active files, prints run
statistics, and terminates.

You can do additional processing before VISION:Results finishes everything. You
can print a message, write additional records to an output file, or pass more data
to the report. You can accomplish this by including ON END OF INPUT procedure
logic in your program. If you do this instead of executing termination activities,
VISION:Results enters your program at this point, allowing you to do any
additional processing. You can print data, write data, report on data, branch to
other logic, and so on.

During ON END OF INPUT logic, you can also exit your program using ACCEPT,
implied ACCEPT, or REJECT. The regular output phase of the VISION:Results
cycle occurs, and the logic is entered at the ON END OF INPUT procedure logic so
you can continue processing for as long as necessary. See the VISION:Results
Getting Started Guide for a complete description of the automatic cycle.

It is important that you terminate the run using a STOP command when you are
finished. VISION:Results has no other way of knowing when you want to
terminate.

The following program shows the use of ON END OF INPUT logic:

FILE ACCFLEI INPUT FB 80 800 SYS011
ACCRECI 80 1
ACCNUM 5 1 CH FILLER 56 ACCAMT1 5 PD 2
ACCAMT2 5 PD 2 ACCAMT3 5 PD 2

FILE ACCFLEO OUTPUT FROM ACCFLEI FB 80 4000 SYS021

WORKAREA
AMT1HOLD 5 PD 2 VALUE 0
AMT2HOLD 5 PD 2 VALUE 0
AMT3HOLD 5 PD 2 VALUE 0
ENDSW 1 VALUE ’ ’
ATLIT 13 VALUE ’ACCOUNT TOTAL’
FTLIT 13 VALUE ’FINAL TOTAL ’

Figure 14-5 ON END OF INPUT logic (Page 1 of 2)
14–10 VISION:Results Reference Guide

Procedures
VISION:Results reads a sequential input file (ACCFLEI) that is in account number
sequence. Amounts are accumulated in a work area (AMT1HOLD, AMT2HOLD,
AMT3HOLD), and record fields are listed in the report (LIST). After the detail line
is listed, the ON CHANGE IN ACCNUM procedure is encountered. Because this
logic is not executed as part of regular program logic, the program is now exited
using an implied ACCEPT.

The output phase of the cycle is entered where the input record is written to the
output file (ACCFLEO) as specified in the FILE statement. After this, a new cycle
is started where VISION:Results reads another input record and enters the
program logic. At the end of the input file, VISION:Results executes the ON
CHANGE IN ACCNUM for the last time and executes the ON FINAL logic to list
the grand totals on the report. VISION:Results closes all of the opened files, prints
run statistics, and terminates.

At this point, assume you want to write a trailer record to the output file before the
run terminates. This record contains the account number of 99999 and the
accumulated amount fields obtained from the work area. This is where you need
the ON END OF INPUT logic:

.

.
ON END OF INPUT
IF ENDSW EQ ’Y’ STOP ENDIF
MOVE ’Y’ TO ENDSW
MOVE SPACES TO ACCRECI
MOVE ’99999’ TO ACCNUM
MOVE AMT1HOLD TO ACCAMT1
MOVE AMT2HOLD TO ACCAMT2
MOVE AMT3HOLD TO ACCAMT3
ACCEPT

ON CHANGE IN ACCNUM
.
.

The ON END OF INPUT logic is entered when end of file is detected on the input
file. This logic builds the trailer record in the input area and then an ACCEPT
occurs, causing the record to be written during the output phase of the cycle. The
program is then entered again at the ON END OF INPUT procedure, where
processing is now terminated using STOP because ENDSW contains a Y.

CONTROL ACCNUM
PROCEDURE:
AMT1HOLD=AMT1HOLD+ACCAMT1
AMT2HOLD=AMT2HOLD+ACCAMT2
AMT3HOLD=AMT3HOLD+ACCAMT3
LIST ACCNUM (ACCOUNT’NUMBER) ACCAMT1 (AMOUNT’1)
ACCAMT2 (AMOUNT’2) ACCAMT3 (AMOUNT’3)

ON CHANGE IN ACCNUM
LIST ACCNUM SUM ACCAMT1 SUM ACCAMT2 SUM ACCAMT3
ATLIT ()

ON FINAL
LIST SUM ACCAMT1 SUM ACCAMT2 SUM ACCAMT3
FTLIT AT ATLIT

FIN

Figure 14-5 ON END OF INPUT logic (Page 2 of 2)
Using Procedural Commands 14–11

Procedures
Logic preceding an ON END OF INPUT procedure does not fall through into this
procedure. If you have not coded an ACCEPT, REJECT, or branch, an ACCEPT
occurs. In the preceding example, LIST logic immediately precedes the ON END
OF INPUT section but an ACCEPT occurs after the LIST.

ON END OF INPUT Considerations
ON END OF INPUT cannot be used in the following circumstances:

� If there is any random, skip, or sequential (VSAM IO only) mode processing in
the program. Under these processing modes, an end of file condition never
occurs.

� If the following keywords are used in the program:

– SORT

– EXIT

– MODIFY

– USE

– VFILE

– DUMMY

These keywords utilize dummy or EXIT files internally, so an end of file
condition never occurs.

� If a request consists only of input FILE statements that contain the EXIT, PDS,
SYSIN, or MODIFY keywords, or USE statements referring to a PICNSAVE
idname from a prior request.

� If the SUM, SUMn, or PRIOR of any field in ON END OF INPUT logic is
referenced. This type of referencing should only be done during ON CHANGE
and ON FINAL logic when the report writer is in control and report total areas
can be accessed.

For information about ON END OF SORTING, see Chapter 12, Using the SORT
Command.
14–12 VISION:Results Reference Guide

Indexing
Indexing
VISION:Results provides you with four indexes. They are 2-byte binary fields
called INW, INX, INY, and INZ, which are initialized to zero. If used, make sure
the index contains a valid value. Additionally, you can create your own indexes
using the OPTION statement USERINXnn dataname (see User-Defined Index
Fields on page 4-24 for more information).

Use these indexes to do some table manipulation, loop through several related
fields in a record, or manipulate fields in a variable location within a record. The
format for indexes is:

VISION:Results uses the attributes of the specified data name (for example, size,
type, decimals) and determines the actual memory location of the field to be used
by adding the contents of the index to the location of the specified data name. The
index must be enclosed within parentheses when used with a data name.

For example, when the value of the index (INW) is zero, the following statement
refers to the field defined by TRAILER.

TRAILER (INW) or TRAILER(INW)

However, when index (INW) contains the value 10, the same statement refers to a
location 10 bytes beyond the data name TRAILER but having the same size, type,
and decimals.

It is your responsibility to set the value in the index. You can do this by moving a
value into the index. For example,

MOVE 0 TO INX

Or, you can set the value in the index by doing arithmetic on the index:

INX=INX+10

You can use MOVE to set up the initial value for the index or to set the index when
it is a constant. However, for table manipulation or looping through related fields
in a record, you probably want to do arithmetic on the index to get the appropriate
value.

You determine what value to put in the index based on your particular application.
In most cases, the index value starts at zero and is increased by the length of each
table entry or repeated fields.

dataname (index) or dataname(index)

Figure 14-6 Format for Indexes
Using Procedural Commands 14–13

Indexing
For example, you can have a file that contains 12 months of data. To get the total
of all 12 months, you can code a data name for each month and add the 12 of them
together or you can use indexing. Suppose the monthly totals are all 5-byte packed
fields with two decimals. Supply a data definition for the first month's
accumulator plus a filler for the remaining 11 months:

MONTHS 60
REDEFINE AT MONTHS
MONTHTOT 5 PD 2
FILLER 55

You also need to define a work area to hold the year's total:

YEARTOT 6 PD 2 VALUE 0 REINIT

REINIT was specified because in this case you want the annual total to start at zero
for each record.

The following code causes the 12 monthly totals to be accumulated:

.

.
MOVE 0 TO INX

LOOP:
YEARTOT=YEARTOT+MONTHTOT(INX)
INX=INX+5
IF INX LT 60
GOTO LOOP
ENDIF

CONTINUE:
.
.

When control reaches the tagname CONTINUE, YEARTOT contains the total of
the 12 accumulators. On the first entry at tagname LOOP, INX contains 0 and the
first execution of the arithmetic statement causes the field defined by MONTHTOT
to be added to the accumulator. The value 5 was added to INX because this is the
length of the monthly total area.

On the second entry at tagname LOOP, INX contains 5 and the execution of the
arithmetic statement causes whatever is 5 bytes beyond MONTHTOT, or in this
case, the second month's total, to be added to the year's total. This repeated
addition occurs until the value of INX is 60 or greater. When the value of INX
reaches 60, all 12 months have been added and it stops. The 12-month total is now
in YEARTOT.

Because VISION:Results does not check to ensure the validity of the index being
used, make sure the index value is correct. If the value in the index is negative,
negative indexing results. It is possible to refer to a field prior to a defined field by
using a negative index. If the value in the index becomes larger than 32767,
VISION:Results treats it as a negative value.
14–14 VISION:Results Reference Guide

Indexing
Commands Used with Indexing
Use indexes on the following commands only:

IF
IF ADDRNAME (INX) EQ ’JONES’ GOTO ABC ENDIF
IF FIELDA GE FIELDB (INW) GOTO FOUND ENDIF
IF FIELDA (INX) EQ FIELDB (INW) GOTO DONE ENDIF

Both operands can be indexed.

MOVE
MOVE ENTRY TO TABLE (INX)
MOVE ENTRY (INX) TO TABLE (INW)
MOVE 0 TO INW
MOVE ADDNAME LENGTH 20 TO ARGUMENT (INY)
MOVE ENTRY (INX) LENGTH 6 TO TABLE (INY)

Both from and to operands, as well as the LENGTH operand for variable-length
moves, can be indexed.

COMBINE
Both operands, as well as the INTO operand, can be indexed.

ARITHMETIC
INW=INW+20
INX=3
INY=INX+INW
BALANCE=TOTAL(INW)+12
TOTAL=AMOUNT(INX)+AMOUNTYR(INW)
TOTAL(INY)=AMOUNT(INX)+AMOUNTYR(INW)

All operands involved in an arithmetic expression can be indexed.

PRINT
All data names in a PRINT statement can be indexed.

LIST
Any non-control break data name can be indexed.

Indexing Restrictions
When using indexes, you cannot use one of the SUM qualifiers with an indexed
field. To do this, you must move the indexed field to a non-indexed WORKAREA
dataname and use the WORKAREA dataname with SUM.

Listing (LIST) an indexed control break field causes a validation error.
Using Procedural Commands 14–15

TRANSLATE
TRANSLATE
Use the TRANSLATE command to:

� Replace all occurrences of one character with a different character.

� Convert from uppercase to lowercase or vice versa.

� Convert from ASCII to EBCDIC or vice versa.

� Replace a variety of different hex or character values with new values of your
choice.

Data can be translated in place, or it can be translated into another area leaving the
original data unchanged.

The TRANSLATE statement, in its simplest form, looks like this:

TRANSLATE dataname1 FROM literal1 TO literal2

Where:

Dataname1 FROM

Example 1
TRANSLATE DATA1 FROM ’ ’ TO 0

This statement causes all spaces in the field DATA1 to be changed to zeros.

Example 1 can also be coded this way:

{SPACE } { ’0’ }
TRANSLATE DATA1 FROM {SPACES} TO { 0 }

{BLANK } {X’F0’}
{BLANKS}

The figurative constants SPACE, SPACES, BLANK, and BLANKS have an implied
length of 1 when used in a TRANSLATE instruction. Therefore, the corresponding
TO or FROM value must also be 1-byte long when these special constants are used.

If more than one value needs to be changed, all FROM values are coded together
as one or more literals and the corresponding TO values are coded in the same
fashion.

dataname1 is any field not longer than 256-bytes.

literal1 is any valid character, numeric, or hex literal.

literal2 is any valid character, numeric, or hex literal having the same
length as literal1.
14–16 VISION:Results Reference Guide

TRANSLATE
Example 2
TRANSLATE DATA2 FROM X’818283’ TO ’ABC’

This statement causes a hex 81 to be changed to an A, a hex 82 to be changed to a
B, and so on.

Example 3
TRANSLATE DATA3 FROM X’4020’ ’ABC’ TO 0 BLANK X’818283’

This statement causes a hex 40 to be changed to a zero, a hex 20 to be changed to a
space, an A to be changed to a hex 81, and so on.

INTO dataname2
This statement causes the data in dataname1 to be translated into dataname2,
leaving dataname1 unchanged.

Example:
TRANSLATE DATA1 INTO DATA4 FROM ’,’ TO ’.’

or

TRANSLATE DATA1 FROM ’/’ TO ’-’ INTO DATA4

Dataname2 must be the same length, type, and number of decimals (if applicable)
as dataname1.

The INTO statement can be placed either following dataname1 or following
literal2.

UPPER, LOWER
Data conversion between these two representations can be accomplished
automatically by coding:

or

The INTO statement can also be used.

TRANSLATE dataname1 FROM UPPER TO LOWER

Figure 14-7 UPPER, LOWER Example 1

TRANSLATE dataname1 FROM LOWER TO UPPER

Figure 14-8 UPPER, LOWER Example 2
Using Procedural Commands 14–17

EDIT
ASCII, EBCDIC
Data conversion between these two representations can be accomplished
automatically by coding:

or

The INTO statement can also be used.

TRANSLATE dataname1 [INTO dataname2]
This form of TRANSLATE is used only after you have dynamically modified the
contents of the standard translate table.

The label DYLTRAN addresses the first byte of the table. Indexing can be used to
point to other specific locations. DYLTRAN has an implied length of 1, which can
be overridden by using the LENGTH modifier.

Example:
Reverse the digits in a 6-character field.

MOVE X’050403020100’ TO NEWDATA
MOVE OLDDATA TO DYLTRAN LENGTH 6
TRANSLATE NEWDATA

If OLDDATA contains BCDE21, NEWDATA becomes 12EDCB.

EDIT
Use the EDIT command to insert special characters (such as . and /) in a number,
or to replace leading zeros with some other character (such as a space), usually for
the purpose of printing the value more legibly. A VISION:Results supplied pattern
can be used to control the edit, or you can supply your own.

Numeric fields that are listed can be edited automatically, in a variety of ways,
through the use of an edit code in the field definition (see the VISION:Results
Getting Started Guide). Therefore, use the EDIT command if:

� A field needs to be edited in some special, non-standard way.

� A standard edit is needed, but the edited field is to be used in an output file or
a work area.

TRANSLATE dataname1 FROM ASCII TO EBCDIC

Figure 14-9 ASCII, EBCDIC Example 1

TRANSLATE dataname1 FROM EBCDIC TO ASCII

Figure 14-10 ASCII, EBCDIC Example 2
14–18 VISION:Results Reference Guide

EDIT
Non-Standard Edits
The EDIT command, in its simplest form, looks like this:

Where:

Either data name can be indexed.

The EDIT operation moves the digits in dataname1 into the dataname2 field
according to the edit pattern. The pattern itself is destroyed.

To ensure that the edit mask is inserted in the receiving field (dataname2) each
time before editing, code your edit as follows:

EDIT dataname1 INTO dataname2 USING hexliteral

In this case, hexliteral must be a hexadecimal literal defining an edit mask from 2
to 9 bytes long and dataname2 must be the same length as the mask:

ex. X’4020216B20202060’

The INTO clause can also follow the literal.

Example 1. Check Protection
EDIT NETPAY INTO CHKAMT

USING X’5C20202020214B2020’

If NETPAY is a 4-byte packed decimal field containing the value 0030975, the
CHKAMT (which must be a 9-byte character field) contains ***309.75.

A value less than 100 (82, for example) prints as ******.82.

Example 2. Telephone Number Edit
WORKAREA
PHONEMASK 7 VALUE X’214D2020205D40’
FILLER 8 VALUE X’2020206020202020’
.
.
PRTTELNO 15
.
.

MOVE PHONEMASK LENGTH 15 TO PRTTELNO
EDIT PHONE INTO PRTTELNO

If PHONE is a 6-byte packed decimal field containing the value 08005551212, then
PRTTELNO contains (800) 555-1212 right-aligned in the field.

EDIT dataname1 INTO dataname2

Figure 14-11 The EDIT Command

dataname1 Must be a packed decimal field, 1 to 16 bytes long.

dataname2 Must be a character field that contains the edit mask. See the
IBM manual Principles of Operation for specifics on creating an edit
mask.
Using Procedural Commands 14–19

EDIT
Standard Edits
Edit codes can be used in the EDIT statement to produce a variety of edited result
fields. The general form of this instruction is:

EDIT dataname1 INTO dataname2 USING [edit code]

Where:

Restrictions

dataname1 Must be a numeric (1 to 16 bytes), packed (1 to 10 bytes), or binary (1
to 4 bytes) field.

dataname2 Must be a character field at least the size of dataname1. For all edits
except D and S, the low order (rightmost) byte of dataname2 is blank
if the value is zero or more, and - if less than zero.

D edit Dataname1 must be a 4-byte packed or 6-byte numeric field with no
decimals.

S edit Dataname1 must be a 5-byte packed or 9-byte numeric field with no
decimals.
14–20 VISION:Results Reference Guide

Edit Codes
Edit Codes
The edit codes you can supply in your field definition to override the default edit
format (P edit code) are as follows.

Edit
Code Description Examples

E Edit with zero suppression, commas, decimal insertion,
and negative sign to the right of the field. Blank if zero.

001234.56 prints as
000000.00 prints as

1,234.56

 (blank)

Y Leading ’-’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the left of the number. Blank if zero.

 -001234.56 prints as
000000.00 prints as

-1,234.56
(blank)

NE Leading ’-’. Applies only to data name definitions and LIST
and EDIT statement overrides. Edit with zero suppression,
commas, decimal insertion, and negative sign to the left of
the number. Blank if zero.

-001234.56 prints as
000000.00 prints as

-1,234.56
(blank)

DE Leading ’$’. Applies only to data name definitions and
LIST and EDIT statement overrides. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the right of the field. Float a currency sign (the default is
$) to the left of the most significant digit. Blank if zero.

 -001234.56 prints as
000000.00 prints as

$1,234.56-
(blank)

F Leading ’$’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the right of the field. Blank if zero. Float a currency sign
to the left of the field.

 -001234.56 prints as
000000.00 prints as

$1,234.56-
(blank)

NDE Leading ’-$’. Applies only to data name definitions and
LIST and EDIT statement overrides. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the left of the field. Float a currency sign to the direct left
of the field. Blank if zero.

-001234.56 prints as
000000.00 prints as

-$1,234.56
(blank)

G Leading ’-$’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the left of the field. Float a currency sign to the direct left
of the field. Blank if zero.

-001234.56 prints as
000000.00 prints as

-$1,234.56
(blank)

DNE Leading ’$-’. Applies only to data name definitions and
LIST and EDIT statement overrides. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the direct left of the field. Float a currency sign to the left
of the negative sign. Blank if zero.

 -001234.56 prints as
00000000 prints as

$-1,234.56
(blank)
Using Procedural Commands 14–21

Edit Codes
K Leading ’$-’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the direct left of the field. Float a currency sign to the left
of the negative sign. Blank if zero.

-001234.56 prints as
00000000 prints as

$-1,234.56
(blank)

A Edit with zero suppression, commas, decimal insertion,
and negative sign to the right of the field. Print decimal
point and zeros to the right of decimal. If field has no
decimal positions and has a zero value, nothing prints.

001234.56 prints as
00000000000 prints as

1,234.56
(blank)

X Leading ’-’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the left of the field. Print decimal point and zeros to the
right of decimal. If field has no decimal positions and has
a zero value, nothing prints.

001234.56 prints as
-001234.56 prints as
0000000.00 prints as

00000000000 prints as

1,234.56
-1,234.56

.00
(blank)

NA Leading ’-’. Applies only to data name definitions and LIST
and EDIT statement overrides. Edit with zero suppression,
commas, decimal insertion, and negative sign to the left of
the field. Print decimal point and zeros to the right of
decimal. If field has no decimal positions and has a zero
value, nothing prints.

001234.56 prints as
-001234.56 prints as
0000000.00 prints as

00000000000 prints as

1,234.56
-1,234.56

.00
(blank)

DA Leading ’$’. Applies only to data name definitions and
LIST and EDIT statement overrides. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the right of the field. Float a currency sign (the default is
$) to the left of the most significant digit. Blank if zero.

001234.56 prints as
-001234.56 prints as
0000000.00 prints as

00000000000 prints as

$1,234.56
$1,234.56-

$.00
(blank)

H Leading ’$’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the right of the field. Float a currency sign (the default is
$) to the left of the most significant digit. Blank if zero.

001234.56 prints as
-001234.56 prints as
0000000.00 prints as

00000000000 prints as

$1,234.56
$1,234.56-

$.00
(blank)

NDA Leading ’-$’. Applies only to data name definitions and
LIST and EDIT statement overrides. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the left of the field. Float a currency sign to the direct left
of the field. Blank if zero.

001234.56 prints as
-001234.56 prints as
0000000.00 prints as

00000000000 prints as

$1,234.56
-$1,234.56

$.00
(blank)

J Leading ’-$’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the left of the field. Float a currency sign to the direct left
of the field. Blank if zero.

001234.56 prints as
-001234.56 prints as
0000000.00 prints as

00000000000 prints as

$1,234.56
-$1,234.56

$.00
(blank)

Edit
Code Description Examples
14–22 VISION:Results Reference Guide

Edit Codes
DNA Leading ’$-’. Applies only to data name definitions and
LIST and EDIT statement overrides. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the direct left of the field. Float a currency sign to the left
of the negative sign. Blank if zero.

001234.56 prints as
-001234.56 prints as

0000.00 prints as
00000000000 prints as

$1,234.56
$-1,234.56

$.00
(blank)

L Leading ’$-’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with zero
suppression, commas, decimal insertion, and negative sign
to the direct left of the field. Float a currency sign to the left
of the negative sign. Blank if zero.

001234.56 prints as
-001234.56 prints as

0000.00 prints as
00000000000 prints as

$1,234.56
$-1,234.56

$.00
(blank)

Z Edit with zero suppression, decimal insertion, and
negative sign to the right of the field, but no commas.
Blank if zero.

001234.56 prints as
00000000 prints as

1234.56
(blank)

U Leading ’-’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with zero
suppression, decimal insertion, and negative sign to the
left of the field, but no commas. Blank if zero.

00123456 prints as
-00123456 prints as
00000000 prints as

1234.56
-1234.56
(blank)

NZ Leading ’-’. Applies only to data name definitions and LIST
and EDIT statement overrides. Edit with zero suppression,
decimal insertion, and negative sign to the left of the field,
but no commas. Blank if zero.

001234.56 prints as
-001234.56 prints as

00000000 prints as

1234.56
-1234.56
(blank)

B Edit with zero suppression, decimal insertion, and
negative sign to the right of the field, but no commas.
Blank if zero. If zero value, print decimal point and zeros
to the right of decimal. If field has no decimal positions and
has a zero value, nothing prints.

001234.56 prints as
000000.00 prints as

000000000 prints as

1234.56
.00

(blank)

Q Leading ’-’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with zero
suppression, decimal insertion, and negative sign to the
left of the field, but no commas. Blank if zero. If zero value,
print decimal point and zeros to the right of decimal. If
field has no decimal positions and has a zero value,
nothing prints.

001234.56 prints as
-001234.56 prints as
000000.00 prints as

000000000 prints as

1234.56
-1234.56

.00
(blank)

NB Leading ’-’. Applies only to data name definitions and LIST
and EDIT statement overrides. Edit with zero suppression,
decimal insertion, and negative sign to the left of the field,
but no commas. Blank if zero. If zero value, print decimal
point and zeros to the right of decimal. If field has no
decimal positions and has a zero value, nothing prints.

001234.56 prints as
-001234.56 prints as
000000.00 prints as

000000000 prints as

1234.56
-1234.56

.00
(blank)

P Default edit code. Edit with decimal insertion, and
negative sign to the right of the field, but no commas. If the
field has no decimal positions and has a zero value, zeros
print. If it has a zero value, zeros print.

001234.56 prints as
000000000 prints as

001234.56
000000000

Edit
Code Description Examples
Using Procedural Commands 14–23

Dynamic Allocation
Dynamic Allocation
Note: This section only applies to OS/390.

Dynamic Allocation is an OS/390 Operating System service that allows input and
output files to be allocated without having to provide the JCL to do so. Rather, the
executing program, with the aid of Dynamic Allocation (referred to by OS/390 as
SVC 99), allocates the required files.

Normally, to use dynamic allocation, you would have to know Assembler
programming language, but the Dynamic Allocation feature has eliminated this
requirement and has greatly simplified the process for allocating files. Your
installation, however, must be an OS/390 operating environment because
Dynamic Allocation is designed to run above the 16-megabyte memory line.

While Dynamic Allocation can be used independently from IBM's APPC/MVS
(Advanced Program-to-Program Communication for OS/390), using APPC/MVS
in conjunction with Dynamic Allocation makes it possible for an application in use
at one site to access an application at another site without having to physically
change the JCL at the second site. See the VISION:Results Toolkit Guide for further
information on APPC/MVS.

W Leading ’-’. For use in data name definitions, LIST, EDIT,
and LTD (Letterwriter) statements. Edit with decimal
insertion, and negative sign to the left of the field, but no
commas. If the field has no decimal positions and has a
zero value, zeros print. If it has a zero value, zeros print.

-001234.56 prints as
0000000.00 prints as
000000000 prints as

-001234.56
0000000.00
000000000

NP Leading ’-’. Applies only to data name definitions and LIST
and EDIT statement overrides. Edit with decimal insertion
and negative sign to the left of the field, but no commas. If
the field has no decimal positions and has a zero value,
zeros print. If it has a zero value, zeros print.

-001234.56 prints as
0000000.00 prints as
000000000 prints as

-001234.56
0000000.00
000000000

D Date edit of a 6-byte zoned decimal or 4-byte packed field. 120100 prints as 12/01/00

V For use in data name definitions, LIST, EDIT, and LTD
(Letterwriter) statements. Edit a date field containing a
4-digit year. The date field must be either an 8-byte zoned
decimal or 5-byte packed field.

12012000 prints as 12/01/2000

D4 Applies only to data name definitions and LIST and EDIT
statement overrides. Edit a date field containing a 4-digit
year. The date field must be either an 8-byte zoned decimal
or 5-byte packed field.

12012000 prints as 12/01/2000

S Edit a social security number from a 9-byte numeric or
5-byte packed decimal field.

999999999 prints as 999-99-9999

Edit
Code Description Examples
14–24 VISION:Results Reference Guide

Dynamic Allocation
Dynamic Allocation is implemented by the ALLOCATE command, using the
following syntax:

The ALLOCATE data name must be defined in the program syntax before the
ALLOCATE command is executed. This data name contains the JCL statements
that are used in dynamically allocating one or more files. The JCL must appear in
80-character card image format (therefore, the size of the ALLOCATE data name
must be a multiple of 80) and must conform to JCL syntax rules. The syntax
checker operates similarly to JES, including how it handles comments.

In addition, the optional keyword DYNAM can be added to the FILE statement:

When the keyword DYNAM is coded on the FILE statement, VISION:Results will
make certain that the program contains an explicit READ or WRITE for that file.

Rules for Dynamically Allocating Files
� The file(s) must be explicitly read or written using the READ or WRITE

commands. Dynamically allocated files cannot be handled by the automatic
cycle and any attempt to do so may cause the program to abend.

� For a given dynamically allocated file, the ALLOCATE command must be
executed before the first READ or WRITE is executed against that file.

� When the keyword DYNAM is coded on the FILE statement, VISION:Results
will make certain that the program contains an explicit READ or WRITE for
that file. A validation error occurs if no READ or WRITE is found.

� If used, the STATUSFLAG data name must be previously defined as a 1-byte
character field. A Y, N, or F is placed in the STATUSFLAG data name field by
the ALLOCATE command. Normally, all JCL syntax and Dynamic Allocation
errors (message prefixes SVC99 and DYL1026E through 1074E) are written to
SYSPRINT, but this can be overridden by placing an X in the STATUSFLAG
data name field before executing the ALLOCATE command.

No return code is set by VISION:Results if a JCL syntax error or Dynamic
Allocation failure is detected. To pass a condition code back to OS/390, query
the STATUSFLAG after the ALLOCATE, move a value to DYLRETURN, and
issue a STOP.

A status value of Y indicates that Dynamic Allocation was successfully
completed. A value of N indicates that a JCL syntax error was detected and
processing was stopped, and a value of F indicates that processing was
completed but that OS/390 reported a Dynamic Allocation failure.

ALLOCATE [FILE | FILES] [DYNAMICALLY] dataname
[STATUSFLAG dataname]

Figure 14-12 ALLOCATE Command Syntax

FILE filename [DYNAM]

Figure 14-13 Keyword DYNAM in the FILE Statement
Using Procedural Commands 14–25

Dynamic Allocation
When dynamically allocating VSAM KSDS RLS files, the keyword KEYLEN
must be coded on the FILE statement. If the key position is not position 1 in the
file, then the KEYLOC keyword must also be coded on the FILE statement.

� The JCL must be placed in columns 1 to 71 of the 80-character records; columns
72 to 80 will be ignored. VISION:Results determines the number of JCL lines
(based on the size of the ALLOCATE data name) being allocated. The first
blank record (columns 1 to 71) encountered terminates the JCL scanner, which
ignores any JCL statements that follow.

JCL Considerations
Dynamic Allocation is only valid for JCL DD statements; however, comments are
allowed. All JCL DD statements valid for JES are also honored by IBM's Dynamic
Allocation routine (SVC 99) with the following exceptions:

� DSORG=VSAM is allowed (for SMS data sets only).

� Ddnames of JOBCAT, STEPCAT, JOBLIB, and STEPLIB are not allowed.

� Keyword parameters of AMP=, CHKPT=, DDNAME=, DLM=, and DSID= are
not allowed.

� Ddnames that include stepnames are not allowed.

� Positional parameters of *, DATA, and DYNAM are not allowed.

� The following keyword and subparameter combinations are not allowed.

Keyword Subparameter or Value

DCB Reference to ddname of a previous step

CYLOFL

NTM

RKP

DISP PASS

DSN Reference to ddname (*.ddname)

SPACE ABSTR

UNIT AFF

SEP

VOLUME RETAIN. If coded, it is not flagged as an error, but is ignored
instead.

REF=ddname

MSVGP ddname specification. If coded, it is not flagged as an error, but
is ignored instead.
14–26 VISION:Results Reference Guide

Procedural Command Examples
Dynamic Allocation cannot allocate ddnames that are already allocated. All
ddnames being used, such as SYSIN and SYSPRINT, are invalid for Dynamic
Allocation.

Any JCL DD statements to be allocated must be valid statements according to JES
syntax. To test the syntax of your JCL DD statements, run them in a batch job such
as IEFBR14, as shown below:

Executing the ALLOCATE command should produce the same results and error
information as the test job shown in Figure 14-14 (subject to the Dynamic
Allocation exceptions noted previously).

If the ALLOCATE data name contains an initial blank record, a value of N is placed
in the STATUSFLAG data name and a DYL-1027E message is generated.

If your VISION:Results program dynamically populates the ALLOCATE data
name (see Example 2. The Allocate Facility and MOVE Command in the OUTJCL
Fields), check that the first record of the data name is not blank before issuing the
ALLOCATE command.

If you encounter any problems in getting the ALLOCATE command to execute
properly, have a verified batch test run available before you contact
Computer Associates Technical Support for assistance, as well as a
VISION:Results run with the STATUSFLAG not set to X.

You might also find it helpful, when new JCL is being allocated, to implement the
STATUSFLAG field and check it through the VISION:Results program.

Procedural Command Examples

Example 1. The Allocate Facility
This example contains only those VISION:Results statements required to illustrate
the use of the ALLOCATE facility. It is not a complete VISION:Results program.

// (user defined JOB card)
// STEP01 EXEC PGM=IEFBR14
// OUTFILE DD xxxxxxx

.

. These are the JCL statements

. to be allocated.

.

Figure 14-14 Batch Job IEFBR14 Example
Using Procedural Commands 14–27

Procedural Command Examples
In Example 1, the JCL required for Dynamic Allocation is hard-coded, but the
OUTJCL fields could have been populated by a MOVE command (or any other
mechanism) as long as it was accomplished before the first explicit WRITE was
done. This is illustrated in Example 2. The Allocate Facility and MOVE Command
in the OUTJCL Fields on page 14-28.

Example 2. The Allocate Facility and MOVE Command in the OUTJCL Fields
This example contains only those VISION:Results statements required to illustrate
the use of the ALLOCATE facility. It is not a complete VISION:Results program.

FILE OUTFILE OUTPUT FB 100 FROM OUTFILE DYNAM
OUTREC 100

FILE ININ DUMMY

WORKAREA
JCLSTAT 1
EMSG1 41 VALUE ’SYNTAX ERROR IN DYNAMICALLY ALLOCATED’

’JCL’
EMSG2 47 VALUE ’ALLOCATION FAILURE IN DYNAMICALLY’

’ALLOCATED JCL’

WORKAREA
OUTJCL 320 1
FILLER 80 1
VALUE ’//OUTFILE DD DSN=DYL.BCM.OUTFILE,’

FILLER 80
VALUE ’// DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,’

FILLER 80
VALUE ’// SPACE=(TRK,(4,2),RLSE),’

FILLER 80
VALUE ’// DCB=(RECFM=FB,BLKSIZE=2000,LRECL=100)’

ON ONE
ALLOCATE FILE DYNAMICALLY OUTJCL STATUSFLAG JCLSTAT
IF JCLSTAT EQ ’N’

PRINT EMSG1
STOP

ENDIF
IF JCLSTAT EQ ’F’

PRINT EMSG2
STOP

ENDIF
ENDONE
.
.
; move data to OUTREC
.
.
WRITE OUTFILE

Figure 14-15 Example 1. The Allocate Facility (incomplete program)

FILE OUTFILE OUTPUT FB 100 FROM OUTFILE DYNAM
OUTREC 100

FILE ININ DUMMY

FILE JCLFILE FB 80 STATUS EOJCL
JCLREC 80

;JCLFILE contains the JCL statements shown in the previous example

WORKAREA

Figure 14-16 Example 2. Allocate Facility and MOVE Command in OUTJCL Fields
(Page 1 of 2)
14–28 VISION:Results Reference Guide

Other Commands Affected by Dynamic Allocation
Other Commands Affected by Dynamic Allocation
The following commands are also affected by Dynamic Allocation:

� PICNSAVE Command

� REPORT Statement

� LTH Statement

� CALL Command

JCLSTAT 1
EMSG1 34 VALUE ’ERROR IN DYNAMICALLY ALLOCATED JCL’
EMSG2 38 VALUE ’NO JCL STATEMENTS IN ALLOCATE DATANAME’

WORKAREA
OUTJCL 1600 VALUE NULL ;initialize to blanks

ALLOREC 80 1

ON ONE
RDJCL:

READ JCLFILE
IF EOJCL EQ ’E’ GOTO ALCJCL ENDIF
MOVE JCLREC TO ALLOREC (INX) ;move 1 JCL record
INX = INX + 80 ;set to move next JCL

;record
GOTO RDJCL

ALCJCL:
IF ALLOREC EQ BLANKS

PRINT EMSG2
STOP

ENDIF
ALLOCATE OUTJCL STATUSFLAG JCLSTAT
IF JCLSTAT NE ’Y’

PRINT EMSG1
STOP

ENDIF
ENDONE
.
.
;move data to OUTREC
WRITE OUTFILE
.
.
.

Figure 14-16 Example 2. Allocate Facility and MOVE Command in OUTJCL Fields
(Page 2 of 2)
Using Procedural Commands 14–29

Other Commands Affected by Dynamic Allocation
PICNSAVE Command
A PICNSAVE file can be dynamically allocated:

REPORT Statement
You can direct reports to a file other than SYS280R. These files are identified by the
keyword SYS280Rx in the REPORT statement, as follows:

REPORT 160 WIDE 56 LONG SYS280Rx

You can apply Dynamic Allocation to the SYS280Rx file as long as the ALLOCATE
is done before the first LIST command is executed for the report.

LTH Statement
You can direct letters to a file other than AUDPRINT. These files are identified by
the LTH statement, as follows:

LTH 1 56 WIDE 50 LONG DYLTRxx BY
10

You can apply Dynamic Allocation to the DYLTRxx file as long as the ALLOCATE
is done before the first LETTER command is executed for the letter.

CALL Command
You can dynamically allocate files to be used by other programs (written in
Assembler, FORTRAN, COBOL, and PL/1), which are accessed from
VISION:Results using the CALL command.

FILE ININ DUMMY
WORKAREA

FIELD1 50
FIELD2 300
FIELD3 30

WORKAREA
OUTJCL 240 1
FILLER 80 1

VALUE ’//PICFILE DD DSN=DYL.BCM.PICFILE,’
FILLER 80

VALUE ’// DISP=(NEW,CATLG,DELETE),UNIT=SYSDA,’
FILLER 80

VALUE ’// SPACE=(TRK,(8,4),RLSE)’
WORKAREA

JCLSTAT 1
ERRMSG 34 VALUE ’ERROR IN DYNAMICALLY ALLOCATED JCL’

ON ONE
ALLOCATE OUTJCL STATUSFLAG JCLSTAT
IF JCLSTAT NE ’Y’

PRINT ERRMSG
STOP

ENDIF
ENDONE
PICNSAVE PICFILE USING FIELD1 FIELD2 FIELD3
.
.

Figure 14-17 PICNSAVE File Example
14–30 VISION:Results Reference Guide

Other Commands Affected by Dynamic Allocation
Diagnostic Output and Error Messages
The ALLOCATE command performs validation during both the compile and
execution phases of the VISION:Results program.

The compile phase validation error messages DYL-1075E through DYL-1081E
relate to VISION:Results syntax errors. See the VISION:Results Messages and Codes
book for more information.

The execution phase output and error messages relate to the syntax of the JCL
statements being allocated and to the results of the Dynamic Allocation (SVC 99)
from OS/390. The JCL syntax error messages are of the same nature as those found
in JES. The Dynamic Allocation messages are the same messages found in the IBM
manuals unless otherwise specified.

The execution phase generates the following:

� JCL images before any SVC 99 allocation
and

JCL images during SVC 99 allocation with the corresponding Dynamic
Allocation message following.

� Syntax error messages in the DYL-1026E through DYL-1074E range (listed in
the Error Messages manual). These errors can occur before any SVC 99
allocation or during the SVC 99 allocation process.

� Messages from OS/390 Dynamic Allocation in the following form:

SVC99 xxxx-xxxx reason text. information text.

The xxxx-xxxx is the IBM-generated reason and information code respectively,
followed by their corresponding IBM messages.

The execution phase information prints on SYSPRINT unless the ALLOCATE
command specified a STATUSFLAG of X. The OS/390 Dynamic Allocation failure
messages always prints in the JES job log area, preceded by the statement:
DYNAMIC ALLOCATION FAILURE! ERROR REASON CODE AND MESSAGE
FOLLOW.

During the execution phase, two passes are made through the JCL. During the first
pass, VISION:Results prints the JCL and checks the syntax for:

� Invalid JCL formats (for example, // missing in columns 1 and 2).

� Improper ddnames (for example, STEPNAME.DDNAME).

� Improper operation fields (for example, // DDNAME OUTPUT CLASS=A).

If a JCL syntax error occurs, syntax checking and printing of further JCL in the
ALLOCATE data name is terminated.
Using Procedural Commands 14–31

Other Commands Affected by Dynamic Allocation
During the second pass, VISION:Results prints the JCL again and checks the
syntax for:

� Invalid JCL format (for example, a line ending with a comma followed by a new
DD statement).

� Invalid keyword parameters (for example, DSNAMES=).

� Improper keyword parameters (for example, DDNAME=).

� Invalid parameter values (for example, DISP=(NOW,CATLG)).

� Improper parameter values (for example, VOL=REF=*.DDNAME).

If a JCL syntax error occurs, any further JCL processing terminates.

If a JCL syntax error occurs in either phase, the STATUSFLAG (if present) is set to
N. If no STATUSFLAG is present, the program terminates with a U008 abend code.

If a DD statement is found to be valid, it is dynamically allocated (SVC 99). The
resulting allocation message prints, as long as the STATUSFLAG has not been set
to X. If an SVC 99 error is detected, the STATUSFLAG (if present) is set to F but JCL
processing and allocation continue.

If no STATUSFLAG is present, JCL processing and allocation continue with
possibly unpredictable results (for example, U300 abend) when the
VISION:Results program attempts to access a file that may not have been properly
allocated.
14–32 VISION:Results Reference Guide

Chapter
15 U
C

sing the COPY or COPYE
ommand
VISION:Results program statements can reside on a partitioned data set (PDS)
under OS/390 or a source statement library (SSL) under VSE and, through the use
of the COPY or COPYE command, be copied into VISION:Results programs. The
COPY and COPYE commands are synonymous. Source can also be stored on
CONDOR, CA-Librarian, or CA-Panvalet libraries and be copied into
VISION:Results programs by using COPYC (CONDOR), COPYL (CA-Librarian),
or COPYP (CA-Panvalet).

You also have the option of using symbolic variables (definitions) or conditional
generation statements in your stored copy code. The symbolic variables are
identified by a # sign followed by a number or data name. Through the use of the
COPY or COPYE command, the symbolic variables can be substituted for real
values prior to inclusion into the program’s input stream.

The COPY or COPYE macro facility allows you to keep frequently used
applications in a library and yet enables you to dynamically change variables in
the statements at execution time. This gives you the flexibility of designing your
own specialized COPY or COPYE macro routines.

A single COPY or COPYE statement can invoke an entire application from the
appropriate library. With adequate foresight and analysis, you can use the COPY
or COPYE facility to greatly reduce the amount of coding necessary in your
program.

In addition, VISION:Results’ COPY or COPYE, COPYC, COPYL, and COPYP
support COBOL data definitions as shown in Format 1 OS/390.

If you want to include COBOL data definitions in your program without the use
of the COPY, insert the command $COBOL, followed by the data definitions,
followed by the command $ECOBOL (in column 8 or later). See Using DB2 Tables
on page 15-24 for more information on the COBOL support facility.

If you have a DB2 subsystem installed, you can copy the names of a DB2 table into
VISION:Results to be used as field definitions. For more information, see Using
COBOL Record Descriptions on page 15-18.
Using the COPY or COPYE Command 15–1

Formats
Formats
The COPY or COPYE command has two formats:

Format 1 OS/390

COPY ARFILE
COPY PAYROLL COBOL
COPYE ARFILE

Note: COPY can also be COPYC (VSE only), COPYP, or COPYL.

Format 1 VSE

COPY D.ARFILE
COPYE PAYROLL COBOL
COPY Q.ARDEF

Note: COPY can also be COPYC (VSE only), COPYP, or COPYL.

The sublibrary default in VISION:Results is D.

Format 2 OS/390

COPY ARFILE #1=REJECT #2=ACCEPT
COPY PAYROLL #B=ACCEPT #A=NULL
COPYE APMSTR #2='REPORT-3A' #1='12/03/89'

#0= #4=DATE #5=AMOUNT

Note: COPY can also be COPYC (VSE only), COPYP, or COPYL.

COPY membername [COBOL]

Figure 15-1 Format 1 OS/390 COPY or COPYE Command

COPY [sublibrary.]bookname [COBOL]

Figure 15-2 Format 1 VSE COPY or COPYE Command

COPY membername [![{#A=}] [{dataname}]!...] [COBOL]
[[{#n=}] [{literal }]]

[{NULL }]

Figure 15-3 Format 2 OS/390 COPY or COPYE Command
15–2 VISION:Results Reference Guide

Formats
Format 2 VSE

COPYE D.ARFILE #1= #2= #3=NULL
COPY Q.PAYROLL #A='100,000.00' #B='REMARKS' #6=NEXT
COPY APMSTR #0=BALANCE #1=REJECT #2=ACCEPT

Note: COPY can also be COPYC (VSE only), COPYP, or COPYL.

When Format 2 is used, you can use the $DEFAULT and the $IF commands. Unlike
the COPY or COPYE commands that are coded in your program input stream (and
subsequently cause the inclusion of the VISION:Results statements in the member
or book), $DEFAULT and $IF are included as part of the VISION:Results
statements in the member or book.

The $DEFAULT statement must be coded as the first statement in any block of
code that is to become a member or book. With this statement, you can provide
common default values to symbolic variables (definitions), and the default can be
overridden using the COPY or COPYE statement during execution. The
$DEFAULT is delimited by the $DEND. Once the $DEND is specified, no other
commands or keywords are allowed on this input record.

$DEFAULT #1=REJECT #2=ACCEPT
#3=STOP #4=NEXT #5='2,000.00'
$DEND
IF ACCOUNT EQ 'WO' #1 ENDIF

The $IF is the conditional statement facility of the COPY or COPYE
command (Format 2). The inclusion or exclusion of statements is
completely dependent upon the symbolic variable, immediately
following the $IF, having a value (any value) or being NULL. The $IF
command is terminated by $IFE.
$DEFAULT #1=NULL
$DEND
$IF #1
SORT ARFILE USING #2 #3

$IFE

If #1 is given a value (any value) on the COPY or COPYE statement,
the SORT statement is included in the input stream. If the default is
taken (no override in the COPY or COPYE statement), the statement is
not included.
$DEFAULT #1=YES
$DEND
$IF #1
SORT ARFILE USING #2 #3

$IFE

COPY [sublibrary.]bookname
[![{#A=}][{dataname}]!...] [COBOL]
[[{#n=}][{literal }]]
[[{NULL }]]

Figure 15-4 Format 2 VSE COPY or COPYE Command
Using the COPY or COPYE Command 15–3

Examples
In the above, whether #1 is given a value or not, the SORT is included.
However, if the value given is NULL (#1=NULL), the SORT statement
is not included.

The $ELSE clause allows you to include alternate logic in a $IF
statement.
$IF #A
MOVE TEMPSTAT TO OUTFILEB.STAT
WRITE OUTFILEB

$ELSE
MOVE REALSTAT TO OUTFILEA.STAT
WRITE OUTFILEA

$IFE

In the above example, if the #A symbolic variable is defined and not
null, the first MOVE and WRITE statements are executed. If #A is
undefined or null, the $ELSE logic is used.

The $ELSE clause must be on a line by itself and must be preceded by
a valid $IF statement.

Examples
The following examples show:

� The source as it might appear as a member of a PDS or as a VSE book of a
sublibrary.

� How to start the OS/390 command. VSE is identical with the exception of the
sublibrary and period.

� The resulting statement stream after the COPY or COPYE has been
encountered.

Example 1 COPY with No Symbolics

DYAUDREC Contents

ACCTNO 7 4 (ACCOUNT'NUMBER)
TRANDATE 6 38 (TRANSACTION'DATE)
BILLNGDATE 6 44 NU D (BILLING'DATE)
NAMADR 75 85 (NAME AND ADDRESS)
NAME 25 85
ADD1 25 110 (STREET)
ADD2 25 135 (STATE'ZIP)
BALANCE 5 170 PD 2 A
ACCOUNT 2 182 (ACCOUNT'CODE)
INSTLBAL 6 191 PD 2 A (INSTALL'BALANCE)
INSTPAY 5 197 PD 2 A (INSTALL'PAY)
BALPART 4 202 PD 2 A (BALANCE PART'PAY)
INTPART 3 206 PD 2 A (INTEREST PART'PAY)
NUMPY 2 209 PD A (NUMBER'PAY)

Figure 15-5 Example 1 COPY with No Symbolics, DYAUDREC Contents
15–4 VISION:Results Reference Guide

Examples
OS/390 Input Stream

Final VISION:Results Program

Example 2 COPY with Symbolics, No Defaults

SORTDEF Contents

OS/390 Input Stream

FILE ARFILE FB 352 5280
COPY DYAUDREC
SORT ARFILE USING ACCOUNT
LIST ACCOUNT TRANS BALANCE
T1 'REPORT 1'

Figure 15-6 Example 1 COPY with No Symbolics, OS/390 Input Stream

FILE ARFILE FB 352 5280
COPY DYAUDREC

COPIED ACCTNO 7 4 (ACCOUNT'NUMBER)
COPIED TRANDATE 6 38 (TRANSACTION'DATE)
COPIED BILLNGDATE 6 44 NU D (BILLING'DATE)
COPIED NAMADR 75 85 (NAME AND ADDRESS)
COPIED NAME 25 85
COPIED ADD1 25 110 (STREET)
COPIED ADD2 25 135 (STATE'ZIP)
COPIED BALANCE 5 170 PD 2 A
COPIED ACCOUNT 2 182 (ACCOUNT'CODE)
COPIED INSTLBAL 6 191 PD 2 A (INSTALL'BALANCE)
COPIED INSTPAY 5 197 PD 2 A (INSTALL'PAY)
COPIED BALPART 4 202 PD 2 A (BALANCE PART'PAY)
COPIED INTPART 3 206 PD 2 A (INTEREST PART'PAY)
COPIED NUMPY 2 209 PD 2 (NUMBER'PAY)

SORT ARFILE USING ACCOUNT
LIST ACCOUNT TRANS BALANCE
T1 'REPORT 1'

Figure 15-7 Example 1 COPY with No Symbolics, Final VISION:Results Program

SORT #1 USING #2

Figure 15-8 Example 2 COPY with Symbolics, No Defaults, SORTDEF Contents

FILE ARFILE FB 352 5280
ACCOUNT 2 182
TRANS 7 4
BALANCE 5 170 PD 2 A

COPY SORTDEF #1=ARFILE #2=ACCOUNT
LIST ACCOUNT TRANS BALANCE
T1 'REPORT 2'

Figure 15-9 Example 2 COPY with Symbolics, No Defaults, OS/390 Input Stream
Using the COPY or COPYE Command 15–5

Examples
Final VISION:Results Program

Example 3 COPY with Symbolics and Defaults

SORTDEF Contents

OS/390 Input Stream

Final VISION:Results Program

FILE ARFILE
ACCOUNT 2 182
TRANS 7 4
BALANCE 5 170 PD 2 A

COPY SORTDEF #1=ARFILE #2=ACCOUNT
COPIED SORT ARFILE USING ACCOUNT

LIST ACCOUNT TRANS BALANCE
T1 'REPORT 2'

Figure 15-10 Example 2 COPY with Symbolics, No Defaults, Final VISION:Results
Program

$DEFAULT #1=ARFILE #2=ACCOUNT
#3=TRANS

$DEND
SORT #1 USING #2 #3

Figure 15-11 Example 3 COPY with Symbolics and Defaults, SORTDEF Contents

FILE ARFILE FB 352 5280
ACCOUNT 2 182
TRANS 7 4
BALANCE 5 170 PD 2 A

COPY SORTDEF
LIST ACCOUNT TRANS BALANCE
T1 'REPORT 3'

Figure 15-12 Example 3 COPY with Symbolics and Defaults, OS/390 Input Stream

FILE ARFILE FB 352 5280
ACCOUNT 2 182
TRANS 7 4
BALANCE 5 170 PD 2 A

COPY SORTDEF
COPIED $DEFAULT #1=ARFILE #2=ACCOUNT
COPIED #3=TRANS
COPIED $DEND
COPIED SORT ARFILE USING ACCOUNT TRANS

LIST ACCOUNT TRANS BALANCE
T1 'REPORT 3'

Figure 15-13 Example 3 COPY with Symbolics and Defaults, Final VISION:Results
Program
15–6 VISION:Results Reference Guide

Examples
Example 4 COPY with Symbolics, Defaults, and Partial Default Override

SORTDEF Contents

OS/390 Input Stream

Final VISION:Results Program

$DEFAULT #1=ARFILE #2=ACCOUNT
#3=TRANS

$DEND
SORT #1 USING #2 #3

Figure 15-14 Example 4 COPY with Symbolics, Defaults, and Partial Default
Override, SORTDEF Contents

FILE ARFILE FB 352 5280
ACCOUNT 2 182
TRANS 7 4
BALANCE 5 170 PD 2 A

COPY SORTDEF #3=NAME
LIST ACCOUNT TRANS BALANCE
T1 'REPORT 4'

Figure 15-15 Example 4 COPY with Symbolics, Defaults, and Partial Default
Override, OS/390 Input Stream

FILE ARFILE FB 352 5280
ACCOUNT 2 182
TRANS 7 4
BALANCE 5 170 PD 2 A

COPY SORTDEF #3=NAME
COPIED $DEFAULT #1=ARFILE #2=ACCOUNT
COPIED #3=TRANS
COPIED $DEND
COPIED SORT ARFILE USING ACCOUNT NAME

LIST ACCOUNT TRANS BALANCE
T1 'REPORT 4'

Figure 15-16 Example 4 COPY with Symbolics, Defaults, and Partial Default
Override, Final VISION:Results Program
Using the COPY or COPYE Command 15–7

Examples
Example 5 COPY with Symbolics, Defaults, and Use of Two COPY Statements

LISTAR Contents

OS/390 Input Stream

Final VISION:Results Program

$DEFAULT #1=ACCOUNT
#2=TRANS
#3=NAME
#4=BALANCE
#5=BILLNGDATE
#6='SUM NUMPY'

$DEND
CONTROL #1
LIST #1 #2 #3 #4 #5
ON CHANGE #1
LIST SUM #4 #6 WITH 2 BEFORE

Figure 15-17 Example 5 COPY with Symbolics, Defaults, and Use of Two COPY
Statements, LISTAR Contents

FILE ARFILE FB 352 5280
COPY DYAUDREC
SORT ARFILE USING ACCOUNT
COPY LISTAR #5=INTPART
#4=INSTLBAL #6=TALLY

T1 'REPORT 5' WITH 2 AFTER

Figure 15-18 Example 5 COPY with Symbolics, Default, and Use of Two COPY
Statements, OS/390 Input Stream

FILE ARFILE FB 352 5280
COPY DYAUDREC

COPIED ACCTNO 7 4 (ACCOUNT'NUMBER)
COPIED TRANDATE 6 38 (TRANSACTION'DATE)
COPIED BILLNGDATE 6 44 NU D (BILLING'DATE)
COPIED NAMADR 75 85 (NAME AND ADDRESS)
COPIED NAME 25 85
COPIED ADD1 25 110 (STREET)
COPIED ADD2 25 135 (STATE'ZIP)
COPIED BALANCE 5 170 PD 2 A
COPIED ACCOUNT 2 182 (ACCOUNT'CODE)
COPIED INSTLBAL 6 191 PD 2 A (INSTALL'BALANCE)
COPIED INSTPAY 5 197 PD 2 A (INSTALL'PAY)
COPIED BALPART 4 202 PD 2 A (BALANCE PART'PAY)
COPIED INTPART 3 206 PD 2 A (INTEREST PART'PAY)
COPIED NUMPY 2 209 PD A (NUMBER'PAY)

SORT ARFILE USING ACCOUNT
COPY LISTAR #5=INTPART
#4=INSTLBAL #6=TALLY

Figure 15-19 Example 5 COPY with Symbolics, Defaults, and Use of Two COPY
Statements, Final VISION:Results Program (Page 1 of 2)
15–8 VISION:Results Reference Guide

Examples
Example 6 COPY Conditional Statement

ARSORT Contents

OS/390 Input Stream

Final VISION:Results Program

COPIED $DEFAULT #1=ACCOUNT
COPIED #2=TRANS
COPIED #3=NAME
COPIED #4=BALANCE
COPIED #5=BILLNGDATE
COPIED #6='SUM NUMPY'
COPIED $DEND
COPIED CONTROL ACCOUNT
COPIED LIST ACCOUNT TRANS NAME INSTLBAL INTPART
COPIED ON CHANGE ACCOUNT
COPIED LIST SUM INSTLBAL TALLY WITH 2 BEFORE
COPIED T1 'REPORT 5' WITH 2 AFTER

Figure 15-19 Example 5 COPY with Symbolics, Defaults, and Use of Two COPY
Statements, Final VISION:Results Program (Page 2 of 2)

$DEFAULT #1=ARFILE #2=ACCOUNT
#3=TRANS #4=YES #5=NULL
#6=NULL

$DEND
$IF #4
SORT #1 USING #2 #3

$IFE
$IF #5
SORT #1 USING #2

$IFE
$IF #6
IF TRANS EQ '3330000' THRU '6890000' REJECT ENDIF
SORT #1 USING #3

$IFE

Figure 15-20 Example 6 COPY Conditional Statement, ARSORT Contents

FILE ARFILE FB 352 5280
ACCOUNT 2 182
TRANS 7 4
BALANCE 5 170 PD 2 A

COPY ARSORT #4=NULL #5=YES
LIST ACCOUNT TRANS BALANCE
T1 'REPORT 6'

Figure 15-21 Example 6 COPY Conditional Statement, OS/390 Input Stream

FILE ARFILE FB 352 5280
ACCOUNT 2 182
TRANS 7 4

Figure 15-22 Example 6 COPY Conditional Statement, Final VISION:Results
Program (Page 1 of 2)
Using the COPY or COPYE Command 15–9

Examples
Example 7 COPY Conditional Statement

ARSORT Contents

OS/390 Input Stream

Final VISION:Results Program

BALANCE 5 170 PD 2 A
COPY ARSORT #4=NULL #5=YES

COPIED $DEFAULT #1=ARFILE #2=ACCOUNT
COPIED #3=TRANS #4=YES #5=NULL
COPIED #6=NULL
COPIED $DEND
COPIED SORT ARFILE USING ACCOUNT

LIST ACCOUNT TRANS BALANCE
T1 'REPORT 6'

Figure 15-22 Example 6 COPY Conditional Statement, Final VISION:Results
Program (Page 2 of 2)

$DEFAULT #1=ARFILE #2=ACCOUNT
#3=TRANS #4=YES #5=NULL
#6=NULL

$DEND
$IF #4
SORT #1 USING #2 #3

$IFE
$IF #5
SORT #1 USING #2

$IFE
$IF #6
IF TRANS EQ '3330000' THRU '6890000' REJECT ENDIF
SORT #1 USING #3

$IFE

Figure 15-23 Example 7 COPY Conditional Statement, ARSORT Contents

FILE ARFILE FB 352 5280
ACCOUNT 2 182
TRANS 7 4
BALANCE 5 170 PD 2 A

COPY ARSORT #4=NULL #6=YES
LIST TRANS ACCOUNT BALANCE
T1 'REPORT 7'

Figure 15-24 Example 7 COPY Conditional Statement, OS/390 Input Stream

FILE ARFILE FB 352 5280
ACCOUNT 2 182
TRANS 7 4
BALANCE 5 170 PD 2 A

Figure 15-25 Example 7 COPY Conditional Statement, Final VISION:Results
Program (Page 1 of 2)
15–10 VISION:Results Reference Guide

Rules, Limitations, and Constraints
Rules, Limitations, and Constraints
The following rules apply to the COPY or COPYE command:

� The maximum number of symbolic variable values allowed is 36 (#0 to #9, #A
to #Z).

� The maximum value allowed is 30 continuous characters.

� #Y and #Z have automatic default values and, if used, must only be specified as
overrides in the COPY or COPYE statement itself. #Y default is O for OS/390;
D for VSE. #Z is a counter containing the number of COPY or COPYE
statements invoked (first COPY is 01).

� The order in which symbolic variables are defined on the COPY, COPYE, or
$DEFAULT statements is not relevant. #2 can precede #1, #W can precede #B,
and so on.

� There is no limit on the number of COPY or COPYE commands used. They
cannot be embedded within one another. In other words, a COPY or COPYE
cannot invoke another COPY or COPYE.

� Spaces and commas are delimiters and, if used in a continuous string, must be
enclosed within single quotation marks (') or double quotation marks ('').

� Single quotation marks, when used in a continuous string, must be enclosed
within double quotation marks ('').

� Double quotation marks, when used in a continuous string, must be enclosed
within single quotation marks (').

� Each value, unless enclosed within single or double quotation marks, must be
a continuous string.

� Values cannot continue onto a second statement. In other words, the value
cannot begin and end on two separate lines.

� Continuation (to define additional symbolic variables) is permissible. There is
no limit on the number of continuation lines.

COPY ARSORT #4=NULL #6=YES
COPIED $DEFAULT #1=ARFILE #2=ACCOUNT
COPIED #3=TRANS #4=YES #5=NULL
COPIED #6=NULL
COPIED $DEND
COPIED IF TRANS EQ '3330000' THRU '0890000' REJECT ENDIF
COPIED SORT ARFILE USING TRANS

LIST TRANS ACCOUNT BALANCE
T1 'REPORT 7'

Figure 15-25 Example 7 COPY Conditional Statement, Final VISION:Results
Program (Page 2 of 2)
Using the COPY or COPYE Command 15–11

Rules, Limitations, and Constraints
� $DEFAULT symbolic variable values can be specified; however, they must
precede all copy code of the member/book copied in by the COPY or COPYE
macro function.

� $DEFAULT symbolic variable values must be terminated by a $DEND. The
$DEND must be on the input line by itself. It cannot contain any other
commands, keywords, or extraneous data on the same input line. Nothing can
follow $DEND on the input line.

� If the keyword CARD or CARDS is used in a FILE statement to indicate
instream data, the FIN statement that precedes the data cannot be input to
VISION:Results using the COPY or COPYE command.

� Overriding $DEFAULT values is allowed, but they must be specified on the
COPY or COPYE statement immediately following the member/book name,
(preceded by at least one space/blank) or in a continuation line.

� If a symbolic variable is not defined (equated to a value) in a COPY or COPYE
or its continuation statement(s), it either retains its $DEFAULT value, if
present, or its #n value, where #n is #0 through #9 or #A through #Z.

� The conditional commands of $IF, its symbolic variable, and $IFE must be on
input lines by themselves; no other data can be specified.

� If $IF is present in the copy code, it must be followed by at least one space and
a symbolic variable (#?), where ? is 0 through 9 or A through Z.

� $IF must have a corresponding $IFE as its last record to terminate the inclusion
or exclusion of source code.

� There is no limit on the number of $IF and $IFE pairs; however, they cannot be
embedded within one another. One set must be completed before a second set
can be invoked.

� $IF and $IFE do not print as copy code; they are ignored.

� If $IF is present and its symbolic variable (#?) has an override or default value,
all source immediately following it up to $IFE is included.

� If $IF is present, but the symbolic variable (#?) value is null, all of the source
immediately following it up to $IFE is not included.

� Nulls can be specified in the $DEFAULT, $IF, and COPY or COPYE commands.

� Nulls can be specified in two ways, #1= or #1=NULL. However, if the symbolic
variable is to be defined as a null and it is the last symbolic variable specified
on a COPY or COPYE, it must be specified with the keyword NULL
(#1=NULL).

COPY ARSORT #1=REJECT #2=REJECT #3=NULL
COPY APSELECT #1= #2= #3= #4=NULL
COPY APSELECT #1=NULL #2=NULL #3=NULL #4=NULL
15–12 VISION:Results Reference Guide

OS/390 COPY or COPYE Command Requirements
Examples of Permissible Symbolic Values

Examples of Permissible Symbolic Null Values

OS/390 COPY or COPYE Command Requirements
At the point in the VISION:Results statement stream where VISION:Results
statements are to be copied, code one of the following:

COPY ARSORT
COPYE ARSORT

ARSORT is the name of the PDS member name to be copied into the
VISION:Results program at that point.

The member name does not have to be ARSORT; it can be the name of any PDS
member (such as PAYLOG). If the SUBSYS facility is used for a CA-Librarian or
CA-Panvalet copy library (and the CA-Librarian or CA-Panvalet product has been
established to OS/390 as a SUBSYSTEM), the member name can be the name of
any CA-Librarian or CA-Panvalet member.

#1=DATANAME Value is as specified.
#1=DATA_NAME Value is as specified.
#1=’,’ Comma delimited by single quotation marks.
#2=’/b ‘ Blank delimited by single quotation marks.
#5=”X’FF’” Single quotation marks delimited by double

quotation marks.
Value extracted is X’FF.’

#A=’/b /b 5’ Blanks and 5 delimited by single quotation marks.
#4=’’C’O’D’E’’ Single quotation marks delimited by double

quotation marks.
#3=’V5/b /b /b ’ Blanks delimited by single quotation marks.
#C=’”’ Double quotation marks delimited by single

quotation marks.
#Y=’VALUE/b , IS/b /b /b , /b /b ‘ Blanks and commas delimited by single quotation

marks.
#Z=ABCD Value is as specified.
#0=REJECT Value is as specified.
#3=ACCEPT Value is as specified.
#Q=NULL NULL conditionally includes or excludes code.

No value.

#1=/b /b #1=/b , #1=,/b #1=,,

#1=/b #2 #1=,#3 #1=NULL #1=NULL/b #2
Using the COPY or COPYE Command 15–13

OS/390 COPY or COPYE Command Requirements
Immediately following the member name, any number of symbolic variables
(from #0 to #9 and/or #A to #Z, termed overrides) can be specified.

COPY ARSORT #1=RECORD, #2=ABC

If continuation is required to cover all symbolic variable overrides, you can
continue your definitions onto additional statements.

COPY ARSORT #1=RECORD
#2=ABC,#3=OUTPUT
#4=REJECT

COPYE ARSORT #1=RECORD
#2=ABC,#3=OUTPUT
#4=REJECT
15–14 VISION:Results Reference Guide

OS/390 $DEFAULT Command Requirements
OS/390 $DEFAULT Command Requirements
$DEFAULT is a command that must be cataloged with the COPY or COPYE PDS
member. It gives default values to symbolic variables that are not found in the
COPY or COPYE or its continuation statement(s) as overrides. It must be coded as
shown below and terminated by the keyword $DEND, which must not be
followed by any command, keyword, and so on, on the same input line.
$DEFAULT must precede any or all VISION:Results statements in the member.

$DEFAULT

Following the keyword $DEFAULT, any number of symbolic variables (from #0
through #9 or #A through #Z, termed default values) can be specified.

If continuation is required to define all symbolic variable defaults, you can specify
it as follows:

$DEFAULT #1=AMOUNT
#2=DEFINE
#3=REJECT #4=OUTPUT

$DEND

OS/390 JCL Requirements
An additional JCL DD statement is required, as shown below:

//SYSCOPY DD DSN=pdsname,DISP=SHR

This specifies the name of the partitioned data set (PDS) containing the
VISION:Results statement members that are to be copied into the VISION:Results
program input stream.

For information about creating a member of a PDS, see Chapter 22, Using PDS and
SSL Support or refer to the IBM utility program IEBUPDTE.

If your system has CA-Panvalet or CA-Librarian installed as a SUBSYSTEM to
OS/390/JES, the following DD statement can be used for SYSCOPY:

//SYSCOPY DD DSN=libname,DISP=SHR,SUBSYS=name

where libname is the name of your CA-Panvalet or CA-Librarian library, and
name is the SUBSYSTEM name established when your copy facility was installed.

$DEFAULT #1=A #2=DEF
$DEND

$DEFAULT #1=AMOUNT #2=DATE $DEND

Figure 15-26 OS/390 $DEFAULT Command
Using the COPY or COPYE Command 15–15

VSE COPY or COPYE Command Requirements
VSE COPY or COPYE Command Requirements
At the point in the VISION:Results statement stream where VISION:Results
program statements are to be copied from the source statement library, code one
of the following:

COPY D.ARSORT
COPYE D.ARSORT

Immediately following the COPY or COPYE command is the sublibrary
identification (sublib id), followed by a period (.) under which the statements
(book) were cataloged. The VISION:Results default for the sublibrary is D.

Immediately following the sublibrary and period (.) is the book name of the
statements to be inserted.

After the book name has been specified, any number of symbolic variables (from
#0 through #9 and/or #A through #Z, termed overrides) can be specified.

COPY D.ARSORT #1=REJECT #2=ABC
COPY ARSORT #1=REJECT #2=ABC (sublibrary default is taken)

If continuation is required to define all symbolic variable overrides, you need only
continue the definitions onto another statement.

COPY D.ARSORT #1=RECORD
#2=ABC,
#3=OUTPUT, #4=REJECT

VSE $DEFAULT Command Requirements
The VSE $DEFAULT keyword is identical to the OS/390 $DEFAULT keyword. See
OS/390 $DEFAULT Command Requirements on page 15-15.

VSE JCL Requirements
Additional JCL may be required if any of the statements (BOOKS) to be copied
reside on a private source statement library (SSL). An example of the JCL required
for the COPY or COPYE VISION:Results program statements contained on a
private SSL is shown below:

// DLBL DYLLIB,'VISION:Results.Private.SSL'
// EXTENT, VOL001 FOR VSE/SP
// LIBDEF SOURCE,SEARCH=DYLLIB.SSL

// ASSGN SYSSLB,X'cuu'
// DLBL IJSYSSL,'sterling.pssl',0 FOR VSE
// EXTENT SYSSLB

Note: For information on cataloging books to a source statement library, refer to a
description of the LIBR or MAINT program in the appropriate IBM publication.
15–16 VISION:Results Reference Guide

COPYC Considerations
The private source statement library, if assigned, is searched first for the specified
sublibrary book. If the book is not found, the system source statement library is
then searched.

COPYC Considerations
Note: This section only applies to VSE.

All the copy facilities available using COPY are also valid with COPYC. The only
difference is that members are retrieved from your CONDOR library. The
maximum member name length supported is eight characters. VISION:Results
assumes a file name of GACLIB for the CONDOR library. It also assumes that the
CONDOR library is on the same device type as SYSRES. Add a DLBL and EXTENT
statement for the CONDOR library to the standard VISION:Results JCL before
running a program that contains COPYC.

// DLBL GACLIB,' '
// EXTENT

COPYL Considerations
All the copy facilities available using COPY are also valid with COPYL. The only
difference is that members are retrieved from your CA-Librarian file. The
maximum member name length supported is eight characters. You need to supply
additional JCL.

CA-Librarian OS/390 JCL
A DD statement describing the CA-Librarian file is required. The ddname is
MASTER.

//MASTER DD DSN=Your.LIBRARIAN.Load.Library,DISP=SHR

CA-Librarian VSE JCL
DLBL and EXTENT statements are required to describe the CA-Librarian file. The
file name is MASTER.

// DLBL MASTER,' '
// EXTENT
Using the COPY or COPYE Command 15–17

COPYP Considerations
COPYP Considerations
All the copy facilities available using COPY are also valid with COPYP. The only
difference is that members are retrieved from your CA-Panvalet library. The
maximum member name length supported is 10 characters. You need to make
some additions to the JCL.

CA-Panvalet OS/390 JCL
A DD statement describing the CA-Panvalet library is required. The ddname is
PANDD1.

//PANDD1 DD DSN=Your.PANVALET.Load.Library,DISP=SHR

CA-Panvalet VSE JCL
DLBL and EXTENT statements are required to describe the CA-Panvalet file. The
file name is PANDD1.

// DLBL PANDD1,' '
// EXTENT

Using COBOL Record Descriptions
If you have a COBOL record or working storage description stored in a library, you
can copy it directly into your VISION:Results program. The syntax is as follows:

The member name (OS/390) or book name (VSE) is retrieved from the appropriate
library, listed, and included as part of your program. Any field in your COBOL
description can then be referenced elsewhere in your VISION:Results program.
A default column heading equal to the data name itself is established for each field.
VSE users are not required to specify the sublibrary in which the descriptions are
cataloged. If omitted, the sublibrary default is D.

Replacing of Character Strings
You can replace one or more character strings by another character string. The
syntax is as follows:

Each operand can be an alphanumeric literal or COBOL pseudo-text. An
alphanumeric literal can be up to 30 contiguous alphanumeric characters. Blanks
and special characters are not permitted unless the entire operand is enclosed in

{COPY | COPYE | COPYC | COPYL | COPYN | COPYP}
{membername | [sublibrary.]bookname} COBOL

Figure 15-27 COBOL Record

COPY membername COBOL REPLACING operand 1 BY operand 2

Figure 15-28 Replacing Character Strings Syntax
15–18 VISION:Results Reference Guide

Using COBOL Record Descriptions
quotation marks. Pseudo-text must be enclosed in double equal signs. The
pseudo-text string can be up to 30 characters long, not including the delimiting
equal signs. If blanks or special characters are included in the pseudo text, the
entire string, including the double equal sign delimiters, must be enclosed in
quotation marks.

You can replace up to 30 characters of a data name. Substitution is made for the
first occurrence of the string encountered on each line. You are responsible for
assuring that the replaced text does not extend past the end of the line.

Instream COBOL Facility
To include COBOL data definition statements directly (without the use of COPY),
insert the $COBOL command ahead of the description(s). Following the last
COBOL statement, insert the command $ECOBOL. In order to be recognized, this
latter command must be coded in column 8 or later.

Rules for Using COBOL Record Descriptions
The following rules govern these facilities:

� The copied member or book must contain only valid COBOL record
descriptions or working storage descriptions. An asterisk in column 7
(comment statement) is also permitted.

� All hyphens (-) in data names are changed internally to underscores (_). All
single character data names have a trailing underscore added (for example,
A_). Although your listing of the copied code does not show the underscores,
you must use the underscore rather than the hyphen when referencing the data
name.

� Numeric, packed, and binary fields cannot have more than 9 decimal places,
nor more than 16 digits including decimal places. Decimal scaling positions (P)
in the PICTURE clause are dropped.

� The VALUE clause is not allowed in an input-file description.

� Alignment:

Every 01 level item subordinate to FILE points to the first byte of the record area
(implied redefinition).

01 level and COMP-2 items are aligned on the next doubleword boundary.

COMP-1 items are aligned on the next fullword boundary.
Using the COPY or COPYE Command 15–19

Using COBOL Record Descriptions
Synchronized (SYNC) items are aligned on the next halfword or fullword
boundary as required.

� Report items, floating-point items, and 8-byte binary items are changed to
character fields having an equivalent length.

� Level 66 and level 88 items are dropped.

� The following clauses are ignored:

ASCENDING [KEY IS]
BLANK [WHEN] ZERO
COPY
DEPENDING [ON]
DESCENDING [KEY IS]
INDEX (USAGE IS)
INDEXED [BY]
JUST(IFIED) [RIGHT]
SIGN
TO (variable # of occurrences)

� Unless another edit code is specified in the LIST statement, all non-character
fields are assigned an edit code of A. When the field is listed, it has high order
zero suppression with commas and decimal insertion. This default edit code
can be changed using the COBEDIT parameter of the DYLINSTL macro. See the
VISION:Results Installation Guide for details.

� You can edit COBOL data fields by specifying the edit code immediately after
the data name in your LIST statement. For example:

LIST A_ PO_SPL_QTY PO_SPL_DTE D PO_RCVR_DATA

The date field (PO_SPL_DTE) is printed with slashes (for example, 01/15/01).

� All COBOL record descriptions must have been previously compiled with the
COBOL compiler to make sure they are valid. Invalid COBOL record
descriptions that are processed by VISION:Results can cause unpredictable
results.

VISION:Results also supports COBOL data names beginning with a numeric
character. These are treated as valid data names and can be used by prefixing
an N_ to the data name. For example:

05 120DATE PIC 9(6). COBOL definition
MOVE N_120DATE TO OUTDATE VISION:Results usage

COBOL Examples
COPY Member COBOL

FILE PURCHMST FB 245 2450
COPY POMSTR COBOL
LIST A_ PO_SPL_QTY PO_SPL_DTE PO_RCVR_DATA

Figure 15-29 COBOL Example, COPY Member COBOL
15–20 VISION:Results Reference Guide

Using COBOL Record Descriptions
Program Listing

or

Program Listing

The COBOL data description is printed in the VISION:Results program listing
exactly as it was received. That is, data names are printed with hyphens and as
one-character data names, just as they were originally coded. However, when
these fields are referenced in a VISION:Results statement (for example, the LIST
statement above), the data names must have an underscore (_) instead of the
hyphen and a one-character data name must have an underscore appended (A_).

Instream COBOL

FILE PURCHMST FB 245 2450
COPY POMSTR COBOL

COPIED 01 PO-MSTR-LAYOUT.
COPIED 02 PO-REC-BODY PIC X(171).
COPIED 02 A PIC X(45).
COPIED 02 TRAILERS.
COPIED 03 PO-DELIVERIES.
COPIED 05 PO-SPL-QTY PIC S9(5) COMP-3.
COPIED 05 PO-SPL-DTE PIC 9(07) COMP-3.
COPIED 03 PO-RECEIVERS.
COPIED 05 PO-RCVR-DATA PIC X(22).

LIST A_ PO_SPL_QTY PO_SPL_DTE PO_RCVR_DATA

Figure 15-30 COBOL Example, Program Listing 1

FILE PURCHMST FB 245 2450
COPY POMSTR COBOL

COPIED 01 PO-MSTR-LAYOUT.
COPIED 02 PO-REC-BODY PIC X(171).
COPIED 02 A PIC X(45).
COPIED 02 TRAILERS.
COPIED 03 PO-DELIVERIES.
COPIED 05 PO-SPL-QTY PIC S9(5) PACKED-DECIMAL.
COPIED 05 PO-SPL-DTE PIC 9(07) PACKED-DECIMAL.
COPIED 03 PO-RECEIVERS.
COPIED 05 PO-RCVR-DATA PIC X(22).

LIST A_ PO_SPL_QTY PO_SPL_DTE PO_RCVR_DATA

Figure 15-31 COBOL Example, Program Listing 2

FILE PURCHMST FB 245 2450
$COBOL
01 PO-MSTR-LAYOUT.

02 PO-REC-BODY PIC X(171).
02 A PIC X(45).
02 TRAILERS.
03 PO-DELIVERIES.
05 PO-SPL-QTY PIC S9(5) COMP-3.
05 PO-SPL-DTE PIC 9(07) COMP-3.

03 PO-RECEIVERS.
05 PO-RCVR-DATA PIC X(22).

$ECOBOL

LIST A_ PO_SPL_QTY PO_SPL_DTE PO_RCVR_DATA

Figure 15-32 COBOL Example, Instream COBOL 1
Using the COPY or COPYE Command 15–21

Using COBOL Record Descriptions
or

Instream COBOL

ICCF/INCLUDE

$ECOBOL statements must be coded in column 8 or later.

COBOL Replacing Literal
VISION:Results Statement

COPY SLSOR101 COBOL REPLACING XYZ BY 'C101-'

COBOL Copybook Member

Copied Member in VISION:Results

FILE PURCHMST FB 245 2450
$COBOL
01 PO-MSTR-LAYOUT.

02 PO-REC-BODY PIC X(171).
02 A PIC X(45).
02 TRAILERS.
03 PO-DELIVERIES.
05 PO-SPL-QTY PIC S9(5) PACKED-DECIMAL.
05 PO-SPL-DTE PIC 9(07) PACKED-DECIMAL.

03 PO-RECEIVERS.
05 PO-RCVR-DATA PIC X(22).

$ECOBOL

LIST A_ PO_SPL_QTY PO_SPL_DTE PO_RCVR_DATA

Figure 15-33 COBOL Example, Instream COBOL 2

FILE PURCHMST FB 245 2450
$COBOL
/INCLUDE POMSTR

$ECOBOL

LIST A_ PO_SPL_QTY PO_SPL_DTE PO_RCVR_DATA

Figure 15-34 COBOL Example, ICCF/INCLUDE

01 XYZSLSOR101.
05 XYZSLS0R101-KEY.

10 XYZ0-LOCN-ADMIN PIC X(05).
10 XYZ0-WORK-ORD-NUM PIC 9(10).

05 XYZ0-CUST-NUM PIC 9(07).
05 XYZ0-CUST-BILL-TO PIC X(07).

Figure 15-35 COBOL Replacing Literal, COBOL Copybook Member

01 C101-SLS04101-KEY.
05 C101-0-SLS0R101-KEY.

10 C101-LOCN-ADMIN PIC X(05).
10 C101-WORK-ORD-NUM PIC 9(10).

05 C101-CUST-NUM PIC 9(07).
05 C101-CUST-BILL-TO PIC X(07).

Figure 15-36 COBOL Replacing Literal, Copied Member in VISION:Results
15–22 VISION:Results Reference Guide

Prefixing Data Names
COBOL Replacing Pseudo-text
VISION:Results Statement

COPY SLSOR101 COBOL REPLACING ’==:XYZ:==’ BY ’==C-01-==’

COBOL Copybook Member

Copied Member in VISION:Results

Prefixing Data Names
The COPY feature allows for symbolic substitution as well as default values for
these symbolics. You can take advantage of this feature when setting up
VISION:Results copybooks describing files.

01 :XYZ:SLSOR101.
05 :XYZ:SLS0R101-KEY.

10 :XYZ:0-LOCN-ADMIN PIC X(05).
10 :XYZ:0-WORK-ORD-NUM PIC 9(10).

05 :XYZ:0-CUST-NUM PIC 9(07).
05 :XYZ:0-CUST-BILL-TO PIC X(07).

Figure 15-37 COBOL Replacing Pseudo-text, COBOL Copybook Member

01 C-01-SLS04101-KEY.
05 C-01-0-SLS0R101-KEY.

10 C-01-LOCN-ADMIN PIC X(05).
10 C-01-WORK-ORD-NUM PIC 9(10).

05 C-01-CUST-NUM PIC 9(07).
05 C-01-CUST-BILL-TO PIC X(07).

Figure 15-38 COBOL Replacing Pseudo-text, Copied Member in VISION:Results

In the copybook, prefix each data name with a symbolic
variable.

#1CCENTER

Assign this variable a default value. #1=IN

In your program, when the COPY is requested with no
symbolics specified, all data names are prefixed with IN.

INCCENTER

You can specify a different prefix on the COPY command. #1=OUT
Using the COPY or COPYE Command 15–23

Using DB2 Tables
With this specified, all data names are prefixed with OUT. By setting up all
VISION:Results copybooks in this manner, data names can be prefixed indicating
the file and/or work area to which the fields belongs.

Using DB2 Tables
If you have a DB2 subsystem at your installation, you can copy field names from a
DB2 table directly into your VISION:Results program. Use these generated field
names for field definitions in FILE statements, work areas, or table areas. The
syntax is as follows:

You cannot have more than one DB2 table name for the COPYDB2 command, but
you can have more than one COPYDB2 command.

COMPUTER ASSOCIATES VISION:RESULTS

1----------------VISION:RESULTS FREE FORM TEXT---------------------

FILE CCMSTR FB 80 800
COPY CCENTER <----

COPIED $DEFAULT #1=IN
COPIED $DEND
COPIED INCCENTER 4 (COST'CENTER)
COPIED INOFFNO 4 (OFFICE''NUMBER)
COPIED INEMPNO 6 (EMPLOYEE'NUMBER) INEMPNAME 19 (EMPLOYEE'NAME)
COPIED INHDATE 6 NU D (HIRE'DATE)
COPIED INSALCLASS 1 (SALARY'CLASS) INJCLASS 4 (JOB'CLASS)
COPIED INLGRADE 1 (LABOR'GRADE) INSEX 1 (S'E'X) INMSTATUS 2
COPIED INCRATE 6 NU 2 E (CURRENT'RATE)
COPIED INIDATE 6 NU D (INCREASE'DATE) INITYPE 1 (INCREASE'TYPE)
COPIED INIAMT 5 NU 2 E (INCREASE'AMOUNT)

FILE OCCMSTR FB 80 800
COPY CCENTER #1=OUT <----

COPIED $DEFAULT #1=IN
COPIED $DEND
COPIED OUTCENTER 4 (COST'CENTER)
COPIED OUTOFFNO 4 (OFFICE''NUMBER)
COPIED OUTEMPNO 6 (EMPLOYEE'NUMBER) OUTEMPNAME 19 (EMPLOYEE'NAME)
COPIED OUTHDATE 6 NU D (HIRE'DATE)
COPIED OUTSALCLASS 1 (SALARY'CLASS) OUTJCLASS 4 (JOB'CLASS)
COPIED OUTLGRADE 1 (LABOR'GRADE) OUTSEX 1 (S'E'X) OUTMSTATUS 2
COPIED OUTCRATE 6 NU 2 E (CURRENT'RATE)
COPIED OUTIDATE 6 NU D (INCREASE'DATE) OUTITYPE 1 (INCREASE'TYPE)
COPIED OUTIAMT 5 NU 2 E (INCREASE'AMOUNT)

WORKAREA
MESSAGE 20 AVG 6 NU 2 E (AVERAGE'RATE)
TALLY 4.0 (COUNT)

CONTROL INOFFNO INCCENTER
.
.
.

Figure 15-39 Prefixing Data Names

COPYDB2 tablename

Figure 15-40 COPYDB2 Command Syntax
15–24 VISION:Results Reference Guide

Using DB2 Tables
Because storage is dynamically allocated to the number of fields of a DB2 table,
COPYDB2 can retrieve an unlimited number of fields.

COPYDB2 Requirements
The DB2 subsystem ID and plan name are assigned through the VISION:Results
installation macro (CATSYS and CATPLAN). If no information is provided by this
macro, DB2A and DYLDB2 are used for subsystem ID and plan name,
respectively.

If the subsystem ID and plan name differ from CATSYS and CATPLAN in the
installation macro, you can override the default IDs using the following option:

where xxxxxxxx and nnnnnnnn are the subsystem and plan names, respectively.

If you do not want your program to be changed every time you use a different DB2
subsystem ID or plan, use the COPYDB2A DD statement method.

Note: If you want to use the COPYDB2 facility, you must have run either the
DB2INSTL or DB2INST2 job streams in the source library at installation time. For
more information, see the section “Installing the COPYDB2 Facility“ in the
VISION:Results Installation Guide.

COPYDB2A DD Statement to Override the Default IDs
Each COPYDB2 command can be dynamically assigned to its own subsystem ID
and plan name without the need to modify the VISION:Results program directly.
In addition, for each COPYDB2 command, the location and authorization IDs of
the DB2 table can be dynamically added or updated.

Each COPYDB2 command is assigned a unique JCL DD statement that contains a
single record containing the following positional parameters:

WORKAREA
SUBSYSID 8 1 ;DB2 subsystem ID
FILLER 1 9
PLANID 8 10 ;DB2 plan ID
FILLER 1 18
AUTHID 8 19 ;DB2 authorization ID
FILLER 1 27
LOCID 16 28 :DB2 location ID

OPTION CATPLANID xxxxxxxx CATSYSID nnnnnnnn

Figure 15-41 Override the Default IDs
Using the COPY or COPYE Command 15–25

Using DB2 Tables
The JCL overrides appear in the JCL as follows:

//COPYDB2A DD *
DB2T DYLDB2 DSN8610

� The DB2 subsystem ID is in position 1 and can be up to eight characters.

� The DB2 plan name is in position 10 and can be up to eight characters.

� The table authorization ID qualifier is in position 19 and can be up to eight
characters.

� The table location ID qualifier is in position 28 and can be up to 16 characters.

The first seven characters of each JCL DD statement starts with COPYDB2. The last
character is unique for each COPYDB2 command and is assigned alphabetically in
the order the COPYDB2 commands appear in the program. For example:

COPYDB2 DSN841.EMP ==> //COPYDB2A DD
COPYDB2 DSN841.DEPT ==> //COPYDB2B DD
COPYDB2 DSN841.PROJACCT ==> //COPYDB2C DD

� The first COPYDB2 command in the program has its overrides in the input
record assigned to the COPYDB2A DD statement;

� The second COPYDB2 command in the program has its overrides in the input
record assigned to the COPYDB2B DD statement;

� The third COPYDB2 command in the program has its overrides in the input
record assigned to the COPYDB2C DD statement;

and so on.

If a COPYDB2A is not present in the JCL, there is no override for the first
COPYDB2 command. If blanks are found where a positional parameter should be
in the record, there is no override for that parameter. The same rules apply for
other COPYDB2 commands and their corresponding COPYDB2 DD statements.

CALL Attach’s Implicit Connection Capability
VISION:Results allows the COPYDB2 command to use Call Attach’s implicit
connection. The Call Attach implicit connection allows you to determine the DB2
subsystem ID to use independently of the source program. The DB2 subsystem ID
is obtained from the DSNHDECP member of a DSNEXIT library, which must be
concatenated to the program’s STEPLIB. The DB2 plan name must be the same
name as COPYDB2's DBRM module, which is DYLCAT00.

Note: The COPYDB2A method is the standard way to override the DB2 data
parameters independently of the source program. This method is another way to
override the DB2 data parameters.

Call Attach's implicit connection will be implemented after running
VISION:Results’ DB2INST2 in the installation source library. The CATPLAN and
CATSYS specified in the DYLINSTL macro are ignored, along with the
15–26 VISION:Results Reference Guide

Using DB2 Tables
CATPLANID and CATSYSID on the OPTION statement and the DB2 plan. In
addition, the subsystem ID and plan name specified on the COPYDB2A DD
statement are ignored.

The other parameters on the COPYDB2A DD statement are still functional. When
the implicit connection is being used, the listings will generate an IMPLICIT
CONNECTION BEING USED comment line after the COPYDB2 command.

The standard Call Attach’s explicit connection can still be used if an ECONNECT
DD statement is present in the JCL.

TSO Attach Capability
VISION:Results allows COPYDB2 to be fully functional under the TSO Attach
facility. The TSO Attach facility requires COPYDB2 to use the DB2 plan and
subsystem ID specified within the SYSTSIN DD statement, which means it must
use the same plan and subsystem ID that VISION:Interface for DB2 Dynamic uses.

The CATPLAN and CATSYS specified in the DYLINSTL macro are ignored, along
with the CATPLANID and CATSYSID on the OPTION statement and the DB2
plan. In addition, the subsystem ID and plan name specified on the COPYDB2A
DD statement are ignored.

The other parameters on the COPYDB2A DD statement are still functional. When
the TSO Attach connection is being used, the listings generate a TSO ATTACH
CONNECTION BEING USED comment line after the COPYDB2 command.

IMS Attach Capability
You can use the COPYDB2 command under the IMS Attach facility. You must use
the JCL used for VISION:Interface for DB2. The IMS Attach capability works for
both BMP and batch programs.

The COPYDB2 command uses the same IMS Attach facility that VISION:Interface
for DB2 uses (see the VISION:Interface for DB2 documentation for more
information). The COPYDB2 command can only use the IMS Attach facility on a
compile and go program. It cannot use the IMS Attach facility on a freeze.

The subsystem ID and plan name specified on the COPYDB2A DD statement are
ignored. The other parameters on the COPDB2A DD statement are still functional.
When the IMS Attach connection is being used, the listings generate an IMS
ATTACH CONNECTION BEING USED comment line after the COPYDB2
command.

VARCHAR Data Type Support
Previously, COPYDB2 retrieved a VARCHAR data type as a fixed field with the
length being its maximum. For example, VISION:Results expanded the
VARCHAR field as:

COPIED FIRSTNME 14 CH
COPIED REDEFINE AT FIRSTNME
COPIED FIRSTNME_LEN 2 BI
COPIED FIRSTNME_TEXT 12 CH
Using the COPY or COPYE Command 15–27

Using DB2 Tables
In Release 4.0 of VISION:Interface for DB2, VARCHAR data types are supported
as both true variable fields and fixed fields. This means that a VARCHAR data
type used as a variable field in LIST statements erroneously displays the binary
length at the beginning of the field.

To fix this situation and remain compatible with existing programs that display
and retrieve VARCHAR data type fields as fixed fields, the following COPYDB2
definition and expansion of VARCHAR data type fields are used:

COPIED FIRSTNME_VAR 14 CH
COPIED REDEFINE AT FIRSTNME_VAR
COPIED FIRSTNME_LEN 2 BI
COPIED FIRSTNME_TEXT 12 CH
COPIED REDEFINE AT FIRSTNME_TEXT
COPIED FIRSTNME 12 CH

Generating Null Indicator Fields
COPYDB2 can include null indicator fields for all the fields, which may have a null
value. The null indicator field appears right after the field it reflects. It is a 2-byte
binary field (required by DB2 SQL programming) and has the same name as the
field it refers to, but with an additional ending suffix of _IND. If there is no room
for the ending suffix, then the null indicator field is not built for that field.

Use DYLINSTL parameter DB2NULL to specify whether the null indicator fields
are to be generated. If set to Y, the null indicator fields are generated. The default
is to not use the DB2NULL parameter (DB2NULL=N).

COPYDB2 Example
The following example shows the VISION:Results listing using a COPYDB2
command.

FILE XFILE DUMMY
WORKAREA
XXPNO 6 CH
COPYDB2 DYLA.DYXEMPL

COPIED * EXPANDED COLUMN FIELDS OF TABLE DYLA.DYXEMPL
COPIED EMPNO 6 CH
COPIED FIRSTNME 12 CH
COPIED MIDINIT 1 CH
COPIED LASTNAME 15 CH
COPIED WORKDEPT 3 CH
COPIED PHONENO 4 CH
COPIED HIREDATE 10 CH ; DATE COLMN
COPIED JOBCODE 2 PD
COPIED EDUCLVL 2 BI
COPIED SEX 1 CH
COPIED BRTHDATE 10 CH ; DATE COLMN
COPIED SALARY 5 PD 2

WK1 8 NU
ON ONE
EXEC SQL VERSION

Figure 15-42 COPYDB2 Command Example (Page 1 of 2)
15–28 VISION:Results Reference Guide

Using DB2 Tables
JCL DB2 Overrides Example

DECLARE EMPSCR CURSOR FOR
SELECT EMPNO, FIRSTNME, LASTNAME, SALARY, MIDINIT, WORKDEPT,
HIREDATE, PHONENO, JOBCODE, EDUCLVL, BRTHDATE, SEX

FROM DYLA.DYXEMPL
ORDER BY LASTNAME

ENDEXEC
ENDONE
.
.

Figure 15-42 COPYDB2 Command Example (Page 2 of 2)

//DYL280 EXEC RESULTS
//STEPLIB DD DISP=SHR,
// DSN=YOUR.RESULTS.LOAD
// DD DISP=SHR,
// DSN=YOUR.DB2.LOAD
// DD DISP=SHR,
// DSN=YOUR.INTFDB2.LOAD
//COPYDB2A DD *
DB2T DY28II4 DYLA
//COPYDB2B DD *
DB2T DY28II3 SSI2 DB2B_WH
//SYSIN DD *
OPTION CATSYSID DB2A CATPLANID DYLDB2
FILE XFILE DUMMY
WORKAREA
COPYDB2 DYTEMPL

WORKAREA
COPYDB2 DSN8410.DEPT

STOP
/*

COMPUTER ASSOCIATES VISION:RESULTS 5.0 *
1--------------------VISION:RESULTS FREE FORM TEXT----------------
OPTION CATSYSID DB2A CATPLANID DYLDB2
FILE XFILE DUMMY
WORKAREA
COPYDB2 DYTEMPL

* OVERRIDE TABLENAME = DYLA.DYTEMPL
* OVERRIDE PLAN = DY28II4
* OVERRIDE SSID = DB2T

COPIED * EXPANDED COLUMN FIELDS OF TABLE DYLA.DYTEMPL
COPIED EMPNO 6 CH
COPIED FIRSTNME_VAR 14 CH
COPIED REDEFINE AT FIRSTNME_VAR
COPIED FIRSTNME_LEN 2 BI
COPIED FIRSTNME_TEXT 12 CH
COPIED REDEFINE AT FIRSTNME_TEXT
COPIED FIRSTNME 12 CH
COPIED MIDINIT 1 CH
COPIED LASTNAME_VAR 17 CH
COPIED REDEFINE AT LASTNAME_VAR
COPIED LASTNAME_LEN 2 BI
COPIED LASTNAME_TEXT 15 CH
COPIED REDEFINE AT LASTNAME_TEXT
COPIED LASTNAME 15 CH
COPIED WORKDEPT 3 CH
COPIED PHONENO 4 CH
COPIED HIREDATE 10 CH ;DATE COLMN

Figure 15-43 JCL DB2 Overrides Example (Page 1 of 2)

Remote DB2 server
Using the COPY or COPYE Command 15–29

Using DB2 Tables
COPIED JOBCODE 2 PD
COPIED EDUCLVL 2 BI
COPIED SEX 1 CH
COPIED BRTHDATE 10 CH ;DATE COLMN

COPIED SALARY 5 PD 2
WORKAREA
COPYDB2 DSN8410.DEPT

* OVERRIDE TABLENAME = DB2B_WH.SSI2.DEPT
* OVERRIDE PLAN = DY28II3
* OVERRIDE SSID = DB2T

COPIED * EXPANDED COLUMN FIELDS OF TABLE DB2B_WH.SSI2.DEPT
COPIED DEPTNO 3 CH
COPIED DEPTNAME_VAR 38 CH
COPIED REDEFINE AT DEPTNAME_VAR
COPIED DEPTNAME_LEN 2 BI
COPIED DEPTNAME_TEXT 36 CH
COPIED REDEFINE AT DEPTNAME_TEXT
COPIED DEPTNAME 36 CH
COPIED MGRNO 6 CH
COPIED ADMRDEPT 3 CH
COPIED LOCATION 16 CH

STOP

Figure 15-43 JCL DB2 Overrides Example (Page 2 of 2)
15–30 VISION:Results Reference Guide

Chapter
16 U
sing Report Statements
When producing a report, you need to issue several commands to:

� Format the report.
� Establish the content of title and footing lines.
� Control the content and format of report detail lines and control break lines.
� Determine which fields are to cause control breaks.
� Alert VISION:Results as to what is to be done when a control break occurs.

The following statements deal specifically with producing a report in
VISION:Results:

� REPORT (optional).
� LIST (required).
� CONTROL or SUBTOTAL (optional — required for ON CHANGE IN).
� ON CHANGE IN (optional).
� ON FINAL (optional).
� T1 to T9 (almost always required).

Figure 16-1 shows a simple report and the VISION:Results statements used to
produce the report.

Report Statement describes each of the above statements. Examples are provided
at the end of this chapter in Report Examples on page 16-60.

Report Output Report Statement
DEPARTMENT NET PAY SUMMARY STATEMENT TITLE statement (T1-T9)

DEPARTMENT NAME SOC.SEC. NO. NET PAY Field definition or LIST Statement
1 CARLSON 345-66-2113 645.78 LIST Statement

JAMES 893-24-5673 786.99

**DEPARTMENT TOTAL 1432.77 CONTROL LIST
ON CHANGE IN statements

MEYERS 678-54-3456 854.34
2 ROGERS 213-99-7987 775.44

**DEPARTMENT TOTAL 1629.78

***AVERAGE NET PAY 765.66 ON FINAL and TALLY statements

Figure 16-1 Simple Report and VISION:Results Statements
Using Report Statements 16–1

Report Statement
Report Statement
The REPORT statement is optional and need only be provided if you want to
override the report writer defaults and exit from report logic to a user-written
external subroutine.

The REPORT statement must precede any LIST or Tn (TITLE) statements and, in
most cases, should be the first statement in your VISION:Results program.

The format of the REPORT statement is:

OS/390

For OS/390 only, if SYSBLOK was selected in the DYLINSTL macro and no JCL
block size was specified on the SYS280Rx DD statement, then the operating system
calculates the block size. If SYSBLOK is not used, the block size is set to 8 times the
record length.

VSE
For users of VSE Release 2.1 or later, a tape or disk device can be specified in the
REPORT statement using the PLUnnn option, as well as optionally defining a
blocking factor. This allows direct specification of a disk or tape unit as the
destination of the report produced rather than a printer device.

For example,

REPORT 80 WIDE PLU200 DISK 50

specifies PLU200 as the name on a DLBL statement for a disk file to contain the
report. The file is blocked 50 (81x50) when written (the default is 10).

Note: If the PLU on the report statement is not referring to a disk or tape, then you
must use SYSnnn in the JCL. Otherwise, use PLUnnn in the JCL.

Set the nn following TAPE or DISK for PLUnnn to the desired blocking factor for
the report file (the default is 10). For tape files, provide tape label and rewind
information with the information in TAPE Label Rewind (Options) on page 6-21.

REPORT [nnn] [nnn WIDE] [DELIM [C’c’ | X’xx’]] [[AND] nnn LONG] [[AND] nn BETWEEN]
[[AND] [ASA|DYLPRCx] SYS280Rx [HTML ddname [COUNT NNNN] STYLE NN]]

Figure 16-2 REPORT Statement Format - OS/390

REPORT [nnn] [nnn WIDE] [DELIM [C’c’ | X’xx’]] [AND] nnn LONG]
[[AND] nn BETWEEN]
[AND] [PLUnnn [{DISK [nn] | TAPE [nn][NL | SL | T]

[REWIND | NORWD | UNLOAD]}]
[AND] [ASA | DYL280Ra]

Figure 16-3 REPORT Statement Using the PLUnnn Option - VSE
16–2 VISION:Results Reference Guide

Report Statement
nnn WIDE
The keyword WIDE defines the number of characters-per-line wanted. The
number (nnn) must precede the keyword. The default in VISION:Results is 132
characters per line. VISION:Results permits from 1 to 204 characters per line.

REPORT 120 WIDE
REPORT 80 WIDE
REPORT 204 WIDE
REPORT 145 WIDE

DELIM
DELIM instructs the report writer logic to:

� Format the print lines with no carriage control, titles, or column headings.

� Format the print lines with one space between columns, which is filled with the
DELIM-specified character. If DELIM is coded on the REPORT statement
without a specified character, the value supplied in the DYLINSTL macro is
used. An error is generated if no DYLINSTL value had been provided. You
must select a character for the DELIM-specified character that does not occur in
the data to be sent to the PC. You can use any 1-character value except X’40 or
C’ ‘ (blank) as the DELIM value.

� Generate the output to a data set rather than a printer.

The data set could then be downloaded to a PC.

This would create the following data set on SYS280RA:

VISION:Results produces a warning message stating that the LONG keyword is
ignored if both the LONG keyword and the DELIM keyword are present on the
REPORT statement.

You cannot use LIST statements with SUPPRESS and DELIM; VISION:Results
produces an error message.

nnn LONG
The keyword LONG overrides the number of lines per page. The number (n)
specifying lines per page includes title lines, column heading lines, report body
lines, and footings. Blank lines are also counted. The number (n) must precede the

REPORT01 100 WIDE DELIM C’$’ SYS280RA
.
.
.
LIST ACCOUNT NAME BALANCE X
.
.
.

1023 GEORGE JONES$1,234.99$
1034ALEXANDER HAMILTON$ -400.22$
Using Report Statements 16–3

Report Statement
keyword LONG. VISION:Results permits from 1 to 999 lines per page. The default
in VISION:Results is 55 lines per page, but it can be changed using the DYLINSTL
parameter PGLINES. If the DELIM keyword is specified on the REPORT
statement, the value of LONG will be ignored. See the VISION:Results Installation
Guide for details.

REPORT 54 LONG
REPORT 60 LONG
REPORT 54 LONG 120 WIDE

VISION:Results produces a warning message stating that the LONG keyword is
ignored if both the LONG keyword and the DELIM keyword are present on the
REPORT statement.

nn BETWEEN
The maximum number of spaces between columns can be overridden using the
keyword BETWEEN. VISION:Results permits from 1 to 99 positions between
columns. The default maximum number of positions between columns is 5. If the
DELIM keyword is specified on the REPORT statement, the value of BETWEEN
will be ignored, and a value of 1 will be substituted.

REPORT 10 BETWEEN
REPORT 3 BETWEEN
REPORT 2 BETWEEN 60 LONG 128 WIDE
REPORT 204 WIDE 50 LONG 10 BETWEEN

For more information, see SYS280Rx on page 17-2.

Modulename|ASA
The module name and ASA are mutually exclusive.

Modulename
The module name is the phase (VSE) or member (OS/390) name of your
subroutine that interrogates each print line of the report. The subroutine must
have been previously link edited to a Load (OS/390) or Core Image Library (VSE).
The subroutine module is loaded into memory prior to execution and is entered
before each print line is written.

The module name must comply with the following restrictions:

See Report Print Line Exit — Your Exit Routines on page 16-75 for additional
information.

OS/390 The module name of your external subroutine must be named
DYLPRCx (where x is an alpha character from B through Z).

VSE The module name of your external subroutine must be named
DYL280Rx (where x is an alpha character from B through F).
16–4 VISION:Results Reference Guide

Report Statement
ASA
The keyword ASA provides you with ASA carriage control characters instead of
standard machine control characters. If used, the resulting report can be written to
a printer or any other device. ASA carriage control should be used only when
using equipment that does not recognize machine carriage control (such as
microfiche, microfilm, or offline printers).

SYS280Rx
SYS280Rx indicates to which DD the report is to be written. The x is any character
valid in a ddname, including a blank. If you are producing multiple reports, you
may want some of the reports written to a different DD. VISION:Results writes the
report to the ddname specified on your REPORT statement.

For HTML processing, the SYS280Rx ddname is used for debugging purposes. It
reflects what the HTML report(s) will look like prior to the HTML formatting
process.

HTML ddname
The JCL ddname following the HTML keyword on the REPORT statement relates
to either an OS/390 PDS or an HFS PATH name.

You can use the REPORT and LIST statements to create an HTML document that
can be viewed by a Web browser. VISION:Results includes an HTML skeleton
containing the prologue text, which is copied to the output report, followed by the
report lines.

You must add a new JCL DD statement to the execution JCL, with the DDNAME
of VRHTMLIB, which points to the provided HTML library. You also need an
additional DDNAME (VRHTMWRK) for a work file to be used during the creation
of the HTML report.

Do not use carriage control statements such as WITH nn | EJECT AFTER in the
report definition statements. The generated report lines do not contain any
carriage control characters. The output data set, identified by the HTML keyword
on the REPORT statement, can point to an OS/390 PDS or an HFS path.

� HTML document member HEAD contains a single copy of the Title lines, so do
not modify titles during program execution.

� HTML document member BDYnnnnn contains the report lines and column
headings on each page break. When using HTML, the keyword LONG default
value is 25.
Using Report Statements 16–5

Report Statement
� HTML document member LTOC contains a table of contents frame using the
changed value of a field specified in a LIST SUPPRESS statement.

Only the last suppressed field appearing on a single LIST SUPPRESS statement
is used for the LTOC frame, so you should only use SUPPRESS for a single field
in your LIST statement. Each item in the LTOC links to its corresponding data
in the body of the report.

� If the report contains a large number of lines, you can break the body of the
report into multiple segments in the output file. This allows the browser to
retrieve the report lines more rapidly.

� The number of lines per report segment is specified on the REPORT statement,
after the ddname of the output document. The default is 500 lines. The
maximum value is 9999.

REPORT … [HTML ddname [COUNT nnnn] [STYLE nn]]

where ddname is the JCL DDNAME of the PDS or HFS path name that will contain
the HTML document members. The values of ‘nn’ for STYLE are 00 (default)
through 99.

Use the STYLE number to select the HTML style from the supplied VRHTMLIB
partitioned data set. The style number is used as a suffix to the member names.
Two styles, or sets of members, are provided: suffix 00 (the default) and suffix 01.
You can add members that have additional suffixes with different colors/fonts.

You can change the content of these templates (not the first six letters of the names)
to modify the color or font of the HTML document. You can create new members
from the supplied ones and give them member names with unique suffix values of
xx. The supplied HTML template PDS uses suffixes 00 and 01. You can also assign
suffix values from 02–99.

The member names in the provided template library are:

Member Name Description

HTBODYxx Defines the structure of the body frame for the document.

HTLTOCxx Defines the Table of Contents frame for the document,
which will be created if LIST SUPPRESS is used in the report,
and will be displayed in the left margin of the document.
When browsing the HTML document, select an entry in the
Table of Contents frame to scroll the body text frame to the
corresponding location.

HTHEADxx Defines the color and font used to create the document.

HTPRIXxx and
HTPRIYxx

Define the HTML frames to be used when creating the
document. HTPRIXxx is used to produce a document with a
Table of Contents frame. HTPRIYxx is used to create a
document without the Table of Contents frame.
16–6 VISION:Results Reference Guide

Report Statement
The generated HTML PDS or HFS path contains the following member names or
HFS files:

When you create an HTML document as an HFS file, the following naming
conventions are used:

� If a file name is not provided on the DD statement, VISION:Results names the
HFS file membername.html.

� If a file name is provided, VISION:Results names the HFS file
yourfilename-membername.html, where yourfilename is the file name that
you use.

� If a file name contains an HTML extension, the $MAIN file will be named
yourfilename.html.

� If a file name is provided without an HTML extension, the $MAIN file will be
named yourfilename.

Using HTML
VISION:Results supports HTML documents that can be accessed from an OS/390
product (such as IBM’s WebSphere®). HTML documents are created using the
HTML template library provided on the VISION:Results installation tape. Once
the HTML documents are created, you can use WebSphere to browse the PDS
containing the document, or transfer the PDS or HFS files to a server or local
workstation for viewing on a web browser.

The HTML produced for a PDS is specifically designed to work with WebSphere
on an OS/390 host system. If WebSphere is not available, the HTML link
statements (such as src= and href=) within the PDS member must be modified to
conform with the required syntax for the platform where the HTML documents
will eventually reside. This is only necessary for a PDS file; HFS files can be
transferred without any editing.

If WebSphere is not available, the members must be transferred using a suitable
file transfer tool to a server or local workstation where they can be accessed by the
web browser. The browser session used to view the VISION:Results HTML
document must initiate the viewing using the $MAIN file (member).

Member Name Description

$MAIN Defines the HTML frames for the document.

HEAD Contains the heading frame for the report.

LTOC Contains the hyperlinks that can be used to navigate through
a long report.

BDYnnnnn Contains one or more body frames. Multiple members are
created when the size of a body text member exceeds the
COUNT value.
Using Report Statements 16–7

Report Statement
Creating HTML Documents Using HFS Path
Figure 16-4 is an example of JCL to create an HTML document using an HFS path:

Figure 16-5 shows the VISION:Results statements:

The HFS path name in the above JCL example must be enclosed with single
quotation marks.

Figure 16-5 illustrates how to use the Report statement with the HTML ddname
and Style keyword. It is not a complete VISION:Results program.

Figure 16-6 is the $MAIN member produced from the JCL and VISION:Results
statements in Figure 16-4 and Figure 16-5.

//DYL1 EXEC PGM=DYL280,REGION=0M
//SYS004 DD UNIT=SYSDA,SPACE=(TRK,(4,4))
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//****** NEW HTML LIBRARY *******************************
//VRHTMLIB DD DSN=YOUR.HTML.LIBRARY,DISP=SHR
//****** NEW HTML WORK FILE *****************************
//VRHTMWRK DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//SYS280R DD SYSOUT=*
//*******
//HTMLOUT DD PATH='/your/html/path/name….',
// PATHOPTS=(OWRONLY,OCREAT),
// PATHMODE=(SIRUSR,SIWUSR)
//AROUT DD DSN=your.arout.file,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(2,1)),
// DCB=(RECFM=FB,LRECL=352,BLKSIZE=5280)
//SYSIN DD *

Figure 16-4 JCL to Create an HTML Data Set Using HFS Path

FILE ARFILE FB 352 5280 STATUS ARSTAT

REPORT 80 WIDE HTML HTMLOUT STYLE 00
.
.
.

Figure 16-5 VISION:Results Statements to Create an HTML Data Set Using HFS
Path

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>VISION:Results Report Type X, Default Style</TITLE>
</HEAD>
<FRAMESET COLS="19%,*">
<FRAME NAME="ltoc" SRC="mytest-ltoc.html" MARGINHEIGHT=0 MARGINWIDTH=0>
<FRAMESET ROWS="13%,*" BORDER=1>
<FRAME NAME="head" SRC="mytest-head.html" MARGINHEIGHT=2 MARGINWIDTH=2

SCROLLING=NO>
<FRAME NAME="body" SRC="mytest-bdy00001.html" MARGINHEIGHT=2 MARGINWIDTH=2>

</FRAMESET>
</FRAMESET>
</HTML>

Figure 16-6 HFS $MAIN Member with Default Style 00
16–8 VISION:Results Reference Guide

Report Statement
Figure 16-7 is the HEAD member produced from the JCL and VISION:Results
statements in Figure 16-4 and Figure 16-5.

Figure 16-8 is the LTOC member produced from the JCL and VISION:Results
statements in Figure 16-4 and Figure 16-5.

Figure 16-9 is the BDY00001 member produced from the JCL and VISION:Results
statements in Figure 16-4 and Figure 16-5.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>VISION:Results Report Heading Frame, Default Style</TITLE>
<STYLE>
<!--
BODY {color:black; background:aqua}
PRE {color:black; background:aqua; font-size:x-small}
-->
</STYLE>
</HEAD>
<BODY>
<PRE>
06/26/2001 THIS IS THE HEAD MEMBER PAGE 1

</PRE>
</BODY>
</HTML>

Figure 16-7 HFS HEAD Member with Default Style 00

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<BASEFONT SIZE=2>
<HEAD>
<TITLE>VISION:Results Report Table of Contents Frame,

Default Style</TITLE>
<STYLE>
<!--
BODY {color:black; background:skyblue}
H4 {color:yellow; background:blue; font-size:medium; font-weight:bold}
A {color:maroon; background:skyblue; font-size:x-small}
-->
</STYLE>
</HEAD>
<BODY>
<H4>Report Contents</H4>

BO
EO

</BODY>
</HTML>

Figure 16-8 HFS LTOC Member with Default Style 00

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>VISION:Results Report Detail Frame, Default Style</TITLE>
<STYLE>
<!--
BODY {color:blue; background:white}
H5 {color:black; background:lightgrey; font-size:x-small;

font-weight:bold; font-family:courier;
text-align:left; line-height:normal}

Figure 16-9 HFS BDY00001 Member with Default Style 00 (Page 1 of 2)
Using Report Statements 16–9

Report Statement
Figure 16-10 is an example of an HFS path directory on the OS/390 host using
OpenMVS ISPF Shell.

Creating HTML Documents Using HTML PDS
Figure 16-11 is an example of JCL to create an HTML PDS.

In Figure 16-11, the DCB parameters for allocating YOUR.HTML.PDS are omitted
because VISION:Results automatically supplies the required DCB information as
a variable block record format with a record length of 1008.

PRE {color:blue; background:white; font-size:x-small}
-->
</STYLE>
</HEAD>
<BODY>
<PRE

ACCOUNT ACCOUNT NAME BALANCE
CODE NUMBER

A NAME="ref00001"><H5>BO</H5>
BO 8006547 TORRES,ERNESTO 44.99

A NAME="ref00002"><H5>EO</H5>
EO 6208657 CHO PYUNG,SUH 32.00

/your/hfs/path/name/
Select one or more files with / or action codes.

Type Changed (GMT) Owner Filename
File 07/30/2001 20:51 USER mytest
File 07/30/2001 20:51 USER mytest-bdy00001.html
File 07/30/2001 20:51 USER mytest-head.html
File 07/30/2001 20:51 USER mytest-ltoc.html

Figure 16-10 HTML Member Names in the HFS Path Directory

Figure 16-9 HFS BDY00001 Member with Default Style 00 (Page 2 of 2)

//DYL1 EXEC PGM=DYL280,REGION=0M
//SYS004 DD UNIT=SYSDA,SPACE=(TRK,(4,4))
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//****** NEW HTML LIBRARY
//VRHTMLIB DD DSN=YOUR.HTML.LIBRARY,DISP=SHR
//****** NEW HTML WORK FILE
//VRHTMWRK DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//SYS280R DD SYSOUT=*
//*****
//HTMLOUTP DD DSN=YOUR.HTML.PDS,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(5,2,5))
//AROUT DD DSN=your.arout.file,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(5,2,5)),
// DCB=(RECFM=FB,LRECL=352,BLKSIZE=5280)
//SYSIN DD *

Figure 16-11 JCL to Create an HTML PDS
16–10 VISION:Results Reference Guide

Report Statement
Figure 16-12 shows the VISION:Results statements.

Figure 16-12 illustrates how to use the Report statement with the HTML ddname
and Style keyword. It is not a complete VISION:Results program.

Figure 16-13 is the $MAIN member in the HTML PDS produced from the JCL and
VISION:Results statements in Figure 16-11 and Figure 16-12.

Figure 16-14 is the HEAD member in the HTML PDS produced from the JCL and
VISION:Results statements in Figure 16-11 and Figure 16-12.

FILE ARFILE FB 352 5280 STATUS ARSTAT

REPORT 80 WIDE HTML HTMLOUTP STYLE 00
.
.
.

Figure 16-12 VISION:Results Statements to Create an HTML PDS

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>VISION:Results Report Type X, Default Style</TITLE>
</HEAD>
<FRAMESET COLS="19%,*">
<FRAME NAME="ltoc" SRC="/MVSDS/'YOUR.HTMLOUT.DATASET(LTOC)'" MARGINHEIGHT=0 MARGINWIDTH=0>
<FRAMESET ROWS="13%,*" BORDER=1>
<FRAME NAME="head" SRC="/MVSDS/'YOUR.HTMLOUT.DATASET(HEAD)'" MARGINHEIGHT=2 MARGINWIDTH=2>

SCROLLING=NO>
<FRAME NAME="body" SRC="/MVSDS/'YOUR.HTMLOUT.DATASET(BDY00001)'" MARGINHEIGHT=2 MARGINWIDTH=2>

</FRAMESET>
</FRAMESET>
</HTML>

Figure 16-13 $MAIN Member with Default Style 00

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>VISION:Results Report Heading Frame, Default Style</TITLE>
<STYLE>
<!--
BODY {color:black; background:aqua}
PRE {color:black; background:aqua; font-size:x-small}
-->
</STYLE>
</HEAD>
<BODY>
<PRE>
06/04/2001 THIS IS THE HEAD PDS MEMBER PAGE 1

</PRE>
</BODY>
</HTML>

Figure 16-14 HEAD Member with Default Style 00
Using Report Statements 16–11

Report Statement
Figure 16-15 is the LTOC member in the HTML PDS produced from the JCL and
VISION:Results statements in Figure 16-11 and Figure 16-12.

Figure 16-16 is the BDY00001 member in the HTML PDS produced from the JCL
and VISION:Results statements in Figure 16-11 and Figure 16-12.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<BASEFONT SIZE=2>
<HEAD>
<TITLE>VISION:Results Report Table of Contents Frame,

Default Style</TITLE>
<STYLE>
<!--
BODY {color:black; background:skyblue}
H4 {color:yellow; background:blue; font-size:medium; font-weight:bold}
A {color:maroon; background:skyblue; font-size:x-small}
-->
</STYLE>
</HEAD>
<BODY>
<H4>Report Contents</H4>

BO
BO

</BODY>
</HTML>

Figure 16-15 LTOC Member with Default Style 00

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">
<HTML>
<HEAD>
<TITLE>VISION:Results Report Detail Frame, Default Style</TITLE>
<STYLE>
<!--
BODY {color:blue; background:white}
H5 {color:black; background:lightgrey; font-size:x-small;

font-weight:bold; font-family:courier;
text-align:left; line-height:normal}

PRE {color:blue; background:white; font-size:x-small}
-->
</STYLE>
</HEAD>
<BODY>
<PRE>

ACCOUNT ACCOUNT NAME BALANCE
CODE NUMBER

A NAME="ref00001"><H5>BO</H5>
BO 8006547 TORRES,ERNESTO 44.99

44.99
A NAME="ref00002"><H5>EO</H5>

EO 6208657 CHO PYUNG,SUH 32.00
32.00

</BODY>
</HTML>

Figure 16-16 BDY00001 member with Default Style 00
16–12 VISION:Results Reference Guide

Report Statement
Dynamic Allocation of HTML Using HFS Path
Figure 16-17 and Figure 16-18 are examples of JCL and VISION:Results statements
to dynamically allocate HTML files using an HFS path. The VISION:Results
program includes the JCL DD statements to do this.

Figure 16-18 shows the VISION:Results statements, but contains only those
VISION:Results statements required to illustrate the use of the ALLOCATE facility
for HTML. It is not a complete VISION:Results program.

//DYL1 EXEC PGM=DYL280,REGION=0M
//SYS004 DD UNIT=SYSDA,SPACE=(TRK,(4,4))
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//****** SORT
//SYSOUT DD SYSOUT=*
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(15),,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(15),,CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(15),,CONTIG)
//SORTWK04 DD UNIT=SYSDA,SPACE=(CYL,(15),,CONTIG)
//SORTWK05 DD UNIT=SYSDA,SPACE=(CYL,(15),,CONTIG)
//****** NEW HTML LIBRARY
//VRHTMLIB DD DSN=YOUR.HTML.LIBRARY,DISP=SHR
//****** NEW HTML WORK FILE
//VRHTMWRK DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//SYS280R DD SYSOUT=*
//SYSIN DD *

Figure 16-17 JCL to Dynamically Allocate Files Using HFS Path

REPORT HTML HTMLOUT STYLE 00

.

.

**
* DYNAMIC ALLOCATION JCL DD STATEMENTS ARE BELOW.
**

WORKAREA
JCLSTAT 1
EMSG1 41 VALUE 'SYNTAX ERROR IN DYNAMICALLY ALLOCATED'

'JCL'
EMSG2 47 VALUE 'ALLOCATION FAILURE IN DYNAMICALLY'

'ALLOCATED JCL'

WORKAREA
OUTJCL 240 1
FILLER 80 1 VALUE

“//HTMLOUT DD PATH=’/your/hfs/path/name...’,”
FILLER 80 VALUE

“// PATHOPTS=(OWRONLY,OCREAT),”
FILLER 80 VALUE

“// PATHMODE=(SIRUSR,SIWUSR)”

ON ONE

ALLOCATE OUTJCL STATUSFLAG JCLSTAT
IF JCLSTAT EQ 'N'
PRINT EMSG1

STOP
ENDIF
IF JCLSTAT EQ 'F'

PRINT EMSG2
STOP

ENDIF

Figure 16-18 VISION:Results Statements to Dynamically Allocate Files Using an HFS
Path (Page 1 of 2)
Using Report Statements 16–13

Report Statement
To dynamically allocate HTML files using an HFS path, you must enclose each
value statement with double quotations, as shown in Figure 16-18. The HFS path
name must be enclosed in single quotations.

If the HFS path name extends to two or more JCL lines, then the JCL required for
Dynamic Allocation should be read and moved into working storage, as
demonstrated in Example 2. The Allocate Facility and MOVE Command in the
OUTJCL Fields on page 14-28.

Dynamic Allocation of an HTML Partitioned Data Set
Figure 16-19 and Figure 16-20 are examples of JCL and VISION:Results statements
to dynamically allocate an HTML PDS. The VISION:Results program includes the
JCL DD statements to do this.

ENDONE

**
* END OF DYNAMIC ALLOCATION JCL DD STATEMENTS.
**
.
* move data to the outrec

WRITE AROUT

Figure 16-18 VISION:Results Statements to Dynamically Allocate Files Using an HFS
Path (Page 2 of 2)

//DYL1 EXEC PGM=DYL280,REGION=0M
//SYS004 DD UNIT=SYSDA,SPACE=(TRK,(4,4))
//SYSPRINT DD SYSOUT=*
//SYSTERM DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//****** SORT
//SYSOUT DD SYSOUT=*
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(15),,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(15),,CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(15),,CONTIG)
//SORTWK04 DD UNIT=SYSDA,SPACE=(CYL,(15),,CONTIG)
//SORTWK05 DD UNIT=SYSDA,SPACE=(CYL,(15),,CONTIG)
//****** NEW HTML LIBRARY
//VRHTMLIB DD DSN=YOUR.HTML.LIBRARY,DISP=SHR
//****** NEW HTML WORK FILE
//VRHTMWRK DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//SYS280R DD SYSOUT=*
//SYSIN DD *

Figure 16-19 JCL to Dynamically Allocate an HTML PDS
16–14 VISION:Results Reference Guide

Report Statement
Figure 16-20 shows the VISION:Results statements, but contains only those
statements required to illustrate the use of the ALLOCATE facility for HTML. It is
not a complete VISION:Results program.

The DCB parameters are not required in Figure 16-20 to dynamically allocate the
HTML PDS. VISION:Results automatically allocates the HTML PDS with a
variable block record format that has a record length of 1008.

REPORT HTML HTMLOUTP STYLE 00

.

.

**
* DYNAMIC ALLOCATION JCL DD STATEMENTS ARE BELOW.
**

WORKAREA
JCLSTAT 1
EMSG1 41 VALUE 'SYNTAX ERROR IN DYNAMICALLY ALLOCATED'

'JCL'
EMSG2 47 VALUE 'ALLOCATION FAILURE IN DYNAMICALLY'

'ALLOCATED JCL'

WORKAREA
OUTJCL 160 1
FILLER 80 1 VALUE

‘//HTMLOUTP DD PATH=YOUR.HTML.PDS,DISP=(,CATLG),’
FILLER 80 VALUE

‘// UNIT=SYSDA,SPACE=(TRK,10,5,2))’

ON ONE

ALLOCATE OUTJCL STATUSFLAG JCLSTAT
IF JCLSTAT EQ 'N'
PRINT EMSG1

STOP
ENDIF
IF JCLSTAT EQ 'F'

PRINT EMSG2
STOP

ENDIF
ENDONE

**
* END OF DYNAMIC ALLOCATION JCL DD STATEMENTS.
**
.
* move data to the outrec

WRITE AROUT

Figure 16-20 VISION:Results Statements to Dynamically Allocate an HTML PDS
Using Report Statements 16–15

Report Statement
HTML Document on the Web Browser PC
Figure 16-21 is the final HTML document displayed on your web browser. It
includes the $MAIN, HEAD, LTOC, and BDYnnnnn members that define the
entire report.

PLUnnn
The keyword PLUnnn (Programmer Logical Unit) is for VSE users only. If used,
the nnn must contain a valid 3-digit SYS number. If PLUnnn is specified in the
REPORT statement, the report is written to this programmer logical unit rather
than to SYSLST. The report can be written to disk or tape or to another printer. This
is useful when you want to separate the program or file listing from the report
itself.

If you have IBM's POWER spooling system on your system, you can assign your
report to a logical printer, as follows:

// ASSGN SYSnnn,x'cuu'
* $$ LST LST=cuu,FNO=xxxx

The keyword PLUnnn can be used with ASA in the REPORT statement. However,
the PLUnnn cannot be used with any module name; they are mutually exclusive.

Figure 16-21 HTML Document that Displays on Web Browser

REPORT PLUnnn
REPORT PLUnnn ASA
REPORT ASA 120 WIDE 50 LONG 10 BETWEEN PLUnnn

Figure 16-22 PLUnnn Keyword Used with ASA
16–16 VISION:Results Reference Guide

Report Statement
VSE users at Release 2.1 or later can specify a disk or tape drive on the REPORT
statement using the keyword PLUnnn. This allows direct specification of a disk or
tape unit as a destination of the report produced, rather than a printer driver.

REPORT 80 WIDE PLU200 DISK 50

This specifies PLU200 as the name on a DLBL statement for a disk file to contain
the report. The file will be blocked 50 (81 x 50) when written (the default is 10).

REPORT 100 WIDE PLU200 TAPE SL UNLOAD

This specifies PLU200 as the PLU (Programmer Logical Unit) number on an
ASSGN statement for a tape file to contain the report. The file will be written as
101-byte records, blocked 10, on a standard labeled tape, which is rewound and
unloaded at end of job.

AND
The keyword AND improves the readability of the REPORT statement. AND is a
noise word and is never required.

REPORT ASA 120 WIDE AND 50 LONG AND 10 BETWEEN
REPORT 50 LONG AND 130 WIDE

Because all of the information in the REPORT statement is optional, you can
supply the REPORT statement in your VISION:Results program with no
overrides:

REPORT

The following examples show how to override various defaults. To override the
defaults for characters-per-line and lines-per-page:

REPORT 100 WIDE 60 LONG

or

REPORT 100 WIDE AND 60 LONG

or

REPORT 60 LONG 100 WIDE

or

REPORT 60 LONG AND 100 WIDE

To override the maximum number of spaces between columns (all other defaults
are accepted):

REPORT 10 BETWEEN

To override all defaults:

REPORT 100 WIDE AND 60 LONG 10 BETWEEN

or

REPORT 100 WIDE 60 LONG 10 BETWEEN
Using Report Statements 16–17

Title and Footing Statements
or

REPORT 100 WIDE AND 60 LONG AND 10 BETWEEN

To exit to a user-written external subroutine:

VSE: REPORT DYL280RB
OS/390: REPORT DYLPRCP 204 WIDE

Title and Footing Statements
The TITLE or FOOTING statement defines both the contents and placement of the
title or footing lines on your report. You can specify up to a maximum of nine title
and/or footing lines per report. If specified in the VISION:Results program, these
title or footing lines are printed automatically on each page of the report. The
format of the TITLE/FOOTING statement is:

Tn
Defining report headings or footings requires a T1 through T9 statement followed
by the title contents in single quotation marks. A maximum of nine title and/or
footing lines are allowed. The title and footing lines must be in sequence.

T1 'REPORT 1'
T2 'PAYROLL MASTER'
T3 'MONTHLY CENSUS' FOOTING

Title Contents
VISION:Results automatically centers the title contents in the report unless
informed otherwise. Centering is based on the characters-per-line default of 132
unless overridden in the REPORT statement (such as REPORT 120 WIDE). The title
contents (the text between single quotation marks including blanks, but excluding
trailing blanks) are counted and subtracted from the characters per line and
divided by 2. The result is the beginning print position for that title. For example:

REPORT 120 WIDE
T1 'TRIAL BALANCE REPORT'

The title TRIAL BALANCE REPORT would be placed at position 50 of the report
line.

50=(120-20)/2

FIXED
If FIXED or FOOTING is used, it goes on the Tn statement of the TITLE/FOOTING
line. Any and all TITLE/FOOTING identification statements have an implied (not
stated) FIXED or FOOTING for the same line number.

Tn 'title contents' [FIXED] [FOOTING] [WITH n AFTER]

Figure 16-23 TITLE or FOOTING Statement
16–18 VISION:Results Reference Guide

Title and Footing Statements
To override the automatic centering of title or footing lines, supply the keyword
FIXED in the title statement. The first character of the title contents appears in
position 1 of the report line.

T1 'PAYROLL MASTER UPDATE REPORT' FIXED

The title contents begin at position 1 of the report line.

T1 ' TRIAL BALANCE REPORT' FIXED

Because there are 10 leading blanks in this title statement, the title begins at
position 11 of the report line.

FOOTING
If FIXED or FOOTING is used, it goes on the Tn statement of the TITLE/FOOTING
line. Any and all TITLE/FOOTING identification statements have an implied (not
stated) FIXED or FOOTING for the same line number.

When the keyword FOOTING is added to a title statement, it identifies the line as
a footing line, to be printed at the bottom of each page.

T1 'SUMMARY LINE COMPANY ABAZAB' FOOTING

The footing statement title contents are automatically centered and printed at the
bottom of each page.

T1 'SUMMARY LINE COMPANY ABAZAB' FOOTING FIXED

Because the keyword FIXED has been added to the footing statement, the title
begins at position 1 on the bottom of each page.

WITH n AFTER
The keyword phrase WITH n AFTER specifies the number of lines of spacing after
the title or footing line.

Default spacing is WITH 1 AFTER. You can specify from 0 to 9 lines of spacing
after the title or footing line.

T1 'TRIAL BALANCE' WITH 2 AFTER
T1 'TRIAL BALANCE REPORT'
T2 'QUARTERLY CONSENSUS' WITH 3 AFTER

You can use the WITH 0 AFTER if you want overstriking (such as highlighting)
because spacing does not take place.

T1 'FREQUENCY DISTRIBUTION PAYROLL' WITH 0 AFTER
T2 'FREQUENCY DISTRIBUTION PAYROLL' WITH 2 AFTER

Title line 1 prints but spacing does not occur. Title line 2 then overstrikes title line
1 and double spaces.
Using Report Statements 16–19

Title and Footing Statements
Additional Information
If the VISION:Results program is producing a report and no title/footing
statements or column headings are supplied, automatic page ejection, based on the
number of lines per page, does not occur. This feature can be used if you are
printing labels or continuous preprinted forms and do not want page ejection.

If you do not want any title/footing line but you do want page ejection (skip to
channel 1 when the lines per page count reaches its maximum), you can supply a
title/footing line with no title contents.

T1

VISION:Results writes a blank line for the above title statement and then a single
space (remember the default for spacing is WITH 1 AFTER).

If you do not want the automatic spacing, you can specify the title statement in the
following way:

T1 WITH 0 AFTER

In the following example, automatic centering of the title line with double spacing
after is requested, as well as a fixed-print footing line with page ejection:

T1 'TITLE NUMBER 1' WITH 2 AFTER
T2 'FOOTING NUMBER 2' FIXED FOOTING

Title line 1 (T1) is automatically centered and printed with double spacing taking
place after the line is printed. The footing line (T2) is printed, and ejection (skip to
channel 1...top of next page) occurs.

To continue title or footing lines, enclose the value within quotation marks on a
second or third line but do not repeat the command Tn, where n is 1 through 9. For
example:

T1 'EMPLOYEE '
'PAYROLL MASTER' WITH 2 AFTER

The result is the title:

EMPLOYEE PAYROLL MASTER

For example:

T1 'EMPLOYEE MASTER SUMMARY '
'BY EACH DIVISION' FOOTING

The result is the footing line:

EMPLOYEE MASTER SUMMARY BY EACH DIVISION
16–20 VISION:Results Reference Guide

Title or Footing Modification Statement
In the next example, the title contains an apostrophe (single quotation mark). The
title wanted is CONTROL LISTING FOR ABC AND CO'S ACCOUNTS
RECEIVABLE. You can use the following two approaches can be used:

� The single quotation mark approach:

T1 'CONTROL LISTING FOR ABC AND CO''S ACCOUNTS RECEIVABLE'

� The double quotation mark approach:

T1 “CONTROL LISTING FOR ABC AND CO'S ACCOUNTS RECEIVABLE”

If continuation to a second line is necessary, the following is acceptable.

� The single quotation mark approach:

T1 'CONTROL LISTING FOR ABC AND '
'CO''S ACCOUNTS RECEIVABLE'

� The double quotation mark approach:

T1 “CONTROL LISTING FOR ABC AND “
“CO'S ACCOUNTS RECEIVABLE”

� Or in combination:

T1 'CONTROL LISTING FOR ABC AND '
“CO'S ACCOUNTS RECEIVABLE”

T1 “CONTROL LISTING FOR ABC AND “
'CO''S ACCOUNTS RECEIVABLE'

Title or Footing Modification Statement
If you want to modify (insert variable information into) an existing title or footing
line, you can do so by using the title/footing modification statement. This
statement can never precede a T1 through T9 statement. The T1 through T9 must
have been previously defined in your VISION:Results program.

The format of the title/footing modification statement is:

Tn
T1 through T9 (Tn) indicates the title/footing line that is to have variable
information inserted into it. The + (plus) and the number (n) indicate the beginning
location of the new text (where it is to be inserted). Position 1 is relative to 1 of the
title/footing line.

T1+10

Tn+n {literal }
{dataname }
{Reserved Word}

Figure 16-24 Format of the Title/Footing Modification Statement
Using Report Statements 16–21

Title or Footing Modification Statement
The above title modification statement tells VISION:Results to place a data name,
literal, or reserved word value starting at position 10 of title line 1.

Immediately following the location, enter the literal to be inserted, the data name
contents to be inserted, or the reserved word contents to be inserted.

T1+10 'REPORT AR/110'
T1+22 DESCRIPT
T1+100 DYLPAGE

The first title modification is a literal, the second is a data name defined in an input
file or work area, and the third is a reserved word containing the current page
number.

The general rules for title modifications follow.

Alphanumeric Literal
Any data that is alphanumeric, including punctuation and special symbols, must
be enclosed within single or double quotation marks. The maximum size of an
alphanumeric literal is 30 characters.

T1+20 'ABC'
T1+120 '123@ABC'
T1+43 '*+;,XYZ@'

Any data that includes the single quotation mark (') or double quotation mark ('')
should be specified as follows:

Numeric Literal
Any data that is numeric only can be specified as follows:

T1+20 'ABC''DEF' Two single quotation marks indicate a single quotation
mark to be included. The result is ABC'DEF.

T1+20 'ABC"DEF' Double quotation mark to be included. The result is
ABC''DEF.

T1+20 "ABC'DEF" Single quotation mark to be included. The result is
ABC'DEF.

T1+20 "ABC""DEF" Single and double quotation marks to be included. The
result is ABC''DEF.

T1+20 1234567 Value of 1234567 is to be inserted.

T1+10 00010 Value of 00010 is to be inserted.
16–22 VISION:Results Reference Guide

Title or Footing Modification Statement
Data Names
Data names defined in the FILE field definitions or work areas can also be used
when modifying a title or footing line. The contents of the data name (that is, its
value) are inserted at the location specified.

Each data name's data is edited according to the field definition provided.
VISION:Results packs and unpacks the field if necessary.

Reserved Words
Reserved words can also be used to modify a title or footing line. The contents of
the reserved word (that is, its value) are inserted at the location specified.

See Appendix A, Reserved Words for a complete list of reserved words, including
those containing different formats of date and page.

Additional Information
The title modification statement is never executed during VISION:Results
procedure logic. To dynamically change part of a title during execution, the data
name into which contents are to be inserted into the title must be modified in the
procedure logic of the VISION:Results program.

Figure 16-25 demonstrates overrides in the REPORT and title modification
statements.

With a 100 characters-per-line report, the centered title begins in absolute position
42 of the report. The additional text, DYLPAGE, prints with its beginning character
in position 71 of the title line.

T1+20 EMPNAME The contents of EMPNAME are inserted.

T1+88 COMMENT The contents of COMMENT are inserted.

T1+1 DYLDATE The MM/DD/YY contents of DYLDATE are inserted.

T1+120 DYLPAGE The contents of DYLPAGE (the current page count value) are
inserted.

REPORT 100 WIDE 55 LONG
T1 'EMPLOYEE STATEMENT' WITH 4 AFTER
T1+71 DYLPAGE

Figure 16-25 Overrides in the REPORT and Title Modification Statements
Using Report Statements 16–23

Title or Footing Modification Statement
The following example shows title modification and footing line generation.

With all defaults taken on the REPORT command (which is not required in our
example), the centered title begins at absolute position 57 (remember that the
default characters-per-line is 132). The additional text, DYLPAGE, prints with its
beginning character in position 80 of the title line. The PAYROLL MASTER
REPORT footing line begins at position 55 and prints as the last line at the bottom
of each page of the report.

In the following example, spacing is required before printing the title line.

The contents of title statement 2 (T2) are printed on the third line after title 1.

The example below shows how to insert variable information into a report title (the
first title line) that only requires today's date.

REPORT
T1 'EMPLOYEE STATEMENT' WITH 4 AFTER
T1+80 DYLPAGE
T2 'PAYROLL MASTER REPORT' FOOTING

Figure 16-26 Title Modification and Footing Line Generation

T1 'EMPLOYEE STATEMENT' WITH 4 AFTER
T1+70 DYLPAGE
T2 'PAYROLL MASTER REPORT' FOOTING
T2+1 DYLDATE

or
T1 'EMPLOYEE STATEMENT' WITH 4 AFTER
T2 'PAYROLL MASTER REPORT' FOOTING
T1+70 DYLPAGE
T2+1 DYLDATE

Figure 16-27 REPORT Command Example

REPORT 120 WIDE
T1 WITH 3 AFTER
T2 'PAYROLL MASTER UPDATE REPORT' WITH 2 AFTER

Figure 16-28 Example of Spacing

T1 WITH 0 AFTER
T1+120 DYLDATE

Figure 16-29 Variable Information
16–24 VISION:Results Reference Guide

Title or Footing Modification Statement
Limitations and Constraints
� Reserved words and your data names cannot be used in title or footing

statements.

� The phrase WITH n AFTER is not valid in title or footing modification
statements. To indicate WITH n AFTER, code as follows:

� Title and footing modification statements cannot be subordinate to an IF
statement.

� The print location specified in a title or footing modification statement and the
length of the literal or the size of the data name or reserved word cannot be
greater than the number of characters per line.

� The last position of the print line, whether a detail line or a title line, is not
available. It is reserved in case a minus sign must be placed there.

Whenever you change the contents of the modification field, the change does not
take effect until page headings or footings are next printed. Complete report
examples are shown at the end of this chapter. At least one example demonstrates
how to modify the contents of a data name that is being used in a title modification
statement.

T1 'REPORT 01' WITH 2 AFTER
T1+1 DYLDATE
T2 'REPORT 02' WITH 3 AFTER
T2+120 'REPORT 320-1'

Figure 16-30 WITH n AFTER Code

REPORT 145 WIDE
T1 'REPORT TITLE 1'
T1+132 DYLPAGE

REPORT 150 WIDE
T1 'REPORT TITLE 2'
T1+120 DYLDATEPAG

REPORT 130 WIDE
T1 'REPORT TITLE 3' WITH 2 AFTER
T1+120 DYLDATE

Figure 16-31 Print Location Examples
Using Report Statements 16–25

LIST Statement
LIST Statement
The LIST statement specifies that a report line is to be printed and indicates what
the contents of the line are to be.

VISION:Results automatically composes the report line (including determining
column heading locations and print field locations) so that the fields are properly
positioned on the page and print in the order specified. The width of each column
is determined by whichever is larger:

� The column heading of the field being printed.

� The field size as defined.

� The edit mask used by VISION:Results, if the field is NU, BI, or PD.

You can optionally format your report layout using the fixed print position facility
of LIST.

Following is the syntax for all the keywords and edit codes that can be used within
a LIST statement. See the individual sections in this chapter for details on each
keyword. For complete edit code descriptions, see Edit Codes on page 14-21.

The default is 0 before and 1 after.

LIST NAME
LIST SUM BALANCE WITH 2 AFTER
LIST 'NUMBER OF RECORDS PRINTED' AT ACCOUNT TALLY AT
BALANCE
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE E JBALANCE
E COMMENT
LIST BALANCE (BALANCE'AMOUNT)
LIST NAME AT 5 ADDRESS AT 35 WITH 2 AFTER
LIST PRIOR (ACCT NAME)
LIST FIELD1 (INX) (HEADER1) FIELD2

LIST
The LIST command begins each LIST statement. The remaining items of the
statement follow the command and are positional — they must appear in the order
listed:

LIST ![{SUPPRESS | PRIOR | SUM | SUMn}] [(] !{dataname | (index) | literal | TAL
LY }
[[E | A | Z | B | P | D | S] | [NB | Q]

| [W | NP] | [U | NZ] | [Y | NE] | [X | NA]
| [F | DE] | [G | NDE] | [K | DNE] | [H | DA] | [J | NDA] | [L | DNA] | [D4 |V]]

[AT {n | dataname [+n]}]
[(column heading)] !...[)] !...
[WITH [{EJECT | n} BEFORE] [[AND] [{EJECT | n}] AFTER]]

Figure 16-32 Keywords and Edit Codes That Can Be Used within a LIST

LIST dataname1 [INX] [datanamen] ...

[WITH {n } BEFORE AND {n } AFTER]
{EJECT} {EJECT}

Figure 16-33 LIST Command
16–26 VISION:Results Reference Guide

LIST Statement
Each data name in the LIST statement gives information concerning a single field
to be printed on the report. The order, from left to right, of data names in the LIST
statement is the order in which these fields appear on the printed report. For
example:

LIST NAME EMPNO NET

This tells VISION:Results to print a report line listing name, employee number,
and net pay for each record read.

At least one data name or literal must appear in the LIST statement.

Indexed data names can be entered in the LIST statement. For example:

The LIST command can be executed at detail, ON CHANGE IN, or ON FINAL
time. You can GOTO or PERFORM (to execute) a LIST. However, you cannot
GOTO or PERFORM a detail LIST from ON CHANGE IN or ON FINAL logic.

LIST statements not governed by (subordinate to) an ON CHANGE IN or ON
FINAL statement are said to be detail lines. LIST statements subordinate to ON
END OF INPUT and ON END OF SORTING are also said to be detail lines. For
example:

The LIST command can never be subordinate to an IF statement at control break
time (ON CHANGE IN or ON FINAL). For example:

The LIST command can never be selectively ignored at control break time (ON
CHANGE IN or ON FINAL).

FILE FILE1 FB 80
RECORD1 80
FIELD1 5 1
FIELD2 5
FIELD3 5

INX - 0

LIST FIELD1 (INX) (HEADER1) FIELD2

FIN

Figure 16-34 Indexed Data Names

LIST DIV NAME EMPNO NET ← detail line
ON CHANGE IN DIV
LIST SUM NET WITH 2 BEFORE 2 AFTER

ON FINAL
LIST SUM NET WITH 2 BEFORE

Figure 16-35 ON CHANGE IN or ON FINAL Statement

ON CHANGE IN ACCOUNT
IF ACCOUNT EQ 'WO'
MOVE '-' TO COMMENT

ENDIF
LIST COMMENT SUM BALANCE

Figure 16-36 IF Statement
Using Report Statements 16–27

LIST Statement
A validation error is generated if a control break field is indexed in a LIST
statement. To avoid this situation, move your control break field to a work area
and then list it.

Dataname
Each data name in the LIST statement identifies a field to be printed. It can also
specify any editing that is to be done on the field and/or operations to be
performed on the field, that is, totaling of the field contents and placing the printed
output in a designated location.

Each data name is positional and is of the following form:

Format 1:

Format 2:

Format 3:

See Edit Codes on page 14-21 for edit code descriptions.

Keyword
The keyword specifies an operation to be performed on the data name field. Only
one of the following keywords can be selected:

� SUM

� SUPPRESS

� PRIOR

� SUM1 Through SUM6

LIST [keyword] dataname [edit code] [column heading]
LIST [keyword] dataname [edit code] [column heading] AT dataname
LIST [keyword] dataname [edit code] [column heading] AT dataname + n
LIST [keyword] dataname [edit code] AT nnn

Figure 16-37 Data Name Format 1

LIST literal
LIST literal AT dataname
LIST literal AT dataname + n
LIST literal AT nnn

Figure 16-38 Data Name Format 2

LIST TALLY [edit code] [column heading]
LIST TALLY [edit code] [column heading] AT dataname
LIST TALLY [edit code] [column heading] AT dataname + n
LIST TALLY AT nnn

Figure 16-39 Data Name Format 3
16–28 VISION:Results Reference Guide

LIST Statement
SUM
The keyword SUM is valid only during control break (ON CHANGE and ON
FINAL) processing. It tells VISION:Results to total the contents of the data name
field specified up to the current control break.

If there is detail printing, VISION:Results adds all fields that have to be totaled
to appropriate internal accumulators whenever the first physical detail
VISION:Results LIST statement is executed.

If there are no detail LIST statements, VISION:Results totals all required fields
whenever it exits the automatic cycle or an ACCEPT command is executed.

Following printing, the total is added to the next highest level of control break
(if summed) and then cleared to zero. Then, the next set of values begins
accumulating until the next change in the control break field, when printing and
clearing occur again. The data name (field) qualified by the keyword SUM must
contain numeric, packed, or binary data.

Examples of valid formats are:

ON CHANGE IN DEPARTMENT
LIST SUM NETPAY

ON CHANGE IN DEPARTMENT
LIST SUM NETPAY SUM GROSSPAY

ON FINAL
LIST SUM NETPAY SUM GROSSPAY SUM HOURS

If the keyword SUM refers to more than one field, you can code the LIST in the
following form:

ON CHANGE IN DEPARTMENT
LIST SUM (NETPAY GROSSPAY)

ON FINAL
LIST SUM (NETPAY GROSSPAY HOURS)

The parentheses must enclose those data names that are to be operated on by the
keyword SUM. Note that the individual sums of NETPAY, GROSSPAY, and
HOURS are to be printed individually and not accumulated together.

The keyword SUM and its data name can be used in an arithmetic expression, if
required, during control break logic (ON CHANGE IN or ON FINAL).

TOTAL=SUM NETPAY + TOTAL

ACCUM=SUM NETPAY+SUM OVERTIME

TOT=1.10 * SUM NETPAY

The keyword SUM can never be used during detail processing or detail listing.
When SUM is used, the data name being summed cannot be indexed.

The following example shows how to produce a report containing the employee
names listed by the department number, the net pay for each employee, and the
total of net pay received by employees in each department.
Using Report Statements 16–29

LIST Statement
To print the total net pay for each department, specify the department number as
the trigger for the first control break (see ON CHANGE IN on page 16-57), then
qualify the net pay (NETPAY) field with the keyword SUM.

The statement causes the net pay of all employees in the first department to be
totaled, then the net pay of employees in the second department is totaled, and so
on. It is assumed that the file is in department number sequence and that the
column headings and edit formats were defined in the FILE field definitions.

Using the same example, to print the total net pay for all departments, again
specify department (DEPARTMENT) as the control break, then qualify the net pay
(NETPAY) with the keyword SUM at both ON CHANGE IN and ON FINAL time.
Assume that the column headings and edit formats were defined in the FILE field
definitions.

CONTROL DEPARTMENT
LIST SUPPRESS DEPARTMENT EMPNAME NETPAY
ON CHANGE IN DEPARTMENT
LIST SUM NETPAY WITH 2 BEFORE AND 2 AFTER

Figure 16-40 Keyword SUM Example 1

DEPARTMENT EMPLOYEE NAME NET PAY

1 JOHN JONES 865.98
MARY POLLACK 987.88
STEVEN SMITH 678.98

2532.84

2 ALBERT AMES 587.23
JOHN CARLS 989.90

1577.13

3 ANITA BAIRD 667.77
FRANK KOCH 348.55

1016.32

Figure 16-41 Keyword SUM Output 1

CONTROL DEPARTMENT
LIST SUPPRESS DEPARTMENT EMPNAME NETPAY
ON CHANGE IN DEPARTMENT

LIST SUM NETPAY WITH 2 BEFORE AND 2 AFTER
ON FINAL

LIST SUM NETPAY WITH 2 BEFORE

Figure 16-42 Keyword SUM Example 2
16–30 VISION:Results Reference Guide

LIST Statement
SUPPRESS
Using SUPPRESS tells VISION:Results to print the contents of the field following
the keyword SUPPRESS only if the field's value has changed. However, when a
page eject or a higher-level control break occurs, the field is printed.

Valid formats for the keyword SUPPRESS are:

LIST SUPPRESS DEPARTMENT
LIST SUPPRESS DIVISION SUPPRESS DEPARTMENT

If the keyword SUPPRESS (like the other qualifiers SUM and PRIOR) refers to
more than one field, you can code the LIST in the following form:

LIST SUPPRESS (DIVISION DEPARTMENT)

Valid formats for the keyword SUPPRESS with column headings as part of the
LIST statement are:

LIST SUPPRESS (DIVISION (DIV'NO) DEPARTMENT)
LIST SUPPRESS (DIVISION (DIV'NO) DEPARTMENT (DEPT))
LIST SUPPRESS (DIVISION DEPARTMENT (DEPT))

See Column Heading on page 16-46.

The keyword SUPPRESS is not valid at ON FINAL time.

You cannot use LIST statements with SUPPRESS and DELIM; VISION:Results
produces an error message.

DEPARTMENT EMPLOYEE NAME NET PAY

1 JOHN JONES 865.98
MARY POLLACK 987.88
STEVEN SMITH 678.98

2532.84

2 ALBERT AMES 587.23
JOHN CARLS 989.90

1577.13

3 ANITA BAIRD 667.77
FRANK KOCH 348.55

1016.32

5126.29

Figure 16-43 Keyword SUM Output 2
Using Report Statements 16–31

LIST Statement
For example, if you do not qualify ACCOUNT with the keyword SUPPRESS as
shown in the following LIST statement:

LIST ACCOUNT TRANS NAME BALANCE

the report looks like:

With the data name ACCOUNT qualified with the keyword SUPPRESS:

LIST SUPPRESS ACCOUNT TRANS NAME BALANCE

the resulting report looks like:

PRIOR
Qualifying the field with the keyword PRIOR instructs VISION:Results to print the
contents of the field from the previous record, not the one currently in the input
record area.

This refer back option is very useful when descriptions, department numbers, and
so on, are to be printed on control break lines and you want to refer back to the
prior record rather than the one that caused the break that is currently in the record
area.

The keyword PRIOR cannot be used in a detail-time LIST statement, nor can the
keyword be used in a MOVE or IF statement. In fact, the keyword PRIOR can only
be used in a LIST statement during control break processing:

ACCOUNT TRANS NAME BALANCE

BO 8006547 TOWNSON 94.99
EO 6002587 NELLISEN 15.00
EO 7082509 REED 5.00
EO 6208657 SMYTH 32.00
FO 6107265 KRUSE 43.00
FO 8011508 ALHVERS 178.76
FO 6024963 CHARLES 3.80
FO 6044395 CORWIN 45.24
GO 6410905 LOUIS .00

Figure 16-44 Qualify ACCOUNT

ACCOUNT TRANS NAME BALANCE

BO 8006547 TOWNSON 94.99
EO 6002587 NELLISEN 15.00

7082509 REED 5.00
6208657 SMYTH 32.00

FO 6107265 KRUSE 43.00
8011508 ALHVERS 178.76
6024963 CHARLES 3.80
6044395 CORWIN 45.24

GO 6410905 LOUIS .00

Figure 16-45 Qualify ACCOUNT Data Name

LIST SUPPRESS DIV DEPT NAME NETPAY
ON CHANGE IN DIV
LIST PRIOR DEPT SUM NETPAY

Figure 16-46 Keyword PRIOR Use
16–32 VISION:Results Reference Guide

LIST Statement
Valid formats of the MOVE PRIOR and IF PRIOR do not exist. If the prior account
value as in the MOVE PRIOR and IF PRIOR is required, the following can be used:

In this example, one-time only logic is used (ON ONE/ENDONE) to save the first
record's ACCOUNT value in a work area. At control break time, the work area
SAVEACCT can be examined (it is the prior account code). To re-establish the new
prior account code (for the next control break), the ACCOUNT field value must be
moved to SAVEACCT at this time.

If the field is being totaled (SUM), the keyword PRIOR cannot be used because
VISION:Results obtains the value of a totaled field from an internal accumulator.

If the field is specified as a control break, you need not use the keyword PRIOR. At
control break time, VISION:Results automatically refers to the preceding record's
field if that data name is referenced as a control break in the CONTROL statement.

Valid formats for PRIOR are:

ON ONE
MOVE ACCOUNT TO SAVEACCT

ENDONE
.
.

detail processing logic
.
.

ON CHANGE IN DIV
IF ACCOUNT EQ X'FF' GOTO TAGA ENDIF
MOVE SAVEACCT TO WACCT
MOVE ACCOUNT TO SAVEACCT

TAGA:
LIST

Figure 16-47 Working with MOVE PRIOR and IF PRIOR

CONTROL DIVISION
LIST SUPPRESS(DIVISION DEPT LOC) SALESMAN SALES
ON CHANGE IN DIVISION
LIST PRIOR DEPT DIVISION

CONTROL DIVISION
LIST SUPPRESS(DIVISION DEPT LOC) SALESMAN SALES
ON CHANGE IN DIVISION
LIST PRIOR DEPT PRIOR LOC

CONTROL DIVISION
LIST SUPPRESS(DIVISION DEPT LOC) SALESMAN SALES
ON CHANGE IN DIVISION
LIST DIVISION PRIOR DEPT

Figure 16-48 Formats for PRIOR
Using Report Statements 16–33

LIST Statement
If the keyword PRIOR refers to more than one field, you can code the LIST in the
following form:

SUM1 Through SUM6
The keyword SUMn tells VISION:Results to accumulate the total amount of the
field specified in the data name through the control break level that is specified by
the integer. That is, the total is not added to the next level nor is it cleared to zero
until the next higher control break occurs. For example:

LIST SUM1 NETPAY

This statement tells VISION:Results to total the net pay field and not clear it until
the second control break level has been detected.

SUMn cannot exceed the available control breaks as specified in the CONTROL
statement.

If you print a report like the one described for the keyword SUM, but use SUM1
instead, the result is the following:

Assume that all column headings and edit formats are defined in the field
definitions of the FILE statement.

CONTROL DIVISION
ON CHANGE IN DIVISION
LIST PRIOR (DEPT LOCATION)

CONTROL DIVISION
ON CHANGE IN DIVISION
LIST DIVISION PRIOR (DEPT LOCATION)

Figure 16-49 Keyword PRIOR in More Than One Field

CONTROL DEPARTMENT
LIST SUPPRESS DEPARTMENT EMPNAME NETPAY
ON CHANGE IN DEPARTMENT
LIST SUM1 NETPAY WITH 2 BEFORE AND 2 AFTER

Figure 16-50 Using SUM1 Example

DEPARTMENT EMPLOYEE NAME NET PAY

1 JOHN JONES 865.98
MARY POLLACK 987.88
STEVEN SMITH 678.98

2532.84

2 ALBERT AMES 587.23
JOHN CARLS 989.90

4109.97

3 ANITA BAIRD 667.77
FRANK KOCH 348.55

5126.29

Figure 16-51 Using SUM1 Results
16–34 VISION:Results Reference Guide

LIST Statement
Dataname
The data name provided in the LIST statement is the field that is to be printed.

The data name can be entered in the LIST in three forms:

See Edit Codes on page 14-21 for edit code definitions.

There is a fourth form of data name (dataname AT n) used with fixed print
positioning. For information on this fourth form, see Fixed Print Position
Reporting on page 16-54.

You can override or specify data name edit codes in your LIST statement. Edit
codes are defined in the VISION:Results Getting Started Guide. To edit a field, place
the edit code immediately after the name of the field you want to edit. For example:

LIST NAME ADDRESS SOCSEC S

The edit code in the LIST statement causes the Social Security Number (SOCSEC)
to be printed with two hyphens, for example, 999-99-9999.

The edit codes specified in a LIST statement apply only to that statement. No
subsequent LIST statements are affected.

If your program contained the following two LIST statements, the date field would
only be edited when the first LIST statement is executed.

dataname [edit code]

dataname [edit code] AT dataname2

dataname [edit code] AT dataname2 + n

Figure 16-52 Data Name in Three Forms

.

.
LIST NAME ACCT BALANCE A DATE D
.
.
ON CHANGE IN DEPT
LIST DEPT DATE

.

.

Figure 16-53 Two LIST Statements
Using Report Statements 16–35

LIST Statement
To assure that editing takes place at all levels, respecify the edit code after the data
name on each LIST statement. Using the same example, specify the edit code a
second time on the second LIST statement.

If you have specified an edit code in a field definition, you can override it by using
a different edit code for the same field in a LIST statement. For example:

In this example, if BALANCE is zero, it prints as .00 upon execution of the first
LIST statement (an A edit code applies) and as blanks upon execution of the second
LIST statement (an E edit code applies).

Specifying an edit code in a LIST statement is useful if you need to edit a field that
cannot be edited in the field definition, as is the case when you are using COBOL
data definitions in your program (see Chapter 15, Using the COPY or COPYE
Command) or when you want to override an edit code specified in a field definition
statement.

The LIST data name tells VISION:Results to automatically position the fields on
the report line from left to right.

Assuming that each of the LIST statements above is in three different programs,
the fields supplied in each LIST print left to right in the order specified. Column
headings (as defined or their defaults) would be supplied for all data names listed.

.

.
LIST NAME ACCT BALANCE A DATE D
.
.
ON CHANGE IN DEPT
LIST DEPT DATE D

.

.

Figure 16-54 Two LIST Statements Simplified

FILE ARFILE FB 352 5280
ACCT 2 182
NAME 25 85
TRANS 7 4
BALANCE 5 170 PD 2 A
DATE 6 44 NU D

.
LIST ACCT BALANCE DATE
.
ON CHANGE IN ACCT
LIST NAME BALANCE E

Figure 16-55 Two LIST Statements with Edit Code

LIST DIVISION BRANCH DEPARTMENT ← detail line 1

LIST ACCOUNT TRANS ← detail line 1

LIST NAME ADDRESS CITY STATE ZIP ← detail line 1

Figure 16-56 LIST Data Name
16–36 VISION:Results Reference Guide

LIST Statement
When a data name is used in more than one LIST statement, additional occurrences
of the data name (field) are aligned at the same location on the report line unless
you specify otherwise (for example, AT or AT +n). For example:

Detail line 1 was produced using the LIST ACCOUNT TRANS NAME BALANCE
statement while control line 1 was produced using LIST SUM BALANCE. Note
that BALANCE is aligned under the column heading BALANCE in both cases.

Another example:

Both ACCOUNT and BALANCE are aligned under their respective column
headings at control line 1. Note the keyword, SUPPRESS, added to ACCOUNT.
Also note that, because ACCOUNT is specified on the CONTROL statement, the
use of PRIOR is not required on the ON CHANGE IN ACCOUNT LIST statement.

CONTROL ACCOUNT
LIST ACCOUNT TRANS NAME BALANCE

ON CHANGE IN ACCOUNT
LIST SUM BALANCE WITH 2 BEFORE AND 2 AFTER ←

ACCOUNT TRANS NAME BALANCE
BO 8006547 TOWNSON 94.99 ← detail line 1

94.99 ← control line 1

EO 6002587 NELLISEN 15.00 ← detail line 1

EO 7082509 REED 5.00
EO 6208657 SMYTH 32.00

52.00 ← control line 1

Figure 16-57 Data Name Using More Than One LIST Statement

CONTROL ACCOUNT
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE
ON CHANGE IN ACCOUNT
LIST ACCOUNT SUM BALANCE WITH 2 BEFORE AND 2 AFTER ←

ACCOUNT TRANS NAME BALANCE
BO 8006547 TOWNSON 94.99 ← detail line 1
BO 94.99 ← control line 1
EO 6002587 NELLISEN 15.00 ← detail line 1

7082509 REED 5.00
6208657 SMYTH 32.00

EO 52.00 ← control line 1

Figure 16-58 Data Name Using More Than One LIST Statement Example 2
Using Report Statements 16–37

LIST Statement
This example demonstrates VISION:Results' ability to automatically position a
data name that is not specified in a detail line 1.

Because the ON CHANGE IN ACCOUNT (control break line 1) has a data name
never before specified on a previous LIST statement, VISION:Results
automatically positions the field to the right of the last field positioned
(BALANCE), with its column heading.

In this example, ON FINAL logic is added:

The final total of BALANCE is aligned properly.

CONTROL ACCOUNT
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE
ON CHANGE IN ACCOUNT
LIST ACCOUNT SUM BALANCE PRIOR SALESMAN ←
WITH 2 BEFORE AND 2 AFTER

ACCOUNT TRANS NAME BALANCE SALESMAN

BO 8006547 TOWNSON 94.99 ← detail line 1

BO 94.99 OLDTIMER ← control line 1

EO 6002587 NELLISEN 15.00
7082509 REED 5.00
6208657 SMYTH 32.00

EO 52.00 MCATEE ← control line 1

Figure 16-59 Data Name Using More Than One LIST Statement Example 3

CONTROL ACCOUNT
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE
ON CHANGE IN ACCOUNT
LIST ACCOUNT SUM BALANCE PRIOR SALESMAN
WITH 2 BEFORE AND 2 AFTER

ON FINAL ←
LIST SUM BALANCE WITH 2 BEFORE

ACCOUNT TRANS NAME BALANCE SALESMAN

BO 8006547 TOWNSON 94.99 ← detail line 1

BO 94.99 OLDTIMER ← control line 1
control line 1

EO 6002587 NELLISEN 15.00
7082509 REED 5.00
6208657 SMYTH 32.00

EO 52.00 MCATEE ← control line 1
control line 1

146.99 ← final line 1

Figure 16-60 Data Name Using More Than One LIST Statement Example 4
16–38 VISION:Results Reference Guide

LIST Statement
dataname AT dataname2
The LIST statement dataname AT dataname2 tells VISION:Results to use the
automatically positioned field location of dataname2 and print dataname at that
location also. This form is generally used at control break time (ON CHANGE IN
or ON FINAL) and can be used for multi-line printing (see Alignment of Data
Names and Literals at Detail Time (Multi-line) on page 16-50 and Alignment of
Data Names and Literals at ON CHANGE IN and ON FINAL Time on page 16-52).
For example:

When using dataname AT, you are in control. VISION:Results does not decimal
align the field, nor does it examine the field to see if its length is greater than the
field to which it is positioning.

The example below produces erroneous report output:

CONTROL ACCOUNT
LIST SUPPRESS ACCOUNT NAME TRANS BALANCE
ON CHANGE IN ACCOUNT
LIST PRIOR SALESMAN AT NAME SUM BALANCE ←
WITH 2 BEFORE AND 2 AFTER

ON FINAL
LIST SUM BALANCE WITH 2 BEFORE

ACCOUNT NAME TRANS BALANCE

BO TOWNSON 8006547 94.99 ← detail line 1

J OLDTIMER 94.99 ← control line 1

EO NELLISEN 6002587 15.00
REED 7082509 5.00
SMYTH 6208657 32.00
PHILPOTT 2093831 100.00

HEATHER ANN MCATEE 152.00 ← control line 1

246.99 ← final line 1

Figure 16-61 Dataname AT Dataname2

CONTROL ACCOUNT
LIST SUPPRESS ACCOUNT NAME TRANS BALANCE
ON CHANGE IN ACCOUNT
LIST PRIOR SALESMAN AT TRANS SUM BALANCE ←
WITH 2 BEFORE AND 2 AFTER

ON FINAL
LIST SUM BALANCE WITH 2 BEFORE

Figure 16-62 Dataname AT Dataname2 Example 2
Using Report Statements 16–39

LIST Statement
There is an 11-byte difference in the length of TRANS (7) and SALESMAN (18).
VISION:Results builds the print line from right to left. First, it moves in SUM
BALANCE (control line 1), followed by SALESMAN AT TRANS. In the first
control line print, the BALANCE amount printed was very small. However, in the
second control line print, the high order digits of the BALANCE value are overlaid.

Dataname AT dataname2 +n
Dataname AT dataname2 +n is similar to the previous definition and should only
be used when you are refining your program's output report.

LIST dataname AT dataname2 +n tells VISION:Results to use the automatically
positioned field location of dataname2, add the displacement (maximum 99) to it,
and print dataname. VISION:Results does not provide column headings for data
names that are given specific alignment, unless the column heading is specified in
the LIST statement. This form can be used at detail time, during multi-line
printing, or at control break time. For example:

There is no column heading for BALANCE AT BALANCE + 10 because you
specified the alignment.

ACCOUNT NAME TRANS BALANCE

BO TOWNSON 8006547 94.99 ← detail line 1

J OLDTIMER 94.99 ← control line 1

EO NELLISEN 6002587 15.00
REED 7082509 5.00
SMYTH 6208657 32.00
PHILPOTT 2093831 100.00

HEATHER ANN MCATEE 52.00 ← control line 1

246.99 ← final line 1

Figure 16-63 Dataname AT Dataname2 Example 2 Results

LIST SUPPRESS ACCOUNT TRANS BALANCE
ON CHANGE IN ACCOUNT
LIST SUM BALANCE AT BALANCE + 10 ←
WITH 2 BEFORE AND 2 AFTER

ACCOUNT TRANS BALANCE

BO 8006547 94.99 ← detail line 1

94.99 ← control line 1

EO 6002587 15.00 ← detail line 1
7082509 5.00
6208657 32.00

52.00 ← control line 1

Figure 16-64 Dataname AT Dataname2 +n
16–40 VISION:Results Reference Guide

LIST Statement
The example below uses a column heading with a dataname AT +n:

For example:

LIST CONSTANT CONSTANT AT CONSTANT + 50

This is the only way you can repeat a data name on the same LIST statement. Note
that the second entry of CONSTANT is AT CONSTANT plus 50.

If you had typed it as:

LIST CONSTANT CONSTANT

VISION:Results positions the second CONSTANT in the same position as the first
CONSTANT. Remember that when a data name is used once, a second entry is
automatically aligned to the position calculated for the first entry.

For example:

LIST EMPLOYEE ADDRESS AT EMPLOYEE +45 (ADDRESS)

The data name EMPLOYEE is automatically positioned by VISION:Results
(centered) with a column heading. ADDRESS is displaced 45 positions to the right
of EMPLOYEE with the appropriate column heading. ADDRESS was displaced
and not automatically positioned (centered) on the report line.

The resulting report might appear awkward, and the technique could produce
overlapping of field values.

LIST SUPPRESS ACCOUNT TRANS BALANCE
ON CHANGE IN ACCOUNT
LIST SUM BALANCE AT BALANCE +10 (TOTAL) ←
WITH 2 BEFORE AND 2 AFTER

ACCOUNT TRANS BALANCE TOTAL

BO 8006547 94.99

94.99 ← control line 1

EO 6002587 15.00
7082509 5.00
6208657 32.00

52.00 ← control line 1

Figure 16-65 Dataname AT Dataname2 +n Example 2
Using Report Statements 16–41

LIST Statement
Literal
You can type literal data into a LIST statement, enclosed in single quotation marks
('). Literals are normally used during control break printing; however, they can
also be used at detail printing. The maximum length of a literal in a LIST statement
is 30 characters.

The literal can be entered in the LIST statement in the following three formats:

There is a fourth format used when fixed print position reporting is wanted. For
information on this fourth format, see Fixed Print Position Reporting on
page 16-54.

The definitions of dataname and dataname + n are equivalent to those defined in
the previous section on data names and are not described in detail here.

If you enter a literal in a LIST statement, you cannot give it a column heading.
However, you can list a literal that also has a column heading by defining the
literal with a column heading in a work area and using its data name in the LIST
statement. For example:

Following are three examples showing a control break and printing of the literal
ACCOUNT TOTAL using the three forms available.

literal

literal AT dataname

literal AT dataname + n

Figure 16-66 Literal Three Formats

WORKAREA CHECKOFF 3 (CHECK'OFF) VALUE '-'
.
.
LIST ACCOUNT NAME BALANCE CHECKOFF

Figure 16-67 Literal in a LIST Statement

CONTROL ACCOUNT
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE
ON CHANGE IN ACCOUNT
LIST 'ACCOUNT TOTAL' SUM BALANCE ←
WITH 2 BEFORE AND 2 AFTER

ACCOUNT TRANS NAME BALANCE

BO 8006547 TOWNSON 94.99

control line 1 → 94.99 ACCOUNT TOTAL

EO 6002587 NELLISEN 15.00
7082509 REED 5.00
6208657 SMYTH 32.00

control line 1 → 52.00 ACCOUNT TOTAL

Figure 16-68 Control Break and Printing of Literal ACCOUNT TOTAL Example 1
16–42 VISION:Results Reference Guide

LIST Statement
Because detail and control lines are entities unto themselves, the literal ACCOUNT
TOTAL forces VISION:Results to create its own column. Note that there is no
column heading.

The second example is:

The resulting output looks like this:

Because the literal ACCOUNT TOTAL is greater in length than either the column
heading ACCOUNT or the field length of ACCOUNT (which is 2), VISION:Results
automatically left-aligned the literal with the column heading.

The third example is:

The resulting output looks like this:

ACCOUNT+5 identifies the field under which the literal is to be printed.

CONTROL ACCOUNT
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE
ON CHANGE IN ACCOUNT
LIST 'ACCOUNT TOTAL' AT ACCOUNT SUM BALANCE ←
WITH 2 BEFORE AND 2 AFTER

Figure 16-69 Control Break and Printing of Literal ACCOUNT TOTAL Example 2

ACCOUNT TRANS NAME BALANCE

BO 8006547 TOWNSON 94.99

ACCOUNT TOTAL 94.99 ← control line 1

EO 6002587 NELLISEN 15.00
7082509 REED 5.00
6208657 SMYTH 32.00

ACCOUNT TOTAL 52.00 ← control line 1

Figure 16-70 Control Break and Printing of Literal ACCOUNT TOTAL Results 2

CONTROL ACCOUNT
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE
ON CHANGE IN ACCOUNT
LIST 'ACCOUNT TOTAL' AT ACCOUNT+5 SUM BALANCE ←
WITH 2 BEFORE AND 2 AFTER

Figure 16-71 Control Break and Printing of Literal ACCOUNT TOTAL Example 3

ACCOUNT TRANS NAME BALANCE

BO 8006547 TOWNSON 94.99

ACCOUNT TOTAL 94.99 ← control line 1

EO 6002587 NELLISEN 15.00
7082509 REED 5.00
6208657 SMYTH 32.00

ACCOUNT TOTAL 52.00 ← control line 1

Figure 16-72 Control Break and Printing of Literal ACCOUNT TOTAL Results 3
Using Report Statements 16–43

LIST Statement
TALLY / TALLYn
The keywords TALLY and TALLYn can be used in an arithmetic statement, or they
can be printed out. TALLY is the total number of records reported for this control
break level. That is, if there is detail printing, TALLY is the count of the number of
times the first detail LIST statement in the program is executed.

Use TALLYn if you want, for emphasis or ease of identification, each TALLY
amount for multiple control breaks printed in a unique column. This syntax
automatically aligns the TALLY amount in a unique column for each break level.
You can have up to six break levels (TALLY1 through TALLY6).

If there is no detail printing, TALLY is the count of the number of times the
procedure logic exited the program using the automatic cycle, or an ACCEPT
command was executed for a given control break. TALLY is valid only during
control break processing. TALLY can never be qualified with the SUM, PRIOR,
SUPPRESS, or SUMn keywords.

TALLY can be entered in the LIST statement in three forms:

There is a fourth form, which can be found in Fixed Print Position Reporting on
page 16-54.

The definitions of dataname2 and dataname2 + n are equivalent to those defined
in the previous section on data names and are not described here.

For example, you can use TALLY to print the number of transactions per account
and the overall number of accounts processed.

TALLY

TALLY AT dataname2

TALLY AT dataname2 + n

Figure 16-73 TALLY Three Forms

LIST ACCOUNT TRANS NAME BALANCE
ON CHANGE IN ACCOUNT
LIST SUM BALANCE TALLY WITH 2 BEFORE AND 2 AFTER

ON FINAL
LIST SUM BALANCE TALLY WITH 2 BEFORE

ACCOUNT TRANS NAME BALANCE TALLY

BO 8006547 TOWNSON 94.99

control line 1 → 94.99 1

EO 6002587 NELLISEN 15.00
EO 7082509 REED 5.00
EO 6208657 SMYTH 32.00

control line 1 → 52.00 3

final line 1 → 146.99 4

Figure 16-74 TALLY Example 1
16–44 VISION:Results Reference Guide

LIST Statement
Taking the same example, TALLY calculates the overall average of BALANCE per
account at ON FINAL time.

In the above statements, VISION:Results is alerted to print a grand total line.
Contained within the final line is a figure representing the sum of all balances
(SUM BALANCE) divided by the number of accounts (TALLY) reported.

146.99/4 = 36.747

= 36.75 ROUNDED

The following example demonstrates how to use TALLYn:

This creates the following report lines for the control break LIST statements:

LIST ACCOUNT TRANS NAME BALANCE
ON CHANGE IN ACCOUNT
LIST SUM BALANCE TALLY WITH 2 BEFORE AND 2 AFTER

ON FINAL
AVERAGE=SUM BALANCE/TALLY ROUNDED ←
LIST '***AVERAGE BALANCE' AT ACCOUNT AVERAGE AT NAME ←
SUM BALANCE TALLY WITH 2 BEFORE

ACCOUNT TRANS NAME BALANCE TALLY

BO 8006547 TOWNSON 94.99

94.99 1

EO 6002587 NELLISEN 15.00
EO 7082509 REED 5.00
EO 6208657 SMYTH 32.00

52.00 3

***AVERAGE BALANCE 36.75 146.99 4

Figure 16-75 TALLY Example 2

CONTROL ACCOUNT DIVISION

ON CHANGE IN ACCOUNT
LIST DIVISION PRIOR ACCOUNT TALLY1

ON CHANGE IN DIVISION
LIST PRIOR DIVISION ACCOUNT TALLY2

Figure 16-76 TALLYn Example

DIVISION ACCOUNT BALANCE TALLY1 TALLY2

1 012345 500.00
012345 110.99
012345 2

023345 222.55
023345 9.99
023345 2

456789 4.00
456789 10000.00
456789 .00
456789 3

1 456789 7

2 098765 9999.99
Using Report Statements 16–45

LIST Statement
TALLY is one of the few reserved words in VISION:Results that can have its
output print size and edit format overridden in a WORKAREA definition. TALLY
is defined by VISION:Results as an 8-byte packed field, with a default edit code of
Z and a column heading default of TALLY. For printing purposes, TALLY defaults
to a maximum size of 10 (9999999999).

Because the TALLY print size takes up considerable space on the print line, it is
sometimes necessary to use overrides to shorten the TALLY print size, change the
TALLY edit code, and/or give the TALLY a unique column heading.

For example, to give TALLY a unique column heading and change its edit code to
E (comma insertion), you can supply the following:

WORKAREA
TALLY E (COUNT)

The maximum print size is 9,999,999,999 (commas included, the print size is now
13).

If you want to limit the number of print digits (size), code the following:

WORKAREA
TALLY E 4 (TOTAL'ACCOUNTS)

where 4 (number of significant digits) and an E edit code would result in a
maximum print size of 9,999.

Column Heading
The literal data entered in the column heading position of the parameter appears
on the report as the column heading for the field specified by the data name. The
column heading data must be enclosed in parentheses.

Column headings specified in the LIST statement override those specified in the
field definition. The maximum length of any column heading is 30 positions.

If no column heading is entered in the LIST statement or field definition, the
default is the data name of the field.

CONTROL DEPARTMENT
LIST SUPPRESS DEPARTMENT (DEPT) EMPNAME (EMPLOYEE NAME) NETPAY (NET PAY)
ON CHANGE IN DEPARTMENT
LIST SUM NETPAY WITH 2 BEFORE AND 2 AFTER

DEPT EMPLOYEE NAME NET PAY

1 JOHN JONES 865.98
MARY POLLACK 987.88
STEVEN SMITH 678.98

2532.84

Figure 16-77 Column Heading Example 1 (Page 1 of 2)
16–46 VISION:Results Reference Guide

LIST Statement
To stack column headings, you use an apostrophe before, between, or after the
headings. The maximum length, including the apostrophes, for any column
heading is 30 characters. A maximum of nine column headings can be stacked.

For example:

To obtain a blank column heading that overrides a predefined column heading
definition or the default of the data name, use parentheses () with 0 to 30 blanks
between the parentheses.

For example:

2 ALBERT AMES 587.23
JOHN CARLS 989.90

1577.13

3 ANITA BAIRD 667.77
FRANK KOCH 348.55

1016.32

CONTROL DEPARTMENT
LIST SUPPRESS DEPARTMENT (D'E'P'T) EMPNAME (EMPLOYEE'NAME) NETPAY ('NET'PAY)
ON CHANGE IN DEPARTMENT
LIST SUM NETPAY WITH 2 BEFORE AND 2 AFTER

D EMPLOYEE
E NAME NET
P PAY
T

1 JOHN JONES 865.98
MARY POLLACK 987.88
STEVEN SMITH 678.98

2532.84

2 ALBERT AMES 587.23
JOHN CARLS 989.90

1577.13

3 ANITA BAIRD 667.77
FRANK KOCH 348.55

1016.32

Figure 16-78 Column Heading Example 2

CONTROL DEPARTMENT
LIST SUPPRESS DEPARTMENT () EMPNAME (EMPLOYEE'NAME) NETPAY ()
ON CHANGE IN DEPARTMENT
LIST SUM NETPAY WITH 2 BEFORE AND 2 AFTER

EMPLOYEE
NAME

Figure 16-79 Column Heading Example 3 (Page 1 of 2)

Figure 16-77 Column Heading Example 1 (Page 2 of 2)
Using Report Statements 16–47

Print Line Spacing
In summary, column headings are used as follows:

� Column headings on the LIST statement take priority.

� The column heading is taken from the field definition if none is specified on the
LIST statement.

� The data name becomes the column heading if none is specified in the field
definition.

� If you do not want a column heading, specify a null heading, that is, ().

� For any field aligned (AT dataname or AT dataname +n) to another, either by
you or automatically, you get a column heading only if it is defined in your
LIST statement. VISION:Results does not default to the data name.

� Column headings are not available for fixed print position reporting. However,
fixed print column headings can be specified with TITLE statements. See
FIXED on page 16-18.

Print Line Spacing

This statement controls the line spacing before and after the printing of each detail
line.

1 JOHN JONES 865.98
MARY POLLACK 987.88
STEVEN SMITH 678.98

2532.84

2 ALBERT AMES 587.23
JOHN CARLS 989.90

1577.13

3 ANITA BAIRD 667.77
FRANK KOCH 348.55

1016.32

Figure 16-79 Column Heading Example 3 (Page 2 of 2)

WITH {n } BEFORE AND {n } AFTER
{EJECT} {EJECT}

Figure 16-80 Print Line Spacing
16–48 VISION:Results Reference Guide

Print Line Spacing
WITH n BEFORE and WITH EJECT BEFORE
The default spacing before printing is WITH 0 BEFORE. You can specify from zero
to nine lines of spacing before detail line 1 or control line 1 is printed.

Page ejection and a skip to channel 1 (top of next page) can be specified in detail
line 1, control line 1, or final line 1.

Spacing BEFORE is only valid for the first LIST statement at any level.

WITH n AFTER and WITH EJECT AFTER
The default spacing for WITH n AFTER is 1. You can specify from zero to nine lines
of spacing after print detail line 1, control line 1, or final line 1.

You can specify from 0 to 99 lines of spacing on all subsequent detail, control, and
final lines. If you code WITH 0 AFTER on two or more consecutive detail, control,
or final LIST statements, the result is overstriking (overprinting). You can use this
feature to make a field appear in boldface when printed.

Both the ACCOUNT field and the BALANCE field are overprinted on the report.

Page ejection, a skip to channel 1, is specified in the AFTER form. For example:

The LIST statement allows the use of EJECT without BEFORE or AFTER.

ON CHANGE IN ACCOUNT
LIST ACCOUNT SUM BALANCE WITH 2 BEFORE

Figure 16-81 WITH n BEFORE Spacing

ON CHANGE IN ACCOUNT
LIST ACCOUNT SUM BALANCE WITH EJECT BEFORE

Figure 16-82 WITH EJECT BEFORE Spacing

ON CHANGE IN ACCOUNT
LIST ACCOUNT SUM BALANCE WITH 3 AFTER

Figure 16-83 WITH n AFTER Spacing

IF BALANCE GT 10000
LIST ACCT BALANCE WITH 0 AFTER
LIST ACCT BALANCE WITH 0 AFTER
LIST ACCT BALANCE

Figure 16-84 WITH n AFTER Spacing on Defined Lines

ON CHANGE IN ACCOUNT
LIST ACCOUNT SUM BALANCE WITH EJECT AFTER

Figure 16-85 WITH EJECT AFTER Spacing
Using Report Statements 16–49

Alignment of Data Names and Literals at Detail Time (Multi-line)
Up to 99 LIST statements can be used at any one level. The first level is the detail
level and is comprised of the code up to the first ON CHANGE IN or first ON
FINAL statement. Subsequent levels are between each ON CHANGE IN or
between the last ON CHANGE IN or ON FINAL and the end of the program.

Alignment of Data Names and Literals at Detail Time
(Multi-line)

With VISION:Results' automatic composition, the data names for second and
subsequent detail lines (up to 99) are automatically lined up column-for-column
with the data names appearing in the first detail line. Additional columns are
created to the right of the last aligned column to accommodate additional data
names. If you want to align the fields differently, use the dataname AT dataname2
option.

You can also specify dataname AT dataname2 +n (alignment plus a displacement
to the right). For example, LIST ADDRESSL1 AT NAME + 5.

The following rules govern alignment for data names or literals specified on detail
lines 2 through 99 for which AT has not been specified:

� VISION:Results’ decimal point aligns the data name (if binary, numeric, or
packed) under the data to which it is aligning.

� If the data name field size is greater than the larger of the column heading or
the field to which it is being aligned, VISION:Results left-aligns the data name
with the field/column heading to which it is aligning.

� If the data name field size is smaller than the data name to which it is aligning,
VISION:Results centers the data name within the column.

For example:

LOCATION is aligned (left-aligned) under VENDNO, and so on.

LIST VENDNO ITEM CODE DESCRIPT ← detail line 1
LIST LOCATION ONHAND UNITS ONORDER ← detail line 2

WITH 2 AFTER

VENDOR ITEM CODE DESCRIPT

JOHN SMYTH SHOES SF ALLIGATOR/LIZARD
SAN FRANCISCO 20 PAIRS 40

PAUL DOE STRING SS BROWN
LOS ANGELES 1000 PAIRS 200

Figure 16-86 Data Name Field Size is Smaller
16–50 VISION:Results Reference Guide

Alignment of Data Names and Literals at Detail Time (Multi-line)
For example, to shift LOCATION to align under ITEM:

Because LOCATION was aligned AT ITEM, ONHAND shifts to align under
CODE and UNITS shifts to align under DESCRIPTION.

ONORDER creates its own column with the appropriate heading.

If you specify an alignment for a data name or literal, all subsequent data names or
literals in the second or subsequent line are lined up to the right of the alignment.

Taking the same example a third time, displace ONORDER 25 positions beyond
DESCRIPT.

No column heading was produced for ONORDER. To do so, you need to specify
the column heading in the LIST statement. For example, to create the necessary
column heading for ONORDER:

LIST VENDNO ITEM CODE DESCRIPT ← detail line 1
LIST LOCATION AT ITEM ONHAND UNITS ONORDER ← detail line 2
WITH 2 AFTER

VENDOR ITEM CODE DESCRIPTION ON
ORDER

JOHN SMYTH SHOES SF ALLIGATOR/LIZARD
SAN FRANCISCO 20 PAIRS 40

PAUL DOE STRING SS BROWN
LOS ANGELES 1000 PAIRS 200

Figure 16-87 Shift LOCATION

LIST VENDNO ITEM CODE DESCRIPT
LIST LOCATION ONHAND UNITS ONORDER AT DESCRIPT+25
WITH 2 AFTER

VENDOR ITEM CODE DESCRIPTION

JOHN SMYTH SHOES SF ALLIGATOR/LIZARD
SAN FRANCISCO 20 PAIRS 40

PAUL DOE STRING SS BROWN
LOS ANGELES 1000 PAIRS 200

Figure 16-88 Displace ONORDER 25 Positions

LIST LOCATION ONHAND UNITS ONORDER AT DESCRIPTION+25 (ON'ORDER)

Figure 16-89 Column Heading for ONORDER
Using Report Statements 16–51

Alignment of Data Names and Literals at ON CHANGE IN and ON FINAL Time
Alignment of Data Names and Literals at ON CHANGE IN and
ON FINAL Time

With VISION:Results' automatic composition, the data names for second and
subsequent control lines are automatically lined up column-for-column with the
data names appearing in the first control or final line. This occurs unless the data
name appears in a detail LIST, in which case, it aligns under that column.

The rules for alignment are the same as those presented in the previous section on
alignment of data names and literals at detail time.

This example creates a two-line summary report of all accounts:

The resulting report looks like this:

Per the rules of alignment, TALLY is automatically aligned under the column
heading BALANCE while the literal ACCOUNTS is aligned under INSTALL
BALANCE.

Taking the same example, a summary of (control line 1) is created and the average
for each account (control line 2) is calculated.

CONTROL ACCOUNT
ON FINAL
LIST SUM (BALANCE INSTLBAL INSTPAY BALPART)
WITH 2 BEFORE AND 2 AFTER

LIST TALLY 'ACCOUNTS'

Figure 16-90 Two-Line Summary Report

BALANCE INSTALL INSTALL BALANCE
BALANCE PAYMENT PARTIAL

6,892.92 5,311.00 1,581.92 322.13

200 ACCOUNTS

Figure 16-91 Two-Line Summary Report Results

CONTROL ACCOUNT
ON CHANGE IN ACCOUNT
AVG1=SUM BALANCE/TALLY
AVG2=SUM INSTLBAL/TALLY
AVG3=SUM INSTLBAL/TALLY
AVG4=SUM BALPART/TALLY

→ LIST ACCOUNT SUM (BALANCE INSTLBAL INSTPAY BALPART)
WITH 2 BEFORE AND 2 AFTER

→ LIST AVG1 AVG2 AVG3 AVG4 WITH 2 AFTER
ON FINAL
LIST SUM (BALANCE INSTLBAL INSTPAY BALPART)
WITH 2 BEFORE AND 2 AFTER

LIST TALLY 'ACCOUNTS'

ACCOUNT BALANCE INSTALL INSTALL BALANCE
BALANCE PAYMENT PARTIAL

BO 119.22 28.00 101.02 98.10

119.22 28.00 101.02 98.10 ← control line 2

Figure 16-92 Summary of (Control Line 1) is Created (Page 1 of 2)
16–52 VISION:Results Reference Guide

Alignment of Data Names and Literals at ON CHANGE IN and ON FINAL Time
AVG1 (control line 2), which is the average of BALANCE, aligned itself under
ACCOUNT and AVG2 under BALANCE, and so on. Remember, the rules of
alignment state that data names align column-for-column with those specified in
control line 1. This is also apparent on final line 2. TALLY aligned itself under
BALANCE, the first data name specified at final line 1.

If you want AVG1 to align under BALANCE, AVG2 under INSTLBAL and so on,
there are two possible ways to accomplish this and get the proper alignment:

Specify a literal to print first, forcing AVG1 under BALANCE, and so on:

Or, use a literal of spaces:

Using the same example, detail print all records (suppressing ACCOUNT), print
TALLY at control line 1, print AVG1 aligned under BALANCE on control line 2,
and create a third control line with the literal CORRECT ________.

EO 201.22 198.44 102.86 7.44

100.66 99.22 51.43 3.72 ← control line 2
.
.
.

6,892.92 5,311.00 1,581.92 322.13

200 ACCOUNTS ← final line 2

LIST 'AVERAGE' AVG1 AVG2 AVG3 AVG4

Figure 16-93 Forcing AVG1 Under BALANCE

LIST ' ' AVG1 AVG2 AVG3 AVG4

Figure 16-94 Literal of Spaces

CONTROL ACCOUNT
→ LIST SUPPRESS ACCOUNT BALANCE INSTLBAL INSTPAY BALPART

ON CHANGE IN ACCOUNT
AVG1=SUM BALANCE/TALLY
AVG2=SUM INSTLBAL/TALLY
AVG3=SUM INSTLBAL/TALLY
AVG4=SUM BALPART/TALLY

→ LIST ACCOUNT SUM (BALANCE INSTLBAL INSTPAY BALPART) TALLY
WITH 2 BEFORE AND 2 AFTER

→ LIST ' ' AVG1 AVG2 AVG3 AVG4 WITH 2 AFTER
→ LIST 'CORRECT ________' WITH 3 AFTER

ON FINAL
LIST SUM (BALANCE INSTLBAL INSTPAY BALPART)
WITH 2 BEFORE AND 2 AFTER

LIST TALLY 'ACCOUNTS'

Figure 16-95 Alignment Example 1

Figure 16-92 Summary of (Control Line 1) is Created (Page 2 of 2)
Using Report Statements 16–53

Fixed Print Position Reporting
The resulting report looks like this:

Fixed Print Position Reporting
The LIST statement can be used to indicate the contents of a report line and to
specify the print locations for the placement of each field. This form of LIST is used
when you want to format your own report. You cannot mix fixed print position
LIST statements with the automatic positioning LIST statement.

The format of this form of the LIST statement is:

The keyword LIST begins each statement. The remaining elements in the LIST
statement are positional. They must appear in the order shown. Fields appear on
the report in the location you specify. When using this form of LIST, column
headings are not printed or allowed.

dataname
Each data name in the LIST statement identifies a field to be printed. It also can
specify operations to be performed on the field. See LIST Statement on page 16-26.

Each data name is positional and is of the following form:

ACCOUNT BALANCE INSTALL INSTALL BALANCE TALLY
BALANCE PAYMENT PARTIAL

BO 119.22 28.00 101.02 98.10

BO 119.22 28.00 101.02 98.10 1

119.22 28.00 101.02 98.10

CORRECT _____ ← control line 3

EO 100.22 108.22 80.86 .00
101.00 90.22 22.00 7.44

EO 201.22 198.44 102.86 7.44 2

100.66 99.22 51.43 3.72

CORRECT _____ ← control line 3

.

.

.

6,892.92 5,311.00 1,581.92 322.13

ACCOUNTS 200

Figure 16-96 Alignment Results 1

LIST dataname1 ![datanamen]!..

[WITH {n } BEFORE AND {n } AFTER]
{EJECT} {EJECT}

Figure 16-97 Print Locations
16–54 VISION:Results Reference Guide

Fixed Print Position Reporting
Format 1:

Format 2:

Format 3:

Each element in this form of the LIST statement is identical to that in the previous
format except for print location (nnn). The AT data name alignment feature is not
supported under this format. For descriptions of qualifier, data name, literal,
WITH n BEFORE, and WITH n AFTER, see LIST Statement on page 16-26. Column
headings are not supported with this format and, if required, you must define the
column headings utilizing the FIXED format of the TITLE (T1-T9) statement. See
Title or Footing Modification Statement on page 16-21.

nnn (Print Location)
When using this form of the LIST statement, you must enter a number indicating
the beginning print location on the report for each field. Therefore, with this form
of LIST, the data name for the field and the print location must be specified in each
parameter. After the data name, the keyword AT must precede the print location
number.

For example:

In the above example of a fixed position LIST, the value of DEPARTMENT is
printed at print position 1, EMPNAME is printed at position 30, and NETPAY is
printed at position 60 of the report line.

The last position of any print line cannot be used.

See Report in Fixed Print Position on page 16-68 for a complete example of fixed
position printing.

[qualifier] dataname AT nnn

Figure 16-98 Data Name Position Format 1

literal AT nnn

Figure 16-99 Data Name Position Format 2

TALLY AT nnn

Figure 16-100 Data Name Position Format 3

LIST DEPARTMENT AT 1 EMPNAME AT 30 NETPAY AT 60

Figure 16-101 nnn Print Location
Using Report Statements 16–55

CONTROL or SUBTOTAL Statement
CONTROL or SUBTOTAL Statement
The CONTROL or SUBTOTAL statement defines the control breaks wanted
(SUBTOTAL is a synonym for CONTROL). This is done by specifying the data
name or data names of the field definitions involved. From one to six control break
levels can be specified in the CONTROL or SUBTOTAL statement. You must
define all of the data names before specifying them in the CONTROL or
SUBTOTAL statement.

The format of the CONTROL statement is:

The format of the SUBTOTAL statement is:

The CONTROL or SUBTOTAL statement can be placed anywhere in the
procedure logic of your program, but it must always precede the first ON
CHANGE IN statement.

A control break is said to occur when VISION:Results recognizes a change in the
value of any of the specified fields. For example:

Whenever a change in the value of the field called ACCOUNT occurs (a control
break occurs), the ON CHANGE IN ACCOUNT logic is executed. However, it
works in unison with the CONTROL or SUBTOTAL statement and describes what
is to be done when a specific control break occurs. The ON CHANGE IN statement
is described in ON CHANGE IN on page 16-57.

For example:

CONTROL control break 1 ...control break 6

Figure 16-102 CONTROL Statement Format

SUBTOTAL [BY] control break1 ...control break 6

Figure 16-103 SUBTOTAL Statement Format

CONTROL ACCOUNT

 or

SUBTOTAL ACCOUNT

Figure 16-104 CONTROL or SUBTOTAL Statement Format

CONTROL DEPT DIV
.
.
ON CHANGE IN DEPT
LIST SUM NETPAY WITH 2 BEFORE AND 2 AFTER

ON CHANGE IN DIV
LIST SUM OVERTIME SUM NETPAY WITH 2 BEFORE

Figure 16-105 CONTROL Statement Example
16–56 VISION:Results Reference Guide

ON CHANGE IN
Whenever a change in the value of DIV occurs, the lower-level control break logic
for DEPT (ON CHANGE IN) is executed first before the higher-level DIV (ON
CHANGE IN) is executed.

Therefore, the first data name in the CONTROL or SUBTOTAL statement signals
the first control break (lowest or most minor), the second signals the second, and
so on. A higher-level control break always causes all lower breaks to occur.

SUBTOTAL and SUBTOTAL BY are synonyms for CONTROL.

In all VISION:Results programs, there is a final, grand total level that occurs as part
of the normal VISION:Results cycle. You do not need to specify the field on which
the final level is to occur. See ON FINAL on page 16-59.

ON CHANGE IN
The ON CHANGE IN tells VISION:Results the logic to be executed or lines to be
printed when a change in value is detected. The format is:

dataname
The data name specified must have been defined in a CONTROL or SUBTOTAL
statement and the CONTROL or SUBTOTAL statement must precede the first ON
CHANGE IN statement. For example:

The ACCOUNT field is checked for a change in value before listing the detail line.
If there is a change in the value of ACCOUNT, the logic coded after the ON
CHANGE IN ACCOUNT is executed. The detail line is then printed.

The keyword IN is a noise word and is not required in the ON CHANGE
statement. The following statements have the same meaning:

ON CHANGE IN dataname

Figure 16-106 ON CHANGE IN

CONTROL ACCOUNT
.
.
LIST SUPPRESS ACCOUNT TRANS NAME BALANCE

ON CHANGE IN ACCOUNT
LIST SUM BALANCE WITH 2 BEFORE AND 2 AFTER

Figure 16-107 ON CHANGE IN Dataname

ON CHANGE IN ACCOUNT
ON CHANGE ACCOUNT

Figure 16-108 ON CHANGE IN without Keyword IN
Using Report Statements 16–57

ON CHANGE IN
If a LIST statement is specified as part of the logic following the ON CHANGE, it
must be the last statement specified, with the following exceptions:

� Another LIST

� Tn or Tn+n

� ACCEPT

� Comments (* or ;)

Additionally, you can execute many other commands to build and write summary
records, compute formulas, or test the total of fields (SUM).

The ON CHANGE IN need not be supplied in the order of the control break levels
as specified in the CONTROL statement. However, the CONTROL statement must
always precede the first ON CHANGE IN.

If you want a control break but do not want anything to be printed, use the
following statements to create a blank line between control breaks.

To eject the page between control breaks:

ON CHANGE IN ACCOUNT
MOVE ACCOUNT TO WACCT
LIST SUM BALANCE WITH 2 BEFORE

Figure 16-109 Comments

ON CHANGE IN ACCOUNT
MOVE SUM BALANCE TO WBALANCE

IF SUM BALANCE GE 300
MOVE '***' TO REMARKS ENDIF

AVG=SUM BALANCE/TALLY
LIST SUM BALANCE

Figure 16-110 Other Commands

CONTROL ACCOUNT
ON CHANGE IN ACCOUNT
LIST SUM BALANCE

CONTROL TRANS ACCOUNT
ON CHANGE IN ACCOUNT
LIST SUM BALANCE

ON CHANGE IN TRANS
LIST SUM BALANCE

Figure 16-111 ON CHANGE IN Not Supplied in Order

ON CHANGE IN ACCOUNT
LIST ' ' WITH 1 AFTER

Figure 16-112 Control Break

ON CHANGE IN ACCOUNT
LIST ' ' WITH EJECT AFTER

Figure 16-113 Eject the Page
16–58 VISION:Results Reference Guide

ON FINAL
ON FINAL
The ON FINAL statement defines the final, grand total logic, specified by you, that
is automatically executed by the system when end-of-processing occurs. When all
records have been reported on, you might want to print overall totals or
summarize information on your report.

The format is:

This statement precedes the logic you want performed before the report is
finished.

Nothing needs to be coded in the CONTROL statement to indicate the final, grand
total level. This event is not considered a control break level.

The ON FINAL statement is required only if you want additional wrap-up logic to
be executed before the report and job come to a close.

The rules governing the ON CHANGE IN also pertain to ON FINAL.

For example:

The grand total of NET is to be printed, preceded by the literal GRAND TOTAL
printed underneath the NAME field on the report.

In a VISION:Results program, you cannot fall into ON CHANGE IN or ON FINAL
logic. VISION:Results assumes that an ACCEPT occurs prior to any ON CHANGE
IN or ON FINAL statement.

ON FINAL

Figure 16-114 ON FINAL Statement

ON FINAL
LIST 'GRAND TOTAL' AT NAME SUM NET

Figure 16-115 ON FINAL Statement Example
Using Report Statements 16–59

Report Examples
Report Examples
Example 1 Detail Report, One Line

Produce a detail report of all vendors (number, name, address, city, state, zip code)
on an Accounts Payable file. Generate the report with no titles, no date, and no
page numbering, but include column headings.

Example 2 Summary Report, One Final Line

Produce a summary report on depreciated fixed assets. Print a summary line with
titles and column headings, selecting only those items belonging to category 260.

FILE VENDORFL FB 100 1000
RECTYPE 2 VENDORNO 5 VENDNAME 20 TITLE 20
ADDRESS 20 CITY 20 STATE 2 ZIP 5

LIST VENDORNO (VENDOR NUMBER) VENDNAME (VENDOR NAME)
TITLE (ATTN OF TITLE) ADDRESS CITY STATE ZIP

VENDOR NUMBER VENDOR NAME ATTN OF TITLE ADDRESS CITY STATE ZIP

00012 COUNTY ASSESSOR CITY CLERK 120 W. FIRST ST LOS ANGELES CA 90014
00014 COMPUTER ASSOCIATES 16255 VENTURA BLVD ENCINO CA 91346
00020 FREE PRESS 512 W. 6TH STREET LOS ANGELES CA 90016
00032 ITTE BITTE MONOPOLY 3455 WILSHIRE BLVD LOS ANGELES CA 90018
00161 DEMINGTON OFC MACH 6873 LAKE VIEW DRIVE THOUSAND ISLANDS CA 91560
00263 DURROUGHS CORP 10331 ZELZAH AVE EASTPOND CA 91306
00268 FLUE MROSS INSURANCE 440 N JIMINEZ BLVD LOS ANGELES CA 90036
00271 COMMON ELECTRIC CORP 731 LA CIENEGA LOS ANGELES CA 90020
00275 SPECIFIC TELE CO 8118 SAN VINCENT AVE LOS ANGELES CA 90015
00305 DARWIN REALTY 12016 NEWCASTLE AVE ENCINO CA 91436
00323 APPO OFFICE CLEAN 457 HASKELL AVE SEPULVEDA CA 91324
00340 KAPERMATE CO 1000 LEXINGTON LN NEW YORK NY 10017
00358 ITS TOO TOO CORP ACCTS RCV 24 HATTERAS RD LITTLE ROCK PA 82306
00390 UP-AND-AWAY TRAVEL PHYLLIS 7260 DESOTO HOLLYWOOD CA 91604
00415 RONS ROBBERY RUIN CO 601 ETIWANDA CHATSWORTH CA 91311
00418 GOLD STAR OFC EQUIP 153 HESBY AVE AGOURA CA 91301
00429 SCROLL PAPER SPLY 53401 CHANDLER SYLMAR CA 91405
00436 WOMANSTRONG AGENCY GLORIA 3255 MIDVALE WESTWOOD CA 90024
00500 QUILL PRINTERS 6447 SATSUMA RD TUJUNGA CA 91042

Figure 16-116 Example 1 Detail Report, One Line

FILE FIXASSET FB 100 1000
COST 6 40 PD 2 E 7.2 (COST BASIS) CATEGORY 4 17
DEPRIOR 6 46 PD 2 E 7.2 (DEPRECIATION'PRIOR)
DEPAFTER 6 52 PD 2 E 7.2 (DEPRECIATION'AFTER)
GAINLOSS 6 70 PD 2 E 7.2 (TOTAL'GAIN/LOSS)
RECOGLOSS 6 76 PD 2 E 7.2 (TOTAL'RECOG.LOSS)
ORDGAIN 6 82 PD 2 E 7.2 (TOTAL'ORD.GAIN)
OTHER 6 88 PD 2 E 7.2 (TOTAL'OTHER GAIN)

WORKAREA
CTR 4 PD Z (ITEMS) VALUE 1

IF CATEGORY EQ '260 ' NEXT ELSE REJECT ENDIF

ON FINAL
LIST SUM CTR SUM COST SUM DEPRIOR SUM DEPAFTER
SUM GAINLOSS
SUM RECOGLOSS SUM ORDGAIN SUM OTHER

T1 'DEPRECIATION RECAPTURE' T2 'FIXED ASSETS'
T3 'BY CATEGORY 260' WITH 2 AFTER

DEPRECIATION RECAPTURE
FIXED ASSETS

BY CATEGORY 260

ITEMS COST BASIS DEPRECIATION DEPRECIATION TOTAL TOTAL TOTAL TOTAL
PRIOR AFTER GAIN/LOSS RECOG.LOSS ORD.GAIN OTHER GAIN

14 56,034.97 60,201.80 68,718.44 61,666.81 68,712.78 78,511.66 50,187.12

Figure 16-117 Example 2 Summary Report, One Final Line
16–60 VISION:Results Reference Guide

Report Examples
Example 3 Detail Report, One Detail Line and One Final Line

Generate a personnel detail report with a total count of all employees. Include their
department number, employee number, name (first second last), and name again
(last first second). Also, include their extension and home telephone number.
Number all pages and include today's date with the appropriate titles and column
headings.

FILE EMPYFILE FB 80 800
DEPT 3 1 NUMBER 5 4 (EMPLOYEE'NUMBER)
NAME 32 9 (EMPLOYEE NAME) ALSTNM 15 26
AFIRST 17 9 EXT 4 41 (WORK EXT) LOCATION 10 45
HOMEPH 12 55 (HOME NUMBER)

WORKAREA
FULLNAME 32 1 (EMPLOYEE NAME) LASTNAME 15 1
FIRSTMID 17 16 TALLY Z 4

MOVE ALSTNM TO LASTNAME
MOVE AFIRST TO FIRSTMID
LIST DEPT NUMBER NAME EXT LOCATION FULLNAME HOMEPH
ON FINAL
LIST TALLY (COUNT) WITH 1 BEFORE

T1
T1+50 'COMPUTER ASSOCIATES' T1+116 'DATE' T1+125 DYLDATE
T2 WITH 2 AFTER
T2+56 'PHONE LIST' T2+116 'PAGE' T2+128 DYLPAGE4

COMPUTER ASSOCIATES DATE 01/15/01
PHONE LIST PAGE 1

DEPT EMPLOYEE EMPLOYEE NAME WORK EXT LOCATION EMPLOYEE NAME HOME NUMBER COUNT
NUMBER

011 48205 LORAC B.CARROLL 3110 CLERKTYP CARROLL LORAC B. 213 877-1235
010 46044 DUDLEY G.DORIGHT 8271 AUDIT SEC DORIGHT DUDLEY G. 213 241-8582
011 46050 FANNIE FAIRWEATHER 2481 CLERKTYP FAIRWEATHER FANNIE 213 762-7360
014 48920 GINGER A.FIZZ 1593 SECRTY DP FIZZ GINGER A. 213 763-3240
014 48844 GUSSIE GASPARD 4180 KEYPUNCH GASPARD GUSSIE 213 479-8190
011 47020 SPEEDBALL GONAZALES 2482 MAIL ROOM GONAZALES SPEEDBALL 213 685-3481
050 49230 SEEMORE HORIZONS 8641 MAINT HORIZONS SEEMORE 714 347-6629
030 47030 BERNIE MILKTOAST 3012 COMPUTR RM MILKTOAST BERNIE 213 782-3555
001 49021 MYRTLE MUMFORD 2222 SR VP MUMFORD MYRTLE 805 564-3111
030 48009 SEL NOSLIW 6281 COMPUTR RM NOSLIW SEL 213 987-3222
001 48325 ODDFORD OOGLEHOFF 4444 VICE PRES OOGLEHOFF ODDFORD 213 341-6791
011 48605 PETER POOPERDINK 2482 MAIL ROOM POOPERDINK PETER 213 444-0484
030 46055 ROBERT T.RABBIT 3012 COMPUTR RM RABBIT ROBERT T. 213 832-3211
025 49015 OSCAR RAIDER 3531 TECH WRTR RAIDER OSCAR 805 884-0982
001 47012 WOLFHOUND ROADRUNNER 3499 EXEC JR ROADRUNNER WOLFHOUND 805 242-0390
010 49105 TOTO R.ROTO 5415 AUDITOR ROTO TOTO R. 213 342-8741
001 47930 TREBOR S.ROBERT 3422 EXEC SR ROBERT TREBOR S. 714 382-7211
050 49244 SUDSY B.SUGGINS 7498 MAINT SUGGINS SUDSY B. 805 777-0150
014 49125 THOR VIKING 3675 KEYPUNCH VIKING THOR 213 845-4886
014 47525 STANLEY YELNATS 6211 DP MGR YELNATS STANLEY 213 655-3297
030 47115 GODFREY Q.ZANE 7821 OPER MGR ZANE GODFREY Q. 213 793-8763
011 49500 ZAC Z.ZOOK 5862 CLERKTYP ZOOK ZAC Z. 213 360-6258

22

Figure 16-118 Example 3 Detail Report, One Detail Line and One Final Line
Using Report Statements 16–61

Report Examples
Example 4 Report with One Detail Line, Two Control Lines, and One Final Line

Create a job accounting report to cover all types of abnormal job terminations
encountered. The report should contain the programmer's name, job name,
program name, abend codes, and so on. Control breaks should occur on a change
in programmer's name and a change in system abend code.

FILE JOBACCT FB 54 5400
SYSCODE 1 ABENDCODE 3 (ABEND'CODE)
JOBNAME 8 (JOB'NAME)
PGMNAME 8 (PROGRAM'NAME) STEPNAME 8 (STEP'NAME)
STEPDATE 6 NU D (STEP'DATE)
TIME 4 NU 2 (STEP'TIME'[HH.HH])
ACCINFO 6 (ACCTG.'INFO.) PGMRNAME 8 (PROGRAMMER)

CONTROL PGMRNAME SYSCODE
LIST SUPPRESS PGMRNAME JOBNAME PGMNAME SUPPRESS

ABENDCODE STEPNAME
SUPPRESS STEPDATE TIME SUPPRESS ACCINFO

ON CHANGE IN PGMRNAME
LIST TALLY (ABEND'COUNT) WITH 1 BEFORE AND 2 AFTER

ON CHANGE IN SYSCODE
LIST TALLY (ABEND'COUNT) 'TOTAL ABENDS' AT JOBNAME+5
WITH 1 BEFORE AND 2 AFTER

ON FINAL
LIST TALLY (ABEND'COUNT) 'TOTAL ABENDS' AT JOBNAME+5
WITH 1 BEFORE AND 2 AFTER

T1 'JOB ACCOUNTING REPORT'
T1+1 'COMPUTER ASSOCIATES'
T1+108 'PAGE'
T1+114 DYLPAGE4
T2 'ABNORMAL TERMINATIONS' WITH 2 AFTER
T2+1 'RPT.DATE'
T2+12 DYLDATE

Figure 16-119 Example 4 Report with One Detail Line, Two Control Lines, and One
Final Line

COMPUTER ASSOCIATES JOB ACCOUNTING REPORT PAGE 1
RPT.DATE 01/15/01 ABNORMAL TERMINATIONS

PROGRAMMER JOB PROGRAM ABEND STEP STEP STEP ACCTG. ABEND
NAME NAME CODE NAME DATE TIME INFO. COUNT

[HH.HH]

CORRIGAN CRASH AP200 D23 AGAIN1 01/15/01 00.30 201800
WRONGWAY AP300 E0 AGAIN2 01/16/01 00.08 201801
TIMEOUT AP300 B37 NOTAGAIN 01/15/01 01.31 201802

3

DUOTANG NOSEDIVE AR570 222 S001 01/15/01 00.42 300201
WHODUNIT AR590 322 S003 00.15 300202

2

SMITTEN OHBOY DYL250 E37 STEP5 01/15/01 00.13 301800

1

SUNK BLOWNIT MC310 062 STEPOUT1 01/15/01 00.07 301800
AIEEEEE MC330 0A1 STEPOUT3 01.13
THEBOMB MC300OP 102 STEPOUT4 01/28/01 00.22 302300
BLEWIT MC110 122 TOOMANY 00.35
GOODNESS MF201 13F ONCEMORE 00.25 301800

5

Figure 16-120 Example 4 Report with One Detail Line, Two Control Lines, and One
Final Line Results (Page 1 of 2)
16–62 VISION:Results Reference Guide

Report Examples
Example 5 Report with Five Detail Lines

Generate an itemized list of all products purchased and in inventory for vendor
0021.

TOTAL ABENDS 11

SEAVER SLADE AP200 499 STONE1 01/15/01 00.30 201800
SLADE AP302 500 STONE4 01/16/01 00.08
TIMER DYL280 476 SOFEW 01/15/01 01.31 201802

3

HUNTER DOWNONE AR570 222 5001 01/15/01 00.42 300201
DOWNTWO AR590 322 S003 00.15 300202

2

DOOM BLOWNIT MC310 562 STEPOUT1 01/15/01 00.07 301800
AIEEEEE MC330 495 STEPOUT3 01.13
THEBOM8 MC300OPT 502 STEPOUT4 01/16/01 00.22 302300
BLEWIT MC110 522 TOOMANY 00.35

4

TOTAL ABENDS 9

TOTAL ABENDS 20

Figure 16-120 Example 4 Report with One Detail Line, Two Control Lines, and One
Final Line Results (Page 2 of 2)

FILE JOBACCT VB 200 LENGTH RECLENGTH
NUMBER 4 (VEN'NO.) ITEMNO 5 (ITEM) COMCODE 2 (COMM'CODE)
NOLOCTN 2 NU (NO.OF'LOC.) DESCPN 35 ('DESCRIPTION)
UNITMEAS 2 ('U/M) WEIGHT 3 ('WGT)
COST 4 PD E 3.2 ('COST)
UNITHAND 4 PD E 5 (TOTAL'ON HAND)
ONORDER 4 PD E 5 (ON'ORDER)
AVGUSE 3 PD E 5 (AVG'USAGE) AVGMIN 3 PD E 5 (AVG'MIN)
AVGMAX 3 PD E 5 (AVG'MAX)

LOCTN1 10 77 ('LOCATION) UNHAND1 4 87 NU Z (ON'HAND)
AVUNT1 4 91 NU Z (AVAIL.'UNITS)
LOCTN2 10 97 UNHAND2 4 107 NU Z AVUNT2 4 111 NU Z
LOCTN3 10 117 UNHAND3 4 127 NU Z AVUNT3 4 131 NU Z
LOCTN4 10 137 UNHAND4 4 147 NU Z AVUNT4 4 151 NU Z

IF NUMBER NE '0021' REJECT ENDIF

LIST NUMBER ITEMNO COMCODE DESCPN NOLOCTN UNITMEAS WEIGHT COST
UNITHAND ONORDER AVGUSE AVGMIN AVGMAX WITH 2 AFTER

LIST ' ' AT AVGMAX+6 LOCTN1 UNHAND1 AVUNT1

IF NOLOCTN GE '02'
LIST LOCTN2 AT LOCTN1 UNHAND2 AT UNHAND1 AVUNT2 AT AVUNT1+1
ELSE REJECT ENDIF

IF NOLOCTN GE '03'
LIST LOCTN3 AT LOCTN1 UNHAND3 AT UNHAND1 AVUNT3 AT AVUNT1+1
ELSE REJECT ENDIF

IF NOLOCTN GE '04'
LIST LOCTN4 AT LOCTN1 UNHAND4 AT UNHAND1 AVUNT4 AT AVUNT1+1
ELSE REJECT ENDIF

T1 'COMPUTER ASSOCIATES' T1+102 DYLDATEPAG
T2 'INVENTORY BALANCE REPORT BY VENDOR' WITH 2 AFTER

Figure 16-121 Example 5 Report with Five Detail Lines
Using Report Statements 16–63

Report Examples
Example 6 Report with One Detail Line, Two Control Lines, and One Final Line

Produce an employee-by-cost center report. Detail print each employee, with a
final total and control totals by office number and cost center. Use TALLY at all
levels.

COMPUTER ASSOCIATES DATE 01/15/01 PAGE 1
INVENTORY BALANCE REPORT BY VENDOR

VEN ITEM COMM NO OF TOTAL ON AVG AVG AVG ON AVAIL.
NO. CODE DESCRIPTION LOC. U/M WGT COST ON HAND ORDER USAGE MIN MAX LOCATION HAND UNITS

0021 09095 23 FEATHER TICKLERS - QUAIL VARIETY 02 EA 001 599.00 30 5 20 5 10

TALLALAN 20 2
WEEHAWKEN 10

0021 08001 50 BEES KNEES - BUMBLE 01 PR 002 675.00 15 1 1 6 4

MOONACHIE 15 1
0021 09000 10 CRICKET SWITCHES 04 EA 010 995.00 100 1 1 5 20

TALLALAH 30 10
WEEHAWKEN 50 1
MOONACHIE 15 10
OOLAGAH 5 5

0021 09100 89 CATS MEOWS - SIAMESE 01 EA 001 999.00 1 20 10 5 100

WEEHAWKEN 1
0021 09015 45 KEYHOLE PEEPERS 02 EA 005 95.00 50 1 5 10 10

MOONACHIE 15 10
OOLAGAH 35 2

0021 09900 15 SOUR GRAPES - BITTER VARIETY 03 BU 015 649.00 25 5 10 3 5

TALLALAH 10
WEEHAWKEN 6
OOLAGAH 9

0021 08150 08 FAN TANS - PEACOCK VARIETY 01 EA 010 99.00 115 100 20 15 60

OOLAGAH 115 100
0021 09120 36 SMOOTH PRUNES - YOUNG RAISINS 03 EA 020 495.00 20 6 25 6 20

WEEHAWKEN 10 8
MOONACHIE 7 5
OOLAGAH 3 3

0021 09450 30 POLLEN PUFFERS - SNEEZER VARIETY 02 EA 001 445.00 150 15 30 15 50

MOONACHIE 55 40
OOLAGAH 95 60

0021 09060 25 SNOW WHITENER 04 EA 006 590.00 10 6 15 5 8

TALLALAH 1 1
WEEHAWKEN 2 1
MOONACHIE 2
OOLAGAH 5 1

Figure 16-122 Example 5 Report with Five Detail Lines Results

FILE EMPCSTCT FB 80 800
COSTCTR 4 1 (COST'CENTER) OFFNO 4 5 (OFFICE'NUMBER)
EMPNO 6 9 (EMPLOYEE'NUMBER) EMPNAME 19 15 (EMPLOYEE'NAME)
HIREDATE 6 34 NU D (HIRE'DATE) SALCLASS 1 40 (SALARY'CLASS)
JOBCLASS 4 41 (JOB'CLASS) LABORGR 1 46 (LABOR'GRADE)
SEX 1 46 MARSTA 2 47 (MRT'ST)
CURRATE 5 49 NU 2 E 4.2 (CURRENT'RATE)
INCDATE 6 54 NU D (INCREASE'DATE) TYPINC 1 60 (TYPE'INC)
INCRATE 5 61 NU 2 E 3.2 (INCREASE'RATE)

WORKAREA
AVG1 5 PD 2 E 3.2 AVG2 5 PD 2 E 3.2
AVG3 5 PD 2 E 3.2 TALLY Z 4

CONTROL OFFNO COSTCTR
LIST COSTCTR OFFNO EMPNO EMPNAME HIREDATE SALCLASS

JOBCLASS LABORGR SEX MARSTA CURRATE INCDATE TYPINC INCRATE

Figure 16-123 Example 6 Report with One Detail Line, Two Control Lines, and One
Final Line (Page 1 of 2)
16–64 VISION:Results Reference Guide

Report Examples
ON CHANGE IN OFFNO
AVG1= SUM CURRATE / TALLY
LIST SUM CURRATE SUM INCRATE TALLY (COUNT)
AVG1 (AVERAGE'RATE) '* OFFICE TOTAL' AT EMPNAME WITH 2 AFTER

ON CHANGE IN COSTCTR
AVG2= SUM CURRATE / TALLY
LIST SUM CURRATE SUM INCRATE TALLY (COUNT) AVG2 AT AVG1
'** COST CENTER TOTAL' AT EMPNAME WITH 2 AFTER

ON FINAL
AVG3= SUM CURRATE / TALLY
LIST SUM CURRATE SUM INCRATE TALLY (COUNT) AVG3 AT AVG1
'*** GRAND TOTAL' AT EMPNAME WITH EJECT AFTER

T1 'COMPUTER ASSOCIATES, INC.'
T1+1 'VISION:RESULTS'
T1+107 'REPORT NUMBER DYL511-14'
T2 T2+107 'PERIOD ENDING'
T2+125 DYLDATE
T3 'EMPLOYEE BY COST CENTER' WITH 2 AFTER
T3+107 'PAGE NUMBER'
T3+126 DYLPAGE7

VISION:RESULTS COMPUTER ASSOCIATES REPORT NUMBER DYL511-14
PERIOD ENDING 01/15/01

EMPLOYEE BY COST CENTER PAGE NUMBER 1

COST OFFICE EMPLOYEE EMPLOYEE HIRE SALARY JOB LABOR SEX MRT CURRENT INCREASE TYPE INCREASE COUNT AVERAGE
CENTER NUMBER NUMBER NAME DATE CLASS CLASS GRADE ST RATE DATE INC RATE RATE

0E16 0087 003471 WOLF ROADRUNNER 06/01/90 B 0036 M M 03 341.00
* OFFICE TOTAL 341.00 1 341.00

0E16 0090 003640 YOTO R ROTO 04/14/95 A 0041 M M 01 500.00
0E16 0090 004561 TREBOR S ROBERT 10/01/94 B 0041 M M 01 475.00
0E16 0090 004777 SUDSY B SUGGINS 02/22/90 C 0036 F F 05 210.00

* OFFICE TOTAL 1,185.00 3 395.00

0E16 0155 005601 THOR VIKING 12/01/93 S 0036 M M 05 310.00 06/01/95 1 100.00
0E16 0155 005678 STANLEY YELNATS 06/07/87 S 0036 M M 02 325.00

* OFFICE TOTAL 635.00 100.00 2 317.50

0E16 0170 005831 GODREY Q ZANE 07/07/92 D 0039 M M 02 600.00
0E16 0170 005889 ZAC Z ZOOK 11/25/90 U 0039 F F 03 340.00

* OFFICE TOTAL 940.00 2 470.00

0E16 0190 004361 LORAC B CARROLL 10/10/91 A 0041 F F 01 365.00 12/01/94 2 20.00
0E16 0190 006451 DUDLEY G DORIGHT 12/01/84 A 0041 M M 01 475.00
0E16 0190 004411 FAMMZE FAIRWEATHER 08/10/90 S 0041 F F 01 500.00
0E16 0190 005512 GINGER A FIZZ 05/17/91 S 0041 F F 05 295.00

* OFFICE TOTAL 1,635.00 20.00 4 408.75

** COST CENTER TOTAL 4,736.00 120.00 12 394.66

0E17 0155 006636 GUSSIE GASPARD 04/27/88 R 0036 F F 04 300.00
* OFFICE TOTAL 300.00 1 300.00

0E17 0087 005961 SPEEDBALL GONZALES 06/14/90 A 0039 M M 03 600.00 08/30/94 1 50.00
0E17 0087 005212 SEEMORE HORIZONS 09/01/87 D 0036 M M 03 265.00 10/25/94 1 75.00
0E17 0087 004180 BERNIE MILKTOAST 06/06/90 U 0036 M M 02 150.00

* OFFICE TOTAL 1,015.00 125.00 3 338.33

** COST CENTER TOTAL 1,315.00 125.00 4 328.75

*** GRAND TOTAL 6,051.00 245.00 16 378.18

Figure 16-124 Example 6 Report with One Detail Line, Two Control Lines, and One
Final Line Results

Figure 16-123 Example 6 Report with One Detail Line, Two Control Lines, and One
Final Line (Page 2 of 2)
Using Report Statements 16–65

Report Examples
Example 7 Report with Two Control Lines and One Final Line

Analyze and compute insurance sales commission by area for employees within
regional branches. Calculate commissions for areas 1 to 5 based on the following
percentages: Area 1=6%, Area 2=5%, Area 3=3%, Area 4=8%, Area 5=10% and
print this along with the employee's base salary, regional branch, and employee
number.

FILE SALESCOM FB 80 800
SALESMAN 5 1 (SALES'PERSON) SALA1 6 6
NU 2 E 4.2 (AREA'SALES)
SALA2 6 12 NU 2 E 4.2 (AREA'SALES)
SALA3 6 18 NU 2 E 4.2 (AREA'SALES)
SALA4 6 24 NU 2 E 4.2 (AREA'SALES)
SALA5 6 30 NU 2 E 4.2 (AREA'SALES)
BASESAL 6 36 NU 2 E 4.2 (BASE'SALARY) REGBRCH 2 79 (REG'BR)

WORKAREA
AR1 3 PD 2 E 3.2 (1'COMM) AR2 3 PD 2 E 3.2 (2'COMM)
AR3 3 PD 2 E 3.2 (3'COMM) AR4 3 PD 2 E 3.2 (4'COMM)
AR5 3 PD 2 E 3.2 (5'COMM) TCM 4 PD 2 E 4.2 (TOTAL'COMM)
TSL 4 PD 2 E 4.2 (TOTAL'SALES) TOT 4 PD 2 E 4.2 ('TOTAL)

CONTROL SALESMAN REGBRCH
AR1 = SALA1 * 0.06 AR2 = SALA2 * 0.05 AR3 = SALA3 * 0.03
AR4 = SALA4 * 0.08 AR5 = SALA5 * 0.1
TCM = AR1 + AR2 + AR3 + AR4 + AR5
TSL = SALA1 + SALA2 + SALA3 + SALA4 + SALA5
TOT = TCM + BASESAL

ON CHANGE IN SALESMAN
LIST SUPPRESS REGBRCH SUPPRESS SALESMAN SUM SALA1 SUM AR1
SUM SALA2 SUM AR2 SUM SALA3 SUM AR3 SUM SALA4 SUM AR4
SUM SALA5 SUM AR5 SUM TSL SUM TCM SUM BASESAL SUM TOT
WITH 2 AFTER

ON CHANGE IN REGBRCH
LIST SUM SALA1 SUM AR1 SUM SALA2 SUM AR2 SUM SALA3 SUM AR3
SUM SALA4 SUM AR4 SUM SALA5 SUM AR5 SUM TSL SUM TCM
SUM BASESAL SUM TOT WITH 2 AFTER

ON FINAL
LIST SUM SALA1 SUM AR1 SUM SALA2 SUM AR2 SUM SALA3 SUM AR3
SUM SALA4 SUM AR4 SUM SALA5 SUM AR5 SUM TSL SUM TCM
SUM BASESAL SUM TOT WITH 3 AFTER

T1 "SALESPERSON'S COMMISSION JOURNAL" WITH 2 AFTER
T1+1 'DATE' T1+7 DYLDATE

Figure 16-125 Example 7 Report with Two Control Lines and One Final Line

DATE 01/15/01 SALESPERSON'S COMMISSION JOURNAL

REG SALES AREA 1 AREA 2 AREA 3 AREA 4 AREA 5 TOTAL TOTAL BASE
BR PERSON SALES COMM SALES COMM SALES COMM SALES COMM SALES COMM SALES COMM SALARY TOTAL

01 21683 4,622.46 462.24 4,622.46 462.24 462.24

01 32861 900.47 45.02 89.81 2.68 989.98 47.70 52.00 99.70

01 41897 761.89 60.95 761.89 60.95 60.95

01 42121 73.69 4.42 82.20 4.11 155.89 8.53 30.00 38.53

01 46044 100.00 5.00 300.00 9.00 537.68 43.01 200.00 20.00 1,137.68 77.01 240.00 317.01

01 58210 1,051.88 63.10 318.00 9.54 1,369.88 72.64 200.00 272.64

1,125.57 67.52 1,082.67 54.13 707.51 21.22 1,299.57 108.96 4,822.46 482.24 9,037.78 729.07 522.00 1,251.07

02 28132 210.12 6.30 210.12 6.30 111.50 117.80

Figure 16-126 Example 7 Report with Two Control Lines and One Final Line Results
(Page 1 of 2)
16–66 VISION:Results Reference Guide

Report Examples
Example 8 Report with One Detail Line, One Control Line, and One Final Line with Two Output
Files

Generate an open item accounts receivable report, along with two output files for
use in later generating confirmation letters and labels for a national sales company.

02 29516 2,897.15 289.71 2,897.15 289.71 70.00 359.71

02 30001 2.00 .12 418.21 20.91 598.32 17.94 1,018.53 38.97 20.00 58.97

02 38976 389.70 31.17 931.62 93.16 1,321.32 124.33 124.33

2.00 .12 418.21 20.91 808.44 24.24 389.70 31.17 3,828.77 382.87 5,447.12 459.31 201.50 660.81

1,127.57 67.64 1,500.88 75.04 1,515.95 45.46 1,689.27 138.13 8,651.23 865.11 4,484.90 1,188.38 723.50 1,911.88

Figure 16-126 Example 7 Report with Two Control Lines and One Final Line Results
(Page 2 of 2)

FILE OPITARCV FB 125 2500
IN97BYTE 97 1 CUSTNO 5 1 (CUST.'NUMBER)
CUSTNAME 24 6 (CUST.'NAME) TRANDATE 6 102 NU D (TR'DATE)
INVNO 5 108 (INVOICE'NUMBER) DESCODE 4 113 (DESC'CODE)
TOTAMT 6 117 PD 2 E 5.2 (TOTAL'AMOUNT)
CRDTLMT 4 98 NU (CREDIT'LIMIT)

FILE JFILE OUTPUT FROM KFILE FB 97 970
FILE KFILE OUTPUT FROM KFILE FB 105 1050
KFL97 97 1 OUTTOTAM 8 98 PD 5

WORKAREA
DY1T30 6 PD 2 E 5.2 (1-30'DAYS)
DY30T60 6 PD 2 E 5.2 (30-60'DAYS)
DY60T90 6 PD 2 E 5.2 (60-90'DAYS)
DY0V90 6 PD 2 E 5.2 (90-OVR'DAYS)
REPTDATE 8 VALUE '07/02/89' THIRTYDY 6 VALUE '890602'
SIXTYDAYS 6 VALUE '890502' NINETYDY 6 VALUE '890402'

CONTROL CUSTNO
ON ONE MOVE IN97BYTE TO KFL97 ENDONE

**** REINITIALIZE BUCKETS ********
DY1T30 = 0 DY30T60 = 0 DY60T90 = 0 DY0V90 = 0

IF TRANDATE GT THIRTYDY MOVE TOTAMT TO DY1T30 GOTO PR ENDIF
IF TRANDATE GT SIXTYDAYS MOVE TOTAMT TO DY30T60 GOTO PR ENDIF
IF TRANDATE GT NINETYDY MOVE TOTAMT TO DY60T90 GOTO PR ENDIF
MOVE TOTAMT TO DY0V90
PR: LIST SUPPRESS CUSTNO SUPPRESS CUSTNAME TRANDATE
INVNO DESCODE DY1T30 DY30T60 DY60T90 DY0V90 TOTAMT
SUPPRESS CRDTLMT

ON CHANGE IN CUSTNO
IF SUM TOTAMT GT 0
WRITE JFILE
MOVE SUM TOTAMT TO OUTTOTAM
WRITE KFILE ENDIF
MOVE IN97BYTE TO KFL97
LIST SUM DY1T30 SUM DY30T60 SUM DY60T90
SUM DY0V90 SUM TOTAMT
'*CUST.TOTAL' AT CUSTNAME+1 WITH 2 AFTER
ON FINAL
LIST SUM DY1T30 SUM DY30T60 SUM DY60T90

SUM DY0V90 SUM TOTAMT
'**GRAND TOTAL' AT CUSTNAME+1

T1 'NOTROM SALES COMPANY'
T2 'OPEN ITEM AGED RECEIVABLE REPORT'
T3 'WITH 2 AFTER T3+63 REPTDATE
T4 FOOTING T4+61 DYLPAGE

Figure 16-127 Example 8 Report with One Detail Line, One Control Line, and One
Final Line with Two Output Files
Using Report Statements 16–67

Report Examples
Example 9 Report in Fixed Print Position

Generate a confirmation letter of the amount due and receivable for each
California customer. There are two input files — one containing the entire letter
and the other containing the file produced from Example 8 that contains the
pertinent information.

NOTROM SALES COMPANY
OPEN ITEM AGED RECEIVABLE REPORT

01/15/01

CUST. CUST. TR INVOICE DESC 1-30 30-60 60-90 90-OVR TOTAL CREDIT
NUMBER NAME DATE NUMBER CODE DAYS DAYS DAYS DAYS AMOUNT LIMIT

00010 DAGWOOD STUMSTEAD 95/10/15 71380 ADJS 25.95- 25.95- 0500
95/10/15 71380 INV 25.95 25.95

*CUST. TOTAL

00020 ELMER BUDD ESQUIRE 95/11/12 71434 INV 23.66 23.66 0100
*CUST. TOTAL 23.66 23.66

00125 DR LUCY LOUDMOUTH 95/04/30 71400 PMT 1.05 1.05 0100
95/05/10 71428 ADJA 2.00 2.00
95/04/30 71405 ADJS 1.05- 1.05-

*CUST. TOTAL 2.00 2.00

00150 FRED BARON 95/04/20 71382 INV 64.94 64.94 0700
95/06/10 71382 PMT 64.95 64.95

*CUST. TOTAL 64.95 64.94 129.89

00175 SYLVESTER KAT 95/04/01 71340 INV 987.95 987.95 1000
*CUST. TOTAL 987.95 987.95

00190 GORDO LARD 95/11/30 71460 PMT 19.45 19.45 0200
*CUST. TOTAL 19.45 19.45

00205 GROOM HILDA 95/10/20 71387 PMT 109.60 109.60 0500
95/11/10 71425 ADJS 99.84- 99.84-
95/11/10 71475 INV 799.55 799.55

*CUST. TOTAL 699.71 109.60 809.31

00600 LUNIS BLANKET 95/10/29 71399 PMT 10.03 10.03 0100
95/11/01 71418 ADJA 10.03- 10.03-

*CUST. TOTAL

00820 RUGS RABBIT 95/11/01 71415 INV .50 .50 0050
RUGS RABBIT 95/11/10 71430 PMT 5.00 5.00
*CUST. TOTAL 5.00 .50 5.50

00922 FLUTO CANINE 95/10/20 71345 ADJS 50.95- 50.95- 0500
95/10/10 71345 PMT 50.95 50.95
95/10/30 71408 INV 5.00 5.00

*CUST. TOTAL 5.00 5.00

**GRAND TOTAL 64.95 749.82 180.04 987.95 1,982.76

PAGE 1

Figure 16-128 Example 8 Report with One Detail Line, One Control Line, and One
Final Line with Two Output Files Results

FILE SYSIN CARDS STATUS LTREOF
INLTR 70 1

FILE OPITARCV INPUT FB
CUSTNO 5 1 CUSTNAME 24 6 COMPANY 24 30 ADDRESS 24 54
CITY 13 78 STATE 2 91 ZIP 5 93 AMT 8 98 PD 5 E 4.2

WORKAREA
LTRAREA 840 LTRLINE1 70 1 LTRLINE2 70 LTRLINE3 70
LTRLINE4 70 LTRLINE5 70 LTRLINE6 70 LTRLINE7 70
LTRLINE8 70 LTRLINE9 70 LTRLINE10 70 LTRLINE11 70

REPORT 40 LONG

RDFL1: READ SYSIN
IF LTREOF EQ 'E' GOTO RDFL2 ENDIF

Figure 16-129 Example 9 Report in Fixed Print Position (Page 1 of 2)
16–68 VISION:Results Reference Guide

Report Examples
MOVE INLTR TO LTRLINE1 (INW)
INW = INW + 70
IF INW LT 840 GOTO RDFL1 ENDIF
MOVE 'TBL EXCEED' TO DYLPRTCOMM
PRINT SYSIN STOP

RDFL2: READ OPITARCV
IF STATE NE 'CA' REJECT ENDIF
LIST CUSTNO AT 15
LIST CUSTNAME AT 15
LIST COMPANY AT 15
LIST ADDRESS AT 15
LIST CITY AT 15 STATE AT 29 ZIP AT 32 WITH 03 AFTER
LIST LTRLINE1 AT 15 WITH 02 AFTER
LIST LTRLINE2 AT 15 WITH 02 AFTER
LIST LTRLINE3 AT 15
LIST LTRLINE4 AT 15
LIST LTRLINE5 AT 15 WITH 02 AFTER
LIST LTRLINE6 AT 15 AMT AT 67
LIST LTRLINE7 AT 15
LIST LTRLINE8 AT 15
LIST LTRLINE9 AT 15 WITH 02 AFTER
LIST LTRLINE10 AT 15 WITH 03 AFTER
LIST LTRLINE11 AT 15 WITH EJECT AFTER

T1
T1+55 'Notrom Sales Company'
T2
T2+55 'Liverpool Lane #3126'
T3 WITH 3 AFTER
T3+55 'Green Pastures, Conn'
T4 FOOTING T4+36 'Confirmation'
T5 FOOTING WITH 2 AFTER
T5+15 'The above information is corre' T5+45 'ct except as noted'
T6 FOOTING T6+15 'Signed' T6+42 'Date'
FIN
Dear Customer:
Auditors Confirmation

This form is being sent to you to enable our independent
auditors to confirm the correctness of our records. It is not
a request for payment. However if you wish to remit please do.

Our records on January 15, 1998 show an amount of $
receivable from you. Please confirm that this agrees with your
records on that date by signing it and returning it directly
to our auditors.

Thank you very much
NOTSVILLE NOTROM

Figure 16-129 Example 9 Report in Fixed Print Position (Page 2 of 2)
Using Report Statements 16–69

Report Examples
Example 10 Four-up Report in Fixed Print Position

Produce 4-up name and address labels for all California accounts due and
receivable. Use the output file created in Example 8 as the input.

Notrom Sales Company
Liverpool Lane #3126
Green Pastures, Conn

00125
DR LUCY LOUDMOUTH
HELPME INC.
5 CENTS AVE
HELPVILLE CA 94024

Dear Customer:

Auditors Confirmation

This form is being sent to you to enable our independent
auditors to confirm the correctness of our records. It is not
a request for payment. However if you wish to remit please do.

Our records on January 15, 1998 show an amount of $ 2.00
receivable from you. Please confirm that this agrees with your
records on that date by signing it and returning it directly
to our auditors.

Thank you very much,

NOTSVILLE NOTROM

Confirmation
The above information is correct except as noted

Signed Date

Figure 16-130 Example 9 Report in Fixed Print Position Results

FILE OPITARCV FB 97 9700
CUSTOMER 97 1 CITY 13 78 STATE 2 91 ZIP 5 93

WORKAREA
LTRAREA 400 LBLCTR 2 401 PD RCRD1 97 1 RCRD2 97 101
RCRD3 97 201 RCRD4 97 301 NMEA 24 6 CMPYA 24 30
ADDA1 24 54 ADDA2 15 78 ZIPA 5 93 NMEB 24 106
CMPYB 24 130 ADDB1 24 154 ADDB2 15 178 ZIPB 5 193
NMEC 24 206 CMPYC 24 230 ADDC1 24 254 ADDC2 15 278
ZIPC 5 293 NMED 24 306 CMPYD 24 330 ADDD1 24 354
ADDD2 15 378 ZIPD 5 393

IF STATE NE 'CA' REJECT ENDIF
IF LBLCTR EQ 0
MOVE CUSTOMER TO RCRD1 GOTO ADD ENDIF

IF LBLCTR EQ 1
MOVE CUSTOMER TO RCRD2 GOTO ADD ENDIF

IF LBLCTR EQ 2
MOVE CUSTOMER TO RCRD3 ELSE GOTO CK4 ENDIF

ADD: LBLCTR = LBLCTR + 1 REJECT

CK4: MOVE CUSTOMER TO RCRD4
LBLCTR = 0

LSTST:

Figure 16-131 Example 10 Four-up Report in Fixed Print Position (Page 1 of 2)
16–70 VISION:Results Reference Guide

Report Examples
Example 11 Report with One Detail Line and One Control Line with Fixed Print Positions

Produce a report using both a fixed print position for the data and a fixed print
position for the column headings.

The following text is only a partial illustration of the first and last sections of the
report.

LIST NMEA AT 1 NMEB AT 35 NMEC AT 69 NMED AT 103
LIST CMPYA AT 1 CMPYB AT 35 CMPYC AT 69 CMPYD AT 103
LIST ADDA1 AT 1 ADDB1 AT 35 ADDC1 AT 69 ADDD1 AT 103
LIST ADDA2 AT 1 ZIPA AT 18 ADDB2 AT 35 ZIPB AT 52

ADDC2 AT 69 ZIPC AT 86 ADDD2 AT 103 ZIPD AT 120
WITH 03 AFTER

MOVE SPACES TO LTRAREA
LSTEN:
ON END OF INPUT PERFORM LSTST TO LSTEN STOP

DR. LUCY LOUDMOUTH FRED BARON SYLVESTER KAT WALLY COYOTE
HELPME INC FLIGHT GEAR INC BIRDSEED CO BEEP BEEP INC
5 CENTS AVE 123 DOGHOUSE LANE 55 TWEETIE LANE 999 ROADRUNNER LN
HELPVILLE CA 94024 SNOOPVILLE CA 90100 CATSVILLE CA 96050 SAGEBRUSH CA 95120

BUGS RABBIT PLUTO CANINE
VEGAMATIC INC MICKEY RODENT INC
1642 CARROT LANE 177 FLOPPYEAR AVE
BUCKYSVILLE CA 95432 BOWWOW CA 90024

Figure 16-132 Example 10 Four-up Report in Fixed Print Position Results

Figure 16-131 Example 10 Four-up Report in Fixed Print Position (Page 2 of 2)

FILE ACCTG COUNT RECCTR
TRANS 7 4 NAME 25 85 ACCOUNT 2 182 BALANCE 5 170 PD 2 A

CONTROL ACCOUNT
LIST SUPPRESS ACCOUNT AT 3 TRANS AT 14

NAME AT 26 BALANCE AT 57
REPORT
ON CHANGE IN ACCOUNT
LIST ACCOUNT AT 3 SUM BALANCE AT 55 WITH 1 BEFORE AND 2 AFTER
T1 'REPORT' FIXED WITH 2 AFTER
T2
'ACCOUNT TRANS NAME BALANCE'

FIXED WITH 2 AFTER

Figure 16-133 Example 11 Report with One Detail Line and One Control Line with
Fixed Print Positions for Data

REPORT

ACCOUNT TRANS NAME BALANCE

BO 8006547 TORRES,ERNESTO 44.99

BO 44.99

EO 6208657 CHO PYUNG,SUH 32.00
7082509 S.F.MEM.HOSP. 5.00
6002587 SANTA FE HOSP ASSN 15.00

EO 52.00

FO 6107265 GENVARDI,G J 43.00

Figure 16-134 Example 11 Report with One Detail Line and One Control Line with
Fixed Print Positions Results (Page 1 of 2)
Using Report Statements 16–71

Report Examples
Example 12 Characters per Line Override on REPORT

Produce a report from instream data. The report should be only 58 characters wide.
A control break is specified for a change in department.

6095631 TODIPE,MICHAEL 45.24
6123228 SILVA,JULIAN .00
6059708 CHAVEZ,RAY 15.00
6044395 CANO,MICHAEL S 15.00
6024963 HILL,GARY E 3.80
8011508 HUGHES,RAY 178.70

FO 300.74

IO 2002299 PLACIDO,ORTEGA 413.58
6123317 VASGUEZ,IRENE .00
6112536 CHAVEZ,NORMA A 55.00
6009166 LOCKE,JEFFREY 15.00
8012644 MONTEZ,CARMEN 89.28
6218113 AGUIERA,EMILIO 108.44

IO 681.30

KO 3,765.92

LO 6114113 NERY,GENEROSO 45.24

LO 45.24

MA 7099657 MALTSBERGER, JOHN A 6.72
7102194 TURNER, HAROLD 5.12
7106246 SMITH, AUSTIN 5.12
9017828 HILL, MYRTLE G 11.20
9000534 HOPKINS, BARRY P 14.00
9002626 WORRELL, TED 13.00
6215785 RODEN,HAROLD 170.91
6208924 WHITE,ELMER 15.00
6211151 COX,WILLIAM 100.20

MA 341.27

Figure 16-134 Example 11 Report with One Detail Line and One Control Line with
Fixed Print Positions Results (Page 2 of 2)

FILE SYSIN INPUT CARDS
DEPARTMENT 3 NU SSN 9 NU S NET 7 NU 2 Z (NET'PAY) NAME 10

REPORT 58 WIDE 55 LONG
CONTROL DEPARTMENT
LIST NAME SSN NET
ON CHANGE IN DEPARTMENT
LIST 'DEPARTMENT TOTAL' AT NAME SUM NET
WITH 1 BEFORE AND 2 AFTER

T1 'EMPLOYEES BY DEPARTMENT' WITH 2 AFTER
FIN
(instream data)

Figure 16-135 Example 12 Characters per Line Override on REPORT
16–72 VISION:Results Reference Guide

Report Examples
Example 13 Report with One Detail Line with LIST Subordinate to IF

Generate a detail report for department 911. Use the LIST statement subordinate
to the IF. This is valid only at detail time.

EMPLOYEES BY DEPARTMENT

NAME SSN NET
PAY

GREGORY 879-45-6161 651.23
ROGERS 546-24-5161 856.94
HOLDEN 452-89-9818 245.62
PARTRIDGE 623-54-6121 1452.00
CARPENTER 989-55-2123 900.21
NORRIS 321-45-6213 524.56
CROSLAND 235-65-1552 1000.00
BOND 089-01-0070 654.21
SELLERS 546-25-6135 1520.00
DOUGLAS 632-15-1595 546.82

DEPARTMENT TOTAL 8351.59

REDLANDS 452-81-9821 499.65
MCDONALD 562-26-1515 610.15
FOSTER 632-12-1584 365.25

DEPARTMENT TOTAL 1475.05

RIGBY 589-93-6342 405.01
ACKERMAN 782-92-5660 365.25
GOMEZ 525-65-3245 800.41

DEPARTMENT TOTAL 1570.67

DESOTO 213-65-8888 502.52
LEE 222-45-6612 425.65

DEPARTMENT TOTAL 928.17

Figure 16-136 Example 12 Characters per Line Override on REPORT Results

FILE SYSIN INPUT CARDS
DEPARTMENT 3 NU SSN 9 NU S NET 7 NU 2 Z (NET'PAY) NAME 10
REPORT 58 WIDE 55 LONG
IF DEPARTMENT EQ 911
LIST NAME SSN NET ENDIF

T1 'EMPLOYEES IN DEPARTMENT 911' WITH 2 AFTER
FIN
(instream data)

Figure 16-137 Example 13 Report with One Detail Line with LIST Subordinate to IF

EMPLOYEES IN DEPARTMENT 911

NAME SSN NET
PAY

GREGORY 879-45-6161 651.23

Figure 16-138 Example 13 Report with One Detail Line with LIST Subordinate to IF
Results (Page 1 of 2)
Using Report Statements 16–73

Report Examples
Example 14 Report with Title and Footing Modification

Generate a report of all departments. Page eject whenever a department number
changes. Use title and footing modifications to identify the department on each
page.

ROGERS 546-24-5161 856.94
HOLDEN 452-89-9818 245.62
PARTRIDGE 623-54-6121 1452.00
CARPENTER 989-55-2123 900.21
NORRIS 321-45-6213 524.56
KINSLEY 235-65-1552 1000.00
BOND 089-01-0070 654.21
SELLERS 546-25-6135 1520.00
DOUGLAS 632-15-1595 546.82

Figure 16-138 Example 13 Report with One Detail Line with LIST Subordinate to IF
Results (Page 2 of 2)

FILE SYSIN INPUT CARDS
DEPARTMENT 3 NU SSN 9 NU S NET 7 NU 2 Z (NET'PAY) NAME 10
WORKAREA
DEPTFOOT 3 DEPTCHANGE 1 VALUE 'Y'

CONTROL DEPARTMENT
IF DEPTCHANGE EQ 'Y'
MOVE DEPARTMENT TO DEPTFOOT
MOVE 'N' TO DEPTCHANGE ENDIF

LIST NAME SSN NET
ON CHANGE IN DEPARTMENT
MOVE 'Y' TO DEPTCHANGE
LIST 'DEPARTMENT TOTAL' AT NAME SUM NET
WITH 1 BEFORE AND EJECT AFTER

T1 WITH 2 AFTER
T1+50 'EMPLOYEES BY DEPARTMENT'
T1+74 DEPARTMENT
T2 FOOTING T3 FOOTING
T3+50 'EMPLOYEES IN DEPARTMENT'
T3+74 DEPTFOOT
FIN
(instream data)

Figure 16-139 Example 14 Report with Title and Footing Modification

EMPLOYEES BY DEPARTMENT 911

NAME SSN NET
PAY

GREGORY 879-45-6161 651.23
ROGERS 546-24-5161 856.94
HOLDEN 452-89-9818 245.62
PARTRIDGE 623-54-6121 1452.00
CARPENTER 989-55-2123 900.21
NORRIS 321-45-6213 524.56
CROSLAND 235-65-1552 1000.00
BOND 089-01-0070 654.21
SELLERS 546-25-6135 1520.00
DOUGLAS 632-15-1595 546.82

DEPARTMENT TOTAL 8351.59

EMPLOYEES IN DEPARTMENT 911

Figure 16-140 Example 14 Report with Title and Footing Modification Results (Page 1
of 2)
16–74 VISION:Results Reference Guide

Report Print Line Exit — Your Exit Routines
Report Print Line Exit — Your Exit Routines
When using VISION:Results, you might want to examine a report line before it is
written and either eliminate it or write it to another device, in addition to or instead
of writing it to the report. VISION:Results provides an exit point, using the
REPORT statement, from the report writer to your specified external subroutine.
This exit occurs immediately before the print line is written. The report lines can
be detail lines, control break lines, titles, or blank lines.

Procedure
To start the exit, specify the external subroutine's module name in the REPORT
statement.

EMPLOYEES BY DEPARTMENT 925

NAME SSN NET
PAY

REDLANDS 452-81-9821 499.65
MCDONALD 562-26-1515 610.15
FOSTER 632-12-1584 365.25

DEPARTMENT TOTAL 1475.05

EMPLOYEES IN DEPARTMENT 925

EMPLOYEES BY DEPARTMENT 931

NAME SSN NET
PAY

RIGBY 589-93-6342 405.01
ACKERMAN 782-92-5660 365.25
GOMEZ 525-65-3245 800.41

DEPARTMENT TOTAL 1570.67

EMPLOYEES IN DEPARTMENT 931

EMPLOYEES BY DEPARTMENT 965

NAME SSN NET
PAY

DESOTO 213-65-8888 502.52
LEE 222-45-6612 425.65

DEPARTMENT TOTAL 928.17

EMPLOYEES IN DEPARTMENT 965

Figure 16-140 Example 14 Report with Title and Footing Modification Results (Page 2
of 2)

REPORT modulename

Figure 16-141 Exit Routine
Using Report Statements 16–75

Report Print Line Exit — Your Exit Routines
The module name is the phase name in VSE and member name in OS/390 of your
written subroutine that interrogates the print line. The subroutine must have been
previously link edited to a Load or Core Image Library. The subroutine module is
loaded into memory prior to execution and is entered before each print line is
written.

After examination of the print line, if you do not want to print the line, a value of
X’FF’ must be returned to VISION:Results in byte 1 of the print line. This value is
set by your program. A value of X’FE' is placed in byte 1 of the print line area after
all report lines have been passed to your routine. This provides you with the
opportunity to do final processing before returning to VISION:Results.

VISION Results allows report print line exit routine DYL280RF to be of any size,
which the system loads using CDLOAD instead of LOAD. Use GETVIS to acquire
storage instead of using the space after the end of your program, making sure the
program is link edited to run as AMODE(24).

OS/390: The member name must be DYLPRCx, where x is the
alphabetic character (B through Z).

REPORT DYLPRCB

VSE: The phase name must be DYL280Rx, where x is the alphabetic
character (B through F). The character indicates the external
subroutine's requirement.

 B = User-written, self-relocating, exit module has a
maximum size of 2K.

 C = User-written, self-relocating, exit module has a
maximum size of 4K.

 D = User-written, self-relocating, exit module has a
maximum size of 8K.

 E = User-written, self-relocating, exit module has a
maximum size of 63K.

 F = User-written, self-relocating, exit module of any size.
VISION:Results CDLOADs; use GETVIS to acquire
storage.

REPORT DYL280RB
REPORT 100 WIDE DYL280RC

Figure 16-142 Exit Routine Example
16–76 VISION:Results Reference Guide

Report Print Line Exit — Your Exit Routines
Considerations for Writing Your Report Line Exit
� A parameter list is passed to your program. Register 1 points to this list. The

parameter list contains (1) the address of the current print line and (2) the
address of a VISION:Results data area (PERMDATA) containing addresses of
record and work areas, DCB & DTF addresses, and so on. Most of your routines
probably do not require this data.

� Do not open/close SYS280R (OS/390 and VM) or SYSLST (VSE). This is done
by VISION:Results.

� If you write your own report file, you are responsible for opening and closing
that file.

� VISION:Results' registers must be saved and restored by your exit routine. An
18 fullword save area is provided by VISION:Results and its address is passed
in register 13.

� OS/390
The library in which the subroutine resides must be identified by a JOBLIB or
STEPLIB statement if not on an automatically searched library.

� OS/390 and VM
The default record length (LRECL) for the SYS280R report data set is normally
the length of the characters per line plus 1 (carriage control). You should be
aware of this when you are passed a report line. For example, if 85
characters-per-line is specified for a report, the record length is 86 bytes long.
When a report line is passed to your exit routine, there may be unrecognizable
data beyond byte 86. However, you can prevent shortened records by
specifying a record length (for example, 133) in the SYS280R DD (SYS280R
FILEDEF) statement that overrides the default length.

� VSE
The subroutine must be self-relocating, or the system must have a relocation
package or a relocating loader. The phase statement used to link edit normally
looks like this:

PHASE DYL280RB,+0

Figure 16-143 Exit Routine VSE
Using Report Statements 16–77

Report Print Line Exit — Your Exit Routines
16–78 VISION:Results Reference Guide

Chapter
17 M
R

ultiple Reports and Multiple
equests
VISION:Results can produce up to 999 reports and requests in a single execution,
with each report in any sequence you choose. Multiple-report programs can be
frozen and restored in the same manner as single-report VISION:Results
programs. You can also specify that processing is restarted at a particular report.

Each report request is coded in the same way that a single request is coded. You
have the same selection, manipulation, calculation, and reporting capability in
each request that is available in a single request. See Chapter 16, Using Report
Statements for information on single reports. VISION:Results provides some
additional commands to facilitate passing data from one report request to another.

The following statements deal specifically with producing multiple reports and
requests in VISION:Results.

REPORTnnn Statement
The REPORTnnn command indicates the start of a new report request. The nnn is
a 1- to 3-digit user identifier number. This number is checked to verify that it is
greater than the previous report identifier, and it is then ignored. VISION:Results
assigns its own report numbers, starting at 1.

The REPORT command for the first request is not required to have the identifier
number, but the second through nth requests must have the 1- to 3-digit number.
However, if you use an identifier number in the REPORT command for the first
VISION:Results request, it must be either 1 or 0. If you use 0, the identifier number
for subsequent reports must be 2 or greater.

Following the REPORT command, you can code any valid VISION:Results
statements, including FILE, WORKAREA, and SORT, as well as reporting
statements. You do not have to produce a report in all your VISION:Results
requests. You must, however, specify the REPORTnnn command in each request,
even if there is no report.

REPORTnnn Statement (required)

USE Statement (optional)

PICNSAVE Statement (optional)
Multiple Reports and Multiple Requests 17–1

USE Statement
The format of the REPORTnnn statement is:

SYS280Rx
Although the keyword SYS280Rx is only for OS/390 users, VSE users can
accomplish the same thing with the PLUnn keyword. If used, the x is any character
valid in a ddname, including a blank. SYS280Rx indicates to which DD the report
is to be written. Reports are usually written to SYS280R. If you are producing
multiple reports that are to be printed on different forms, you probably want some
reports written to a different DD. VISION:Results writes the report to the ddname
specified in your REPORT statement.

A ddname (or logical unit, for VSE users) can have only one width, even if multiple
reports with differing widths are to be printed. If the first report printed is not the
widest, any reports that are wider are truncated to the width of the first report.
With the SYS280Rx statement, you can use different ddnames for reports of
different widths, removing any possibility of conflict.

See Report Statement on page 16-2 for a description of all the remaining operands
of the REPORTnnn statement.

USE Statement
The USE command indicates that information from a previous VISION:Results
request is to be made available to this current request. In particular, file definitions
and their associated data definitions can be carried forward from one request to
another. Similarly, data that has been selected and saved using a PICNSAVE can
be referenced in subsequent requests using the USE command. If file and field
definitions are to be carried forward from one request to another, the original FILE
statement must have specified RETAIN.

The format of the USE statement is:

USE idname
USE idname STATUS dataname

where idname is a file name that was RETAINed in a previous request or is the ID
of a PICNSAVE statement from a previous request.

If idname is a file name from a previous request, all data names defined with the
original FILE statement are available. If you want to specify additional data names,
this can be done following the USE statement. If the FILE in the original request is
an output file, it is assumed to be input in the request where USE is specified. You
can allow VISION:Results to read this file or you can specify READ. The same
constraints and options apply as though the FILE were coded in this request.
Totals for this file are printed on the control totals page of the current request.

REPORTnnn [n WIDE][n LONG] [n BETWEEN]
[{modulename|ASA}] [PLUnnn] [SYS280Rx]

Figure 17-1 REPORTnnn Statement Format
17–2 VISION:Results Reference Guide

PICNSAVE Statement
If idname is the ID name from a PICNSAVE statement, the data as specified in the
PICNSAVE is available in this request. The same data names and formats apply.
Do not try to redefine this data following the USE statement. You can allow
VISION:Results to read this data, or you can control the reading by issuing your
own READ and specifying the ID name. The same constraints and options apply
as though this were a FILE coded in this request. This includes sorting the ID.
Totals are not printed for this ID on the control totals page. If there is not a SORT
in the current request, you must supply a STOP.

A file that is USEd in a secondary request cannot be specified as the operand of an
UNTIL FILE in a SORT statement. For example:

USE ARFILE
SORT ARFILE USING ACCOUNT UNTIL ARFILE

The SORT statement is invalid because of the UNTIL ARFILE statement.

STATUS dataname
The keyword STATUS allows you to supply a data name for a status indicator set
up by VISION:Results. The dataname supplied, following the keyword, refers to
the 1-byte indicator. When the file or saved data referred to by the USE is
exhausted, an E is placed in this byte.

In the case where the ID name specified in the USE statement refers to data that
was saved using PICNSAVE by a prior request, it is your responsibility to
terminate the request. If the request does not have a SORT, you must include a
STOP statement in the request.

The best way to do this is to supply a STATUS dataname on the USE statement,
then check this field for E and issue a STOP if the test is true. For example:

PICNSAVE Statement
The PICNSAVE command saves selected data to be passed to subsequent
VISION:Results requests. This data can be selected data from a record, from work
areas built by you, or from entire records. (The temporary output file created by
PICNSAVE is fixed format, with the logical record length equal to the length of all
the combined data names saved.) This saved data can then be referenced in a
subsequent request using a USE command.

REPORT2
USE REP2DATA STATUS REP2IND
.
.

IF REP2IND EQ 'E' STOP ENDIF
.
.

Figure 17-2 Request Does Not Have a SORT
Multiple Reports and Multiple Requests 17–3

PICNSAVE Statement
The format of the PICNSAVE statement is:

idname
This is a 1- to 8-character (1- to 7-character for VSE) identifier associated with this
saved data. When you want to reference this saved data in a subsequent
VISION:Results request, specify this name. You can specify a particular ID name
in a PICNSAVE statement only once per VISION:Results run, not per request. If
you are saving data from various places in your VISION:Results request, you must
perform a routine using a PERFORM statement that issues the PICNSAVE
statement.

OS/390 users must provide a DD statement, either in the JCL or using the
ALLOCATE facility, with a ddname that is the same as the ID name. This DD
statement specifies a data set (probably temporary) to hold the saved data.

For VSE users, this ID name is used in the DLBL or TLBL statement that describes
the file (probably temporary) to hold the saved data.

It is your responsibility to provide JCL for each PICNSAVE ID name used in the
VISION:Results program.

USING dataname
The keyword USING specifies the data to be saved. One or more data names are
coded following the keyword USING. The length of the data and its attributes are
determined by the individual data definitions. The format of the data is not
changed when it is saved. The combined length of all fields being saved cannot be
greater than 32767 bytes.

If you use a file name instead of a data name, a validation error occurs.

BY nnnnn
The keyword BY indicates a blocking factor to be used for the saved information.
BY is followed by a 1- to 5-digit number indicating how many sets of saved data
are to be grouped together. If BY is omitted, the saved data is written to a
temporary file in unblocked format. For OS/390 only, if the following apply, then
the operating system calculates the block size:

� BY is omitted.

� The file is a non-VSAM output file.

� SYSBLOK was selected in the DYLINSTL macro.

� No JCL block size was specified.

PICNSAVE idname USING dataname1 dataname2 ...
[BY nnnnn] [SYSnnn] [TAPE]
[DISK [{2311|2314|3330|3340|3350|3375|3380|FBA}]]

Figure 17-3 PICNSAVE Statement Format
17–4 VISION:Results Reference Guide

Multiple Requests
The combined length of all the fields being saved multiplied by the blocking factor
cannot exceed 32767.

If the sum of the lengths of all fields that are to be part of the PICNSAVE statement
is less than 20, then the total length is rounded up to 20 because VISION:Results
requires records to be at least 20 bytes in size. The new record length must be used
in the JCL when describing the DCB; the true sum of the lengths is not valid in this
case. This also means that the blocking factor can never be greater than 1638, even
for the smallest record length, because 20 x 1638 = 32760 and the block length
maximum is 32767. BY must not be specified in conjunction with DISK FBA.

SYSnnn
The keyword SYSnnn is used for VSE only. If coded, it indicates the SYS number
for the temporary save area for the PICNSAVE data. If the data is to be saved on
tape, SYSnnn is mandatory. The nnn must be three digits from 001 to 255.

DISK nnnn
The keyword DISK is used for VSE only. In VSE Release 2.1 and above, the nnnn
is optional and is ignored if specified. If coded, it indicates that the PICNSAVE
data is to be saved on disk.

TAPE
The keyword TAPE is used for VSE only. If coded, it indicates that the PICNSAVE
data is to be saved on tape. If tape is specified as a standard labeled tape, the
SYSnnn must also be specified. If neither TAPE nor DISK is specified, TAPE is
assumed.

Multiple Requests
When the letter writing, linear regression, random or interval selection, scatter
diagrams, and trend line functions are used in a secondary request of a
multiple-request program, the defining statements LTH, LINEAR, SAMPLE,
SCATTER, and TREND must follow immediately after the FILE and field
definition statements and must precede the program procedure logic.
Multiple Reports and Multiple Requests 17–5

Freezing and Restoring Multiple Reports
During execution, each function starts anew within each unique request; the status
of each function is not retained from request to request. For example, the selection
functions in the program below are completely independent of each other. Two
independent samples are chosen.

Freezing and Restoring Multiple Reports
A multiple-report run can be frozen and restored by using the OPTION FREEZE
and OPTION RESTORE commands. See the VISION:Results Toolkit Guide for
information on the FREEZE and RESTORE features.

Multiple-Report Examples
The following multiple-report examples are identical in the output that they
produce. The approach taken for each is quite different. Example 1 on page 17-7
uses the keyword RETAIN and the USE command to produce three reports.
Example 2 on page 17-12 uses two PICNSAVEs (one PICNSAVE for the second
report and a second PICNSAVE for the third report) and the USE command to
produce the reports. The advantage of Example 2 on page 17-12 over Example 1 on
page 17-7 is that only the selected data is saved and passed to the subsequent
reports, not the entire file (PAYLAB). Both OS/390 and VSE examples are
provided.

FILE ARFILE
ACCOUNT 6

SAMPLE 01 RANDOM 5000 100
IF SAMPLING 01
LIST ACCOUNT

ELSE REJECT ENDIF

REPORT2
USE ARFILE

SAMPLE 01 RANDOM 5000 100
IF SAMPLING 01
LIST ACCOUNT

ELSE REJECT ENDIF

Figure 17-4 Two Examples of Functions Not Retained From Request to Request
17–6 VISION:Results Reference Guide

Multiple-Report Examples
OS/390
Note: In this section, the text being referred to in the callouts is in boldface.

Example 1

COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1-------------VISION:RESULTS FREE FORM-----------------------------72
* MVS EXAMPLE...USING THE KEYWORD RETAIN AND THE COMMAND USE
OPTION DATA ' 750 800 850 900 925 950 97510251150'
REPORT 80 WIDE SYS280RS
FILE PAYLAB FB 80 1600 RETAIN ;< FILE STATEMENT

DIVNO 2 (DIVN)
DEPTNO 3 (DEPT)
EMPLNO 5 (EMPL#)
EMPLNAME 20 (NAME)
HOURS 4 35 NU 1 E
SHIFT 1 40 (SHF)
RATE 4 45 NU 2 E
RCODE 1 53
PROJECTNO 5 11 (PROJECT'NUMBER)
PHOURS 4 16 NU 1 E (HOURS'BILLED)
RATESCHED 1 25 NU

WORKAREA
PARMDATA 36

RT1 4 1 NU 2 E
RT2 4 NU 2 E
RT3 4 NU 2 E
RT4 4 NU 2 E
RT5 4 NU 2 E
RT6 4 NU 2 E
RT7 4 NU 2 E
RT8 4 NU 2 E
RT9 4 NU 2 E

AMOUNT 4 PD 2 E
COMMENT 20 ()

CONTROL DEPTNO DIVNO
IF RCODE EQ 'L' REJECT ENDIF
AMOUNT = HOURS*RATE ROUNDED
LIST SUPPRESS (DIVNO DEPTNO) EMPLNO EMPLNAME HOURS SHIFT

RATE AMOUNT
ON CHANGE IN DEPTNO

MOVE 'TOTAL DEPARTMENT' TO COMMENT
LISTBRK:

LIST COMMENT AT DEPTNO SUM (HOURS AMOUNT) WITH 1 BEFORE 3 AFTER
ON CHANGE IN DIVNO

MOVE '** DIVISION TOTAL **' TO COMMENT
GOTO LISTBRK

ON FINAL
MOVE '*** GRAND TOTAL ***' TO COMMENT
GOTO LISTBRK

T1 'PAYROLL DETAIL BY DIVISION / DEPARTMENT'
T2 'PERIOD ENDING -'
T2+57 DYLDATE
REPORT2 80 WIDE
USE PAYLAB
WORKAREA

Figure 17-5 OS/390 Example 1 Using FILE RETAIN (Page 1 of 2)

The REPORT statement indicates
that the report is spooled to
SYS280RS rather than SYS280R.

The keyword RETAIN passes the
file attributes and field definitions
to subsequent requests.

The USE statement indicates which file is
processed in the request. The input field
definitions are assumed.

The REPORT2
statement is the
beginning of the
second request.
Multiple Reports and Multiple Requests 17–7

Multiple-Report Examples
COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1-------------VISION:RESULTS FREE FORM-----------------------------72

PARMDATA 36
RT1 4 1 NU 2 E
RT2 4 NU 2 E
RT3 4 NU 2 E
RT4 4 NU 2 E
RT5 4 NU 2 E
RT6 4 NU 2 E
RT7 4 NU 2 E
RT8 4 NU 2 E
RT9 4 NU 2 E

AMOUNT 4 PD 2 E
COMMENT 20 ()

CONTROL EMPLNO
IF RCODE EQ 'L' REJECT ENDIF
SORT PAYLAB USING EMPLNO SHIFT
AMOUNT=HOURS*RATE ROUNDED
LIST SUPPRESS EMPLNO (EMPLOYEE'NUMBER) SUPPRESS EMPLNAME

DIVNO DEPTNO HOURS (HOURS'WORKED)
SHIFT RATE (HOURLY'RATE) AMOUNT (GROSS'WAGES) ' '

ON CHANGE IN EMPLNO
LIST SUM HOURS SUM AMOUNT '**' WITH 2 AFTER

ON FINAL
LIST '** FINAL TOTAL **' AT EMPLNO SUM HOURS SUM AMOUNT '**'

WITH 3 BEFORE
T1 'P A Y R O L L D E T A I L B Y E M P L O Y E E '
T2 'PERIOD ENDING - '
T2+70 DYLDATE
REPORT3 80 WIDE SYS280RS
OPTION PRINTERROR
USE PAYLAB ; <- USE STATEMENT
WORKAREA

PARMDATA 36
RT1 4 1 NU 2 E
RT2 4 NU 2 E
RT3 4 NU 2 E
RT4 4 NU 2 E
RT5 4 NU 2 E
RT6 4 NU 2 E
RT7 4 NU 2 E
RT8 4 NU 2 E
RT9 4 NU 2 E

BILLED_AMT 5 PD 3 E
COMMENT 20 ()

CONTROL PROJECTNO
ON ONE

MOVE DYLPARM TO PARMDATA
ENDONE
IF RCODE NE 'L' REJECT ENDIF

SORT PAYLAB USING PROJECTNO EMPLNO
COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1-------------VISION:RESULTS FREE FORM-----------------------------72

INX=(RATESCHED-1)*4
BILLED_AMT=PHOURS*RT1(INX) ROUNDED
LIST SUPPRESS (PROJECTNO EMPLNO) PHOURS RATESCHED BILLED_AMT ' '

ON CHANGE IN PROJECTNO
LIST SUM (PHOURS BILLED_AMT) '**'

WITH 1 BEFORE AND 3 AFTER
ON FINAL

LIST SUM (PHOURS BILLED_AMT) '***'
WITH 2 BEFORE

T1 'LABOR COST BY PROJECT FOR PERIOD ENDING-,
WITH 2 AFTER

T2 ' RATE SCHEDULES: #1 #2 #3' FIXED
T3 ' #4 #5 #6' FIXED
T4 ' #7 #8 #9' FIXED
T1+70 DYLDATE
T2+24 RT1
T2+35 RT2
T2+46 RT3
T3+24 RT4
T3+35 RT5
T3+46 RT6
T4+24 RT7
T4+35 RT8
T4+46 RT9

Figure 17-5 OS/390 Example 1 Using FILE RETAIN (Page 2 of 2)

The USE statement indicates which file is
processed in the request.

The REPORT3 statement is the
beginning of the third report
request.
17–8 VISION:Results Reference Guide

Multiple-Report Examples
P A Y R O L L D E T A I L B Y E M P L O Y E E
PERIOD ENDING - 01/15/01

EMPLOYEE NAME DIVN DEPT HOURS SHF HOURLY GROSS
NUMBER WORKED RATE WAGES

00009 MUMFORD, M.E. 01 432 40.0 1 8.50 330.00
01 432 9.6 3 12.75 122.40

49.6 452.40 **

01574 LORAC, M.B. 01 127 37.5 3 9.75 365.63
37.5 365.63 **

03200 SQUIGLEY, GEO.D. 01 127 40.0 1 11.50 460.00
40.0 460.00 **

04010 WASHINGTON, LEROY 02 952 32.0 2 9.75 312.00
32.0 312.00 **

04012 SVENSEN, ERICA T. 02 952 40.0 2 9.50 380.00
40.0 380.00 **

07123 ZAK, HERMAN P. 02 951 40.0 2 8.00 320.00
02 951 6.0 3 12.00 72.00

46.0 392.00 **

12370 PEREZ, JUAN PERICO 01 432 37.5 1 7.50 281.25
37.5 281.25 **

23941 POOLE, M.T. 01 127 40.0 1 7.50 300.00
01 127 10.5 2 11.25 118.13

50.5 418.13 **

32785 JONES, ROBERT S. 02 951 39.0 1 10.25 399.75
39.0 399.75 **

62134 GODFREY, Q.Z. 01 432 40.0 2 7.50 300.00
40.0 300.00 **

65656 YELNATS, STANLEY 01 432 40.0 2 9.25 370.00
40.0 370.00 **

74424 REEVES, SLADE 02 951 40.0 1 9.00 360.00
40.0 360.00 **

77778 STIVIC, G.N. 02 952 40.0 2 8.50 340.00
40.0 340.00 **

91101 WONG, LING SU 02 951 40.0 1 7.50 300.00
40.0 300.00 **

97537 VON SCHMIDT, JOHANN 02 951 40.0 1 7.50 300.00
40.0 300.00 **

** FINAL TOTAL ** 612.1 5,431.16 **

Figure 17-6 Output from OS/390 Example 1 (Page 1 of 3)
Multiple Reports and Multiple Requests 17–9

Multiple-Report Examples
PAYROLL DETAIL BY DIVISION / DEPARTMENT
PERIOD ENDING - 01/15/01

DIVN DEPT EMPL# NAME HOURS SHF RATE AMOUNT

01 127 01574 LORAC, M.B. 37.5 3 9.75 365.63
03200 SQUIGLEY, GEO.D. 40.0 1 11.50 460.00
23941 POOLE, M.T. 40.0 1 7.50 300.00
23941 POOLE, M.T. 10.5 2 11.25 118.13

TOTAL DEPARTMENT 128.0 1,243.76

01 432 00009 MUMFORD, M.E. 40.0 1 8.50 330.00
00009 MUMFORD, M.E. 9.6 3 12.75 122.40
12370 PEREZ, JUAN PERICO 37.5 1 7.50 281.25
62134 GODFREY, Q.Z. 40.0 2 7.50 300.00
65656 YELNATS, STANLEY 40.0 2 9.25 370.00

TOTAL DEPARTMENT 167.1 1,403.65

** DIVISION TOTAL ** 295.1 2,647.41

02 951 07123 ZAK, HERMAN P. 40.0 2 8.00 320.00
07123 ZAK, HERMAN P. 6.0 3 12.00 72.00
32785 JONES, ROBERT S. 39.0 1 10.25 399.75
74424 REEVES, SLADE 40.0 1 9.00 360.00
91101 WONG, LING SU 40.0 1 7.50 300.00
97537 VON SCHMIDT, JOHANN 40.0 1 7.50 300.00

TOTAL DEPARTMENT 205.0 1,751.75

02 952 04010 WASHINGTON, LEROY 32.0 2 9.75 312.00
04012 SVENSEN, ERICA T. 40.0 2 9.50 380.00
77778 STIVIC, G.N. 40.0 2 8.50 340.00

TOTAL DEPARTMENT 112.0 1,032.00

** DIVISION TOTAL ** 317.0 2,783.75

*** GRAND TOTAL *** 612.1 5,431.16

Figure 17-6 Output from OS/390 Example 1 (Page 2 of 3)
17–10 VISION:Results Reference Guide

Multiple-Report Examples
JCL

LABOR COST BY PROJECT FOR PERIOD ENDING - 01/15/01
RATE SCHEDULES: #1 7.50 #2 8.00 #3 8.50

#4 9.00 #5 9.25 #6 9.50
#7 9.75 #8 10.25 #9 11.50

PROJECT EMPL# HOURS RATESCHED BILLED_AMT
NUMBER BILLED

19 01574 20.0 7 195.000
04010 28.9 7 281.780
07123 6.0 2 48.000
12370 30.0 1 225.000
23941 10.5 1 78.750
65656 12.6 5 116.550
91101 40.0 1 300.000

148.0 1,245.080 **

110 03200 40.0 9 460.000
04010 3.1 7 30.225
07123 32.0 2 256.000
23941 13.0 1 97.500
32785 20.0 8 205.000

108.1 1,048.725 **

162 00009 20.0 3 170.000
01574 17.5 7 170.625
65656 10.0 5 92.500

47.5 433.125 **

170 00009 20.0 3 170.000
65656 5.4 5 49.950
77778 17.0 3 144.500
97537 27.6 1 207.000

70.0 571.450 **

409 00009 9.6 3 81.600
12370 7.5 1 56.250
32785 19.0 8 194.750
65656 12.0 5 111.000
77778 19.2 3 163.200
97537 8.2 1 61.500

75.5 668.300 **

727 04012 40.0 6 380.000
40.0 380.000 **

998 07123 8.0 2 64.000
62134 40.0 1 300.000
74424 40.0 4 360.000
77778 3.8 3 32.300
97537 4.2 1 31.500

96.0 787.800

585.1 5,134.480 ***

Figure 17-6 Output from OS/390 Example 1 (Page 3 of 3)

//RESULTS JOB
//STEP01 EXEC PGM=DYL280
//STEPLIB DD DSN=your.DYL280.loadlib,DISP=SHR
//SYS280R DD SYSOUT=A
//SYS280RS DD SYSOUT=A,DCB=BLKSIZE=80
//SYSPRINT DD SYSOUT=A
//AUDPRINT DD SYSOUT=A
//SYS004 DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//AUDWORK DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//AUDEPF DD UNIT=SYSDA,SPACE=(TRK,(10,5)),
// DCB=(BLKSIZE=800,LRECL=80,RECFM=FB)
//AUDCBF DD UNIT=SYSDA,SPACE=(TRK,(10,5)),
// DD DCB=BLKSIZE=1000
//SYSOUT DD SYSOUT=A
//SORTLIB DD DSN=your.sortlib.dataset,DISP=SHR
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//PAYLAB DD DSN=PAYROLL.LABEL,DISP=SHR
//SYSIN DD *

Example 1 VISION:Results program
//

Figure 17-7 OS/390 JCL for Example 1
Multiple Reports and Multiple Requests 17–11

Multiple-Report Examples
Example 2

COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1-------------VISION:RESULTS FREE FORM-----------------------------72
* MVS EXAMPLE...USING PICNSAVE AND USE COMMANDS
OPTION DATA ' 750 800 850 900 925 950 97510251150'
REPORT 80 WIDE SYS280RS
FILE PAYLAB FB 80 1600 ;<--FILE STATEMENT

DIVNO 2 (DIVN)
DEPTNO 3 (DEPT)
EMPLNO 5 (EMPL#)
EMPLNAME 20 (NAME)
HOURS 4 35 NU 1 E
SHIFT 1 40 (SHF)
RATE 4 45 NU 2 E
RCODE 1 53
PROJECTNO 5 11 (PROJECT'NUMBER)
PHOURS 4 16 NU 1 E (HOURS'BILLED)
RATESCHED 1 25 NU

WORKAREA
PARMDATA 36

RT1 4 1 NU 2 E
RT2 4 NU 2 E
RT3 4 NU 2 E
RT4 4 NU 2 E
RT5 4 NU 2 E
RT6 4 NU 2 E
RT7 4 NU 2 E
RT8 4 NU 2 E
RT9 4 NU 2 E

AMOUNT 4 PD 2 E
COMMENT 20 ()
BILLED_AMT 5 PD 3 E

CONTROL DEPTNO DIVNO
ON ONE

MOVE DYLPARM TO PARMDATA
ENDONE

IF RCODE EQ 'L'
INX=(RATESCHED-1)*4
BILLED_AMT=PHOURS*RT1(INX) ROUNDED
PICNSAVE REP3 USING PROECTNO EMPLNO PHOURS RATESCHED
BILLED_AMT
BY 10
REJECT

ENDIF
AMOUNT = HOURS*RATE ROUNDED

PICNSAVE REP2 USING DIVNO DEPTNO EMPLNO EMPLNAME HOURS
SHIFT RATE AMOUNT

BY 10
LIST SUPPRESS (DIVNO DEPTNO) EMPLNO EMPLNAME HOURS SHIFT

RATE AMOUNT
ON CHANGE IN DEPTNO

MOVE ' TOTAL DEPARTMENT' TO COMMENT

Figure 17-8 OS/390 Example 2 Using PICNSAVE (Page 1 of 2)

The REPORT statement indicates that the
report is spooled to SYS280RS rather than
SYS280R. The REPORT statement for a first
request is not required unless overrides
are needed.

All records whose RCODE is equal to L are passed to a subsequent
request as REP3. Only fields specified in the PICNSAVE statement
are passed. The REP3 data are blocked 10.

All records not equal
to an RCODE of L are
passed to a
subsequent request
as REP2. Only fields
specified in the
PICNSAVE statement
are passed. The REP2
data are blocked 10.
17–12 VISION:Results Reference Guide

Multiple-Report Examples
COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1------------VISION:RESULTS FREE FORM TEXT---------------72
LISTBRK:

LIST COMMENT AT DEPTNO SUM (HOURS AMOUNT) WITH 1 BEFORE 3 AFTER
ON CHANGE IN DIVNO

MOVE '** DIVISION TOTAL **' TO COMMENT
GOTO LISTBRK

ON FINAL
MOVE '*** GRAND TOTAL ***' TO COMMENT
GOTO LISTBRK

T1 'PAYROLL DETAIL BY DIVISION / DEPARTMENT'
T2 'PERIOD ENDING -,
T2+57 DYLDATE
NEWPAGE

COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1------------VISION:RESULTS FREE FORM TEXT---------------72
REPORT2 80 WIDE
USE REP2;< USE STATEMENT
CONTROL EMPLNO

SORT REP2 USING EMPLNO SHIFT
LIST SUPPRESS EMPLNO (EMPLOYEE'NUMBER) SUPPRESS EMPLNAME

DIVNO DEPTNO HOURS (HOURS'WORKED)
SHIFT RATE (HOURLY'RATE) AMOUNT (GROSS'WAGES) ' '

ON CHANGE IN EMPLNO
LIST '* EMPLOYEE TOTAL *' AT EMPLNO SUM HOURS SUM AMOUNT '**'

WITH 2 AFTER
ON FINAL

LIST '** FINAL TOTAL **' AT EMPLNO SUM HOURS SUM AMOUNT '**'
WITH 3 BEFORE

T1 'P A Y R O L L D E T A I L B Y E M P L O Y E E '
T2 'PERIOD ENDING - '
T2+70 DYLDATE
NEWPAGE

COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1-------------VISION:RESULTS FREE FORM TEXT--------------72
REPORT 80 WIDE SYS280RS
OPTION PRINTERROR
USE REP3 ; <- USE STATEMENT
WORKAREA

PARMDATA 36
RT1 4 1 NU 2 E
RT2 4 NU 2 E
RT3 4 NU 2 E
RT4 4 NU 2 E
RT5 4 NU 2 E
RT6 4 NU 2 E
RT7 4 NU 2 E
RT8 4 NU 2 E
RT9 4 NU 2 E

CONTROL PROJECTNO
ON ONE

MOVE DYLPARM TO PARMDATA
ENDONE
SORT REP3 USING PROJECTNO EMPLNO
LIST SUPPRESS (PROJECTNO EMPLNO) PHOURS RATESCHED BILLED_AMT ' '
ON CHANGE IN PROJECTNO

LIST ' ' AT PROJECTNO SUM (PHOURS BILLED_AMT) '**'
WITH 1 BEFORE AND 3 AFTER

ON FINAL
LIST ' ' AT PROJECTNO SUM (PHOURS BILLED_AMT) '***'

WITH 2 BEFORE
T1 'LABOR COST BY PROJECT FOR PERIOD ENDING -'

WITH 2 AFTER
T2 ' RATE SCHEDULES: #1 #2 #3' FIXED
T3 ' #4 #5 #6' FIXED
T4 ' #7 #8 #9' FIXED
T1+70 DYLDATE
T2+24 RT1
T2+35 RT2
T2+46 RT3
T3+24 RT4
T3+35 RT5
T3+46 RT6
T4+24 RT7
T4+35 RT8
T4+46 RT9

Figure 17-8 OS/390 Example 2 Using PICNSAVE (Page 2 of 2)

The NEWPAGE command f
orces a page eject on the
source listing output.

Report request 2 is usi
ng the REP2 PICNSAVE
file from the initial req
uest as its input. All fiel
d definitions are passe
d and supported.

Report request 3 is using the
REP3 PICNSAVE file from the i
nitial request as its input. All fi
eld definitions are passed an
d supported.
Multiple Reports and Multiple Requests 17–13

Multiple-Report Examples
JCL

//RESULTS JOB
//STEP01 EXEC PGM=DYL280
//STEPLIB DD DSN=your.DYL280.loadlib,DISP=SHR
//SYS280R DD SYSOUT=A
//SYS280RS DD SYSOUT=A,DCB=BLKSIZE=80
//SYSPRINT DD SYSOUT=A
//AUDPRINT DD SYSOUT=A
//SYS004 DD UNIT=SYSDA,SPACE=(TRK,(5,5))
//AUDWORK DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//AUDEPF DD UNIT=SYSDA,SPACE=(TRK,(10,5)),
// DCB=(BLKSIZE=800,LRECL=80,RECFM=FB)
//AUDCBF DD UNIT=SYSDA,SPACE=(TRK,(10,5)),
// DCB=BLKSIZE=1000
//SYSOUT DD SYSOUT=A
//SORTLIB DD DSN=your.sortlib.dataset,DISP=SHR
//SORTWK01 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK02 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,(5),,CONTIG)
//PAYLAB DD DSN=PAYROLL.LABEL,DISP=SHR
//REP2 DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//REP3 DD UNIT=SYSDA,SPACE=(TRK,(10,5))
//SYSIN DD *

Example 2 VISION:Results program
//

Figure 17-9 OS/390 JCL for Example 2
17–14 VISION:Results Reference Guide

Multiple-Report Examples
VSE
Example 1

COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1------------VISION:RESULTS FREE FORM TEXT---------------72
* VSE EXAMPLE...USING THE KEYWORD RETAIN AND THE COMMAND USE
OPTION DATA ' 620 670 754 818 850 960120015001800'
REPORT 80 WIDE
FILE PAYLAB FB 80 1600 DISK 3340 SYS012 RETAIN ;<- FILE STATEMENT

DIVNO 2 (DIVN)
DEPTNO 3 (DEPT)
EMPLNO 5 (EMPL#)
EMPLNAME 20 (NAME)
HOURS 4 35 NU 1 E
SHIFT 1 40 (SHF)
RATE 4 45 NU 2 E
RCODE 1 53
PROJECTNO 5 11 (PROJECT'NUMBER)
PHOURS 4 16 NU 1 E (HOURS'BILLED)
RATESCHED 1 25 NU

WORKAREA
PARMDATA 36

RT1 4 1 NU 2 E
RT2 4 NU 2 E
RT3 4 NU 2 E
RT4 4 NU 2 E
RT5 4 NU 2 E
RT6 4 NU 2 E
RT7 4 NU 2 E
RT8 4 NU 2 E
RT9 4 NU 2 E

AMOUNT 4 PD 2 E
COMMENT 20 ()

CONTROL DEPTNO DIVNO
IF RCODE EQ 'L' REJECT ENDIF
AMOUNT = HOURS*RATE ROUNDED
LIST SUPPRESS (DIVNO DEPTNO) EMPLNO EMPLNAME HOURS SHIFT

RATE AMOUNT
ON CHANGE IN DEPTNO

MOVE ' TOTAL DEPARTMENT' TO COMMENT
LISTBRK:

LIST COMMENT AT DEPTNO SUM (HOURS AMOUNT) WITH 1 BEFORE 3 AFTER
ON CHANGE IN DIVNO

MOVE '** DIVISION TOTAL **' TO COMMENT
GOTO LISTBRK

ON FINAL
MOVE '*** GRAND TOTAL ***' TO COMMENT
GOTO LISTBRK

T1 'PAYROLL DETAIL BY DIVISION / DEPARTMENT'
T2 'PERIOD ENDING -'
T2+57 DYLDATE

Figure 17-10 VSE Example 1 Using the FILE RETAIN (Page 1 of 2)

The REPORT statement indicates
the first report request in a
multiple-report run (not required
for the first request).

The keyword RETAIN
passes the file attributes
and field definitions to
subsequent requests.
Multiple Reports and Multiple Requests 17–15

Multiple-Report Examples
COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1------------VISION:RESULTS FREE FORM TEXT---------------72
REPORT2 80 WIDE
USE PAYLAB ; <-- USE STATEMENT
WORKAREA

PARMDATA 36
RT1 4 1 NU 2 E
RT2 4 NU 2 E
RT3 4 NU 2 E
RT4 4 NU 2 E
RT5 4 NU 2 E
RT6 4 NU 2 E
RT7 4 NU 2 E
RT8 4 NU 2 E
RT9 4 NU 2 E

AMOUNT 4 PD 2 E
COMMENT 20 ()

CONTROL EMPLNO
IF RCODE EQ 'L' REJECT ENDIF
SORT PAYLAB USING EMPLNO SHIFT
AMOUNT=HOURS*RATE ROUNDED
LIST SUPPRESS EMPLNO (EMPLOYEE'NUMBER) SUPPRESS EMPLNAME

DIVNO DEPTNO HOURS (HOURS'WORKED)
SHIFT RATE (HOURLY'RATE) AMOUNT (GROSS'WAGES) ' '

ON CHANGE IN EMPLNO
LIST SUM HOURS SUM AMOUNT '**' WITH 2 AFTER

ON FINAL
LIST '** FINAL TOTAL **' AT EMPLNO SUM HOURS SUM AMOUNT '**'

WITH 3 BEFORE
T1 'P A Y R O L L D E T A I L E M P L O Y E E '
T2 'PERIOD ENDING - '
T2+70 DYLDATE
REPORT3 80 WIDE
OPTION PRINTERROR
USE PAYLAB ; <- - USE STATEMENT
WORKAREA

PARMDATA 36
RT1 4 1 NU 2 E
RT2 4 NU 2 E
RT3 4 NU 2 E
RT4 4 NU 2 E
RT5 4 NU 2 E
RT6 4 NU 2 E
RT7 4 NU 2 E
RT8 4 NU 2 E
RT9 4 NU 2 E

BILLED_AMT 5 PD 3 E
COMMENT 20 ()

CONTROL PROJECTNO
ON ONE

MOVE DYLPARM TO PARMDATA
ENDONE
COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1------------VISION:RESULTS FREE FORM TEXT---------------72

IF RCODE NE 'L' REJECT ENDIF
SORT PAYLAB USING PROJECTNO EMPLNO
INX (RATESCHED-1)*4
BILLED_AMT=PHOURS*RT1(INX) ROUNDED
LIST SUPPRESS (PROJECTNO EMPLNO) PHOURS RATESCHED BILLED_AMT ' '
ON CHANGE IN PROJECTNO

LIST SUM (PHOURS BILLED_AMT) '**'
WITH 1 BEFORE AND 3 AFTER

ON FINAL
LIST SUM (PHOURS BILLED_AMT) '***'

WITH 2 BEFORE
T1 'LABOR COST BY PROJECT FOR PERIOD ENDING -'

WITH 2 AFTER
T2 ' RATE SCHEDULES: #1 #2 #3' FIXED
T3 ' #4 #5 #6' FIXED
T4 ' #7 #8 #9' FIXED
T1+70 DYLDATE
T2+24 RT1
T2+35 RT2
T2+46 RT3
T3+24 RT4
T3+35 RT5
T3+46 RT6
T4+24 RT7
T4+35 RT8
T4+46 RT9

Figure 17-10 VSE Example 1 Using the FILE RETAIN (Page 2 of 2)

The REPORT2 statement
is the beginning of the
second request.

The USE statement indicates which file is
to be processed in the request.

The REPORT3 statement
is the beginning of the
third request.

The USE statement indicates which file is
to be processed in the request.
17–16 VISION:Results Reference Guide

Multiple-Report Examples
PAYROLL DETAIL BY DIVISION / DEPARTMENT
PERIOD ENDING - 01/15/01

DIVN DEPT EMPL# NAME HOURS SHF RATE AMOUNT

01 127 01574 LORAC, M.B. 37.5 3 9.75 365.63
03200 SQUIGLEY, GEO.D. 40.0 1 11.50 460.00
23941 POOLE, M.T. 40.0 1 7.50 300.00
23941 POOLE, M.T. 10.5 2 11.25 118.13

TOTAL DEPARTMENT 128.0 1,243.76

01 432 00009 MUMFORD, M.E. 40.0 1 8.50 330.00
00009 MUMFORD, M.E. 9.6 3 12.75 122.40
12370 PEREZ, JUAN PERICO 37.5 1 7.50 281.25
62134 GODFREY, Q.Z. 40.0 2 7.50 300.00
65656 YELNATS, STANLEY 40.0 2 9.25 370.00

TOTAL DEPARTMENT 167.1 1,403.65

** DIVISION TOTAL ** 295.1 2,647.41

02 951 07123 ZAK, HERMAN P. 40.0 2 8.00 320.00
07123 ZAK, HERMAN P. 6.0 3 12.00 72.00
32785 JONES, ROBERT S. 39.0 1 10.25 399.75
74424 REEVES, SLADE 40.0 1 9.00 360.00
91101 WONG, LING SU 40.0 1 7.50 300.00
97537 VON SCHMIDT, JOHANN 40.0 1 7.50 300.00

TOTAL DEPARTMENT 205.0 1,751.75

02 952 04010 WASHINGTON, LEROY 32.0 2 9.75 312.00
04012 SVENSEN, ERICA T. 40.0 2 9.50 380.00
77778 STIVIC, G.N. 40.0 2 8.50 340.00

TOTAL DEPARTMENT 112.0 1,032.00

** DIVISION TOTAL ** 317.0 2,783.75

*** GRAND TOTAL *** 612.1 5,431.16

Figure 17-11 VSE Example 1 Output from VSE (Page 1 of 3)
Multiple Reports and Multiple Requests 17–17

Multiple-Report Examples

1

P A Y R O L L D E T A I L B Y E M P L O Y E E

PERIOD ENDING - 01/15/0
EMPLOYEE NAME DIVN DEPT HOURS SHF HOURLY GROSS
NUMBER WORKED RATE WAGES

00009 MUMFORD, M.E. 01 432 40.0 1 8.50 330.00
01 432 9.6 3 12.75 122.40

49.6 452.40 **

01574 LORAC, M.B. 01 127 37.5 3 9.75 365.63
37.5 365.63 **

03200 SQUIGLEY, GEO.D. 01 127 40.0 1 11.50 460.00
40.0 460.00 **

04010 WASHINGTON, LEROY 02 952 32.0 2 9.75 312.00
32.0 312.00 **

04012 SVENSEN, ERICA T. 02 952 40.0 2 9.50 380.00
40.0 380.00 **

07123 ZAK, HERMAN P. 02 951 40.0 2 8.00 320.00
02 951 6.0 3 12.00 72.00

46.0 392.00 **

12370 PEREZ, JUAN PERICO 01 432 37.5 1 7.50 281.25
37.5 281.25 **

23941 POOLE, M.T. 01 127 40.0 1 7.50 300.00
01 127 10.5 2 11.25 118.13

50.5 418.13 **

32785 JONES, ROBERT S. 02 951 39.0 1 10.25 399.75
39.0 399.75 **

62134 GODFREY, Q.Z. 01 432 40.0 2 7.50 300.00
40.0 300.00 **

65656 YELNATS, STANLEY 01 432 40.0 2 9.25 370.00
40.0 370.00 **

74424 REEVES, SLADE 02 951 40.0 1 9.00 360.00
40.0 360.00 **

77778 STIVIC, G.N. 02 952 40.0 2 8.50 340.00
40.0 340.00 **

91101 WONG, LING SU 02 951 40.0 1 7.50 300.00
40.0 300.00 **

97537 VON SCHMIDT, JOHANN 02 951 40.0 1 7.50 300.00
40.0 300.00 **

** FINAL TOTAL ** 612.1 5,431.16 **

Figure 17-11 VSE Example 1 Output from VSE (Page 2 of 3)
17–18 VISION:Results Reference Guide

Multiple-Report Examples
LABOR COST BY PROJECT FOR PERIOD ENDING - 01/15/01
RATE SCHEDULES: #1 7.50 #2 8.00 #3 8.50

#4 9.00 #5 9.25 #6 9.50
#7 9.75 #8 10.25 #9 11.50

PROJECT EMPL# HOURS RATESCHED BILLED_AMT
NUMBER BILLED

19 01574 20.0 7 195.000
04010 28.9 7 281.780
07123 6.0 2 48.000
12370 30.0 1 225.000
23941 10.5 1 78.750
65656 12.6 5 116.550
91101 40.0 1 300.000

148.0 1,245.080 **

110 03200 40.0 9 460.000
04010 3.1 7 30.225
07123 32.0 2 256.000
23941 13.0 1 97.500
32785 20.0 8 205.000

108.1 1,048.725 **

162 00009 20.0 3 170.000
01574 17.5 7 170.625
65656 10.0 5 92.500

47.5 433.125 **

170 00009 20.0 3 170.000
65656 5.4 5 49.950
77778 17.0 3 144.500
97537 27.6 1 207.000

70.0 571.450 **

409 00009 9.6 3 81.600
12370 7.5 1 56.250
32785 19.0 8 194.750
65656 12.0 5 111.000
77778 19.2 3 163.200
97537 8.2 1 61.500

75.5 668.300 **

// JOB RESULTS
// ASSGN SYS012,X'cuu'
// DLBL PAYLAB,'PAYROLL.LABEL'
// EXTENT SYS012
// DLBL IJSYS04,'VISION:RESULTS WORK FILE',0
// EXTENT SYS004,...extent information
// ASSGN SYS008,X'cuu'
// DLBL SYS008,'VISION:RESULTS WORK FILE2',0
// EXTENT SYS008,...extent information (20 tracks)
// ASSGN SYS009,X'cuu'
// DLBL SYS009,'VISION:RESULTS LETTERS.SYSLST',0
// EXTENT SYS009,...extent information (100 tracks)
// ASSGN SYS010,X'cuu'
// DLBL SYS010,'VISION:RESULTS WORK FILE3',0
// EXTENT SYS010,...extent information (20 tracks)
// ASSGN SYS011,X'cuu'
// DLBL SYS011,'VISION:RESULTS WORK FILE4',0
// EXTENT SYS011,...extent information (20 tracks)
// DLBL SORTWK1,'VISION:RESULTS SORT WORK',0
// EXTENT SYS001,...extent information
// EXEC DYL280,SIZE=250K

Example 1 VISION:Results program
/*
/&

Figure 17-12 VSE JCL for Example 1

Figure 17-11 VSE Example 1 Output from VSE (Page 3 of 3)
Multiple Reports and Multiple Requests 17–19

Multiple-Report Examples
Example 2

COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1------------VISION:RESULTS FREE FORM TEXT---------------72
* VSE EXAMPLE...USING PICNSAVE AND USE COMMANDS
OPTION DATA ' 620 670 754 818 850 960120015001800'
REPORT 80 WIDE
FILE PAYLAB FB 80 1600 DISK 3340 SYS012 ; <- FILE STATEMENT

DIVNO 2 (DIVN)
DEPTNO 3 (DEPT)
EMPLNO 5 (EMPL#)
EMPLNAME 20 (NAME)
HOURS 4 35 NU 1 E
SHIFT 1 40 (SHF)
RATE 4 45 NU 2 E
RCODE 1 53
PROJECTNO 5 11 (PROJECT'NUMBER)
PHOURS 4 16 NU 1 E (HOURS'BILLED)
RATESCHED 1 25 NU

WORKAREA
PARMDATA 36

RT1 4 1 NU 2 E
RT2 4 NU 2 E
RT3 4 NU 2 E
RT4 4 NU 2 E
RT5 4 NU 2 E
RT6 4 NU 2 E
RT7 4 NU 2 E
RT8 4 NU 2 E
RT9 4 NU 2 E

AMOUNT 4 PD 2 E
COMMENT 20 ()
BILLED_AMT 5 PD 3 E

CONTROL DEPTNO DIVNO
ON ONE

MOVE DYLPARM TO PARMDATA
ENDONE

IF RCODE EQ 'L'
INX=(RATESCHED-1)*4
BILLED_AMT=PHOURS*RT1(INX) ROUNDED
PICNSAVE REP3 USING PROJECTNO EMPLNO PHOURS RATESCHED

BILLED_AMT
BY 10 SYS015 DISK 3330
REJECT

ENDIF
AMOUNT = HOURS*RATE ROUNDED
PICNSAVE REP 2 USING DIVNO DEPTNO EMPLNO EMPLNAME HOURS

SHIFT RATE AMOUNT
BY 10 SYS014 DISK 3330

LIST SUPPRESS (DIVNO DEPTNO) EMPLNO EMPLNAME HOURS SHIFT
RATE AMOUNT

COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1------------VISION:RESULTS FREE FORM TEXT---------------72
ON CHANGE IN DEPTNO

MOVE ' TOTAL DEPARTMENT' TO COMMENT
LISTBRK:

LIST COMMENT AT DEPTNO SUM (HOURS AMOUNT) WITH 1 BEFORE 3 AFTER
ON CHANGE IN DIVNO

MOVE '** DIVISION TOTAL **' TO COMMENT
GOTO LISTBRK

ON FINAL
MOVE '*** GRAND TOTAL ***' TO COMMENT
GOTO LISTBRK

T1 'PAYROLL DETAIL BY DIVISION / DEPARTMENT'
T2 'PERIOD ENDING -'
T2+57 DYLDATE
NEWPAGE

COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1------------VISION:RESULTS FREE FORM TEXT---------------72
REPORT 80 WIDE
USE REP2 ; <--USE STATEMENT
CONTROL EMPLNO

SORT REP2 USING EMPLNO SHIFT
LIST SUPPRESS EMPLNO (EMPLOYEE'NUMBER) SUPPRESS EMPLNAME

DIVNO DEPTNO HOURS (HOURS'WORKED)
SHIFT RATE (HOURLY'RATE) AMOUNT (GROSS'WAGES) ' '

ON CHANGE IN EMPLNO
LIST '* EMPLOYEE TOTAL *' AT EMPLNO SUM HOURS SUM AMOUNT '**'

WITH 2 AFTER
ON FINAL

LIST '** FINAL TOTAL **' AT EMPLNO SUM HOURS SUM AMOUNT '**'
WITH 3 BEFORE

T1 'P A Y R O L L D E T A I L B Y E M P L O Y E E '
T2 'PERIOD ENDING - '
T2+70 DYLDATE

Figure 17-13 VSE Example 2 Using PICNSAVE (Page 1 of 2)

The REPORT statement indicates the first
report request in a multiple report run
(not required for the first request).

All records whose RCODE is equal to L are
passed to a subsequent request as REP3. Only
fields specified in the PICNSAVE statement are
passed. The REP3 data are blocked 10.

All records not equal to an
RCODE of L are passed to a
subsequent request as REP2. Only
fields specified in the PICNSAVE
statement are passed. The REP2
data are blocked 10.

The NEWPAGE command
forces a page eject on the
source listing output.

Report request 2 is
using the REP2
PICNSAVE file from the
initial request as its
input. All field
definitions are passed
and supported.
17–20 VISION:Results Reference Guide

Multiple-Report Examples
NEWPAGE
COMPUTER ASSOCIATES VISION:RESULTS 5.0 DATE 1/15/01
1------------VISION:RESULTS FREE FORM TEXT------------------72
REPORT3 80 WIDE
OPTION PRINTERROR
USE REP3 ; <- USE STATEMENT
WORKAREA

PARMDATA 36
RT1 4 1 NU 2 E
RT2 4 NU 2 E
RT3 4 NU 2 E
RT4 4 NU 2 E
RT5 4 NU 2 E
RT6 4 NU 2 E
RT7 4 NU 2 E
RT8 4 NU 2 E
RT9 4 NU 2 E

CONTROL PROJECTNO
ON ONE

MOVE DYLPARM TO PARMDATA
ENDONE
SORT REP3 USING PROJECTNO EMPLNO
LIST SUPPRESS (PROJECTNO EMPLNO) PHOURS RATESCHED BILLED_AMT ' '
ON CHANGE IN PROJECTNO

LIST ' ' AT PROJECTNO SUM (PHOURS BILLED_AMT) '**'
WITH 1 BEFORE AND 3 AFTER

ON FINAL
LIST ' ' AT PROJECTNO SUM (PHOURS BILLED_AMT) '***'

WITH 2 BEFORE
T1 'LABOR COST BY PROJECT FOR PERIOD ENDING -'

WITH 2 AFTER
T2 ' RATE SCHEDULES: #1 #2 #3' FIXED
T3 ' #4 #5 #6' FIXED
T4 ' #7 #8 #9' FIXED
T1+70 DYLDATE
T2+24 RT1
T2+35 RT2
T2+46 RT3
T3+24 RT4
T3+35 RT5
T3+46 RT6
T4+24 RT7
T4+35 RT8
T4+46 RT9

// JOB RESULTS
// ASSGN SYS012,X'cuu'
// DLBL PAYLAB,'PAYROLL.LABEL'
// EXTENT SYS012
// DLBL IJSYS04,'VISION:RESULTS WORK FILE',0
// EXTENT SYS004,...extent information
// ASSGN SYS008,X'cuu'
// DLBL SYS008,'VISION:RESULTS WORK FILE2',0
// EXTENT SYS008,...extent information (20 tracks)
// ASSGN SYS009,X'cuu'
// DLBL SYS009,'VISION:RESULTS LETTERS.SYSLST',0
// EXTENT SYS009,...extent information (100 tracks)
// ASSGN SYS010,X'cuu'
// DLBL SYS010,'VISION:RESULTS WORK FILE3',0
// EXTENT SYS010,...extent information (20 tracks)
// ASSGN SYS011,X'cuu'
// DLBL SYS011,'VISION:RESULTS WORK FILE4',0
// EXTENT SYS011,...extent information (20 tracks)
// DLBL SORTWK1,'VISION:RESULTS SORT WORK',0
// EXTENT SYS001,...extent information
// ASSGN SYS014,X'cuu'
// DLBL REP2,'VISION:RESULTS TEMPORARY SAVE1',0
// EXTENT SYS014,...extent information
// ASSGN SYS015,X'cuu'
// DLBL REP3,'VISION:RESULTS TEMPORARY SAVE2',0
// EXTENT SYS015,...extent information
// EXEC DYL280,SIZE=250K

Example 2 VISION:RESULTS program
/*
/&

Figure 17-14 VSE JCL for Example 2

Figure 17-13 VSE Example 2 Using PICNSAVE (Page 2 of 2)

Report request 3 is using the REP3 PICNSAVE
file from the initial request as its input. All
field definitions are passed and supported.
Multiple Reports and Multiple Requests 17–21

Multiple-Report Examples
17–22 VISION:Results Reference Guide

Chapter
18 F
ile Print Commands
Use the file and field print feature to:

� Print data in graphics, hex and graphics, or hex only representations.

� Print entire records, portions of records, or specific fields in records.

� Print messages from your program.

� Print only selected records, every nth record, or the first nnn records.

The records or fields being printed can be from files of fixed variable, variable
spanned (OS/390), or undefined format. The files can be of sequential, BDAM,
ISAM, or VSAM (KSDS, ESDS, RRDS) organization. Literals or fields in work areas
can also be printed.

Example 1 Printing in graphics:

COMPUTER ASSOCIATES *VISION:RESULTS 5.0* DATE 1/15/01 PAGE 1
1 2 3 4 5 6 7 8 9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

PRINT 07C8006547TORRES ERNESTO E021580042480000000 00000000000 0007870000 TORRES,ERNESTO
1

23444 PARK LANE LOS ANGELES CA % BOBO 000000
PARASO, B MD A

Figure 18-1 Graphics Printing Example
File Print Commands 18–1

Example 2 Printing in hex and graphics:

Example 3 Printing in hex only:

The file print feature is independent of report writing. You can do both in the same
run. The print is directed to the SYSPRINT file for OS/390 and SYSLST for VSE. If
you are using the VSE environment and creating a report in your program along
with file printing, you can find your report and file print interleaved, unless your
report is assigned elsewhere. See Chapter 16, Using Report Statements.

There are two mutually exclusive ways to print data in your program:

� Using the OPTION statement: OPTION PRINT FILEIN. This method works
fine if you are printing records from one file and have no other kind of printing
to do.

� Using print immediate commands within the program logic. This method is
advisable when your printing is conditional or when you have different types
of data to print. For example, in one program you want to print certain records,
error messages, and specific fields at various times. Or, you can vary the type
of print by printing records in hexadecimal and graphics representation and
messages in graphics only. The PRINT commands used in your logic allow for
this.

COMPUTER ASSOCIATES *VISION:RESULTS 5.0* DATE 1/15/01 PAGE 1
1 2 3 4 5 6 7 8 9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

HEXPRINT 07C8006547T0RRES ERNESTO E021580042480000000 00000000000 0007870000 TORRES,ERNESTO 1
FFCFFFFFFFEDDDCE444444444CDDCEED4444CFFFFFFFFFFFFFFFFFF4FFFFFFFFFFF44FFFFFFFFFF54821EDDDCE6CDDCEED44
07380065473699520000000005955236000050215800424800000000000000000000000078700006871C369952B595523600

23444 PARK LANE LOS ANGELES CA % BOBO 000000
444444444FFFFF4DCDD4DCDC4444444444DDE4CDCCDCE4CC4444444444400166000000004900049CDCD4FFFFFF0000210000
000000000234440719203155000000000036201575352031000000000000025C0000C0049C0049C2626000000000044C0000

PARASO, B MD
0000000000444444444DCDCED64C4DC444444444444444444444000000000444444444000000000444444444000000000444
C000C00C0C000000000719126B02044000000000000000000000000C0000C000000000000C0000C000000000000C0000C000

A
444444000000000444444444000000000000000000040004944C
000000000C0000C000000000000C0000C0C0C0C0C0C00049C001

1 2 3 4 5 6 7 8 9
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

Figure 18-2 Hex and Graphics Printing Example

COMPUTER ASSOCIATES *VISION:RESULTS 5.0* DATE 1/15/01 PAGE 1
1 2 3 4 5 6 7 8 9

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

FFCFFFFFFFEDDDCE444444444CDDCEED4444CFFFFFFFFFFFFFFFFFF4FFFFFFFFFFF44FFFFFFFFFF54821EDDDCE6CDDCEED44
HEX 07380065473699520000000005955236000050215800424800000000000000000000000078700006871C369952B595523600

444444444FFFFF4DCDD4DCDC4444444444DDE4CDCCDCE4CC4444444444400166000000004900049CDCD4FFFFFF0000210000
000000000234440719203155000000000036201575352031000000000000025C0000C0049C0049C2626000000000044C0000

0000000000444444444DCDCED64C4DC444444444444444444444000000000444444444000000000444444444000000000444
C000C00C0C000000000719126B02044000000000000000000000000C0000C000000000000C0000C000000000000C0000C000

444444000000000444444444000000000000000000040004944C
000000000C0000C000000000000C0000C0C0C0C0C0C00049C001

Figure 18-3 Hex Printing Example
18–2 VISION:Results Reference Guide

Printing Using the Option Statement
Printing Using the Option Statement
Only entire records from a file can be printed using the OPTION statement. See
Chapter 4, Using the OPTION Command for additional information. The formats are
as follows:

Prints an entire accepted record in graphics format. If you omit the file name,
records from the first file defined by a FILE statement are printed.

Prints an entire accepted record in hex and graphics format. If you omit the file
name, records from the first file defined by a FILE statement are printed.

Prints an entire accepted record in hex only format. If you omit the file name,
records from the first file defined by a FILE statement are printed.

Prints an entire accepted record in graphics format. If the data contains lowercase
characters, they print as well. If you are printing using OPTION PRINT, lowercase
and other often unprintable characters are translated out to speed up printing.

VSE only. Prints an entire accepted record, treating the first byte of each record as
containing ASA or machine carriage control. This option is useful for printing
report files that have been previously written to tape or disk.

Examples of printing using the OPTION statement:

OPTION PRINT VSE
FILE FILEIN FB 250 2500 SYS012;

Above, a file print utility is being specified. Every record from the input file is
printed in graphics format.

OPTION HEXPRINT VSAMIN
FILE VSAMIN KSDS F 210

OPTION PRINT [filename]

Figure 18-4 PRINT Graphics Format

OPTION HEXPRINT [filename]

Figure 18-5 PRINT Hex and Graphics Format

OPTION HEX [filename]

Figure 18-6 PRINT Hex only Format

OPTION LCPRINT [filename]

Figure 18-7 PRINT Graphics Format with Lowercase Characters

OPTION REPORTFILE [filename]

Figure 18-8 PRINT Format for VSE
File Print Commands 18–3

Printing Using the Print Immediate Commands
Above, a VSAM KSDS file is printed in its entirety.

OPTION HEXPRINT SEQIN
FILE SEQIN FB 100 1000 SYS014; VSE
ACCOUNTNUM 5 7 NU

IF ACCOUNTNUM NE 4001 REJECT ENDIF

Above, an input file is being read. However, only records with the Account
Number 4001 are being accepted. The 4001 records are the ones that are printed in
hexadecimal and graphics.

OPTION HEXPRINT FILEOUT
FILE FILEIN FB 72 720
NAME 20 ADDRESS 30 CITY 15 STATE 2 ZIP 5

FILE FILEOUT OUTPUT FB 92 920 FROM FILEOUT SYS021
NAMEO 30 ADDRESSO 40 CITYO 15 STATE 2 ZIP 5

MOVE NAME TO NAMEO
MOVE ADDRESS TO ADDRESSO
MOVE CITY LENGTH 22 TO CITYO

Above, an input record is being reformatted and written to FILEOUT. In addition,
during the VISION:Results output cycle, before the record is written, it is printed
in hex and graphics format.

Printing Using the Print Immediate Commands
By issuing various print commands in your program, you can cause immediate
printing of records, fields, or messages. You can print indexed fields, as well as
multiple objects (such as file names, fields, and literals) in any combination. The
format for these PRINT immediate commands is as follows:

{PRINT | HEXPRINT | HEX | LCPRINT | REPORTFILE}

{filename1 | dataname1 | [(index)] | 'literal1'}
[LENGTH {dataname | nnnn}]

{filename2 | dataname2 | [(index)] | 'literal2'}
[LENGTH {dataname | nnnn}]

{filename3 | dataname3 | [(index)] | 'literal3'}
[LENGTH {dataname | nnnn}]

Figure 18-9 PRINT Immediate Commands

PRINT Prints the data immediately in graphics only representation.

HEXPRINT Prints the data immediately in hexadecimal and graphics
representation.
18–4 VISION:Results Reference Guide

Printing Using the Print Immediate Commands

Example 4 Print Command

HEX Prints the data immediately in hexadecimal representation.

LCPRINT Prints the data immediately in graphics representation and prints
lowercase and other normally non-printable characters.

REPORTFILE VSE only. Prints the record and treats the first character of the
record as a carriage control character. This print option is useful for
printing report files where the first byte of each record contains
machine or ASA carriage control.

OPTION

FILE FILE1 FB 80
RECORD1 80

FILE FILE2 FB 80
RECORD2 80

FILE FILE3 FB 80
DATA3A 10
FILL1 24
DATA3B 3 PD
FILL2 20
DATA3C 4 BI
DATA3D 3 PD
FILL3 16

WORKAREA
DATA4A 20
DATA4B 20
DATA4C 20
DATA4D 20

*
* PRINT IMMEDIATE STUFF
*

PRINT FILE1 FILE2

HEX RECORD1 RECORD2

HEXPRINT DATA3A DATA3B DATA3C DATA3D

INX = 0

STARTIT:
IF INX LE 60

LCPRINT DATA4A(INX)
HEXPRINT DATA4A(INX)
INX = INX + 20
GOTO STARTIT

ENDIF

FIN

Figure 18-10 Print Command Example
File Print Commands 18–5

Printing Using the Print Immediate Commands
Filename, Dataname, Indexed Dataname, or Literal
An entry is required. Following the PRINT command, specify a file name, data
name, indexed data name, or literal to identify what is to be printed. More than one
file name, data name or literal can be included in the PRINT command, but no
separation exists between objects on the print line.

If you code a file name, the current record from the specified file is printed. If you
code a data name, the field identified by this name is printed. A numeric, packed,
or binary field is not converted to printable data automatically prior to its being
printed, as is the case if the field is LISTed in a report. You can also code a 1- to
70-character literal enclosed in quotation marks. You can use a literal to separate
print objects on the output print line.

Examples:

HEXPRINT ISFILE
PRINT ACCTNUM
PRINT 'ERROR 501'

LENGTH n or dataname
The LENGTH keyword, followed by a numeric value or data name, identifies a
field containing the length of the field or record you want to print. This can be
coded to override the length that VISION:Results normally prints. If you code a
data name, define this field in a record or work area. If it is the same data name you
coded in a LENGTH dataname keyword in a FILE statement where
VISION:Results automatically allocates the field, you do not have to define it.

The maximum length that can be printed is 32767 (32752 for variable-length
records).

Examples:

HEXPRINT ISFILE LENGTH 30

Only the first 30 bytes of a file are printed.

PRINT ACCTNUM LENGTH 17

Seventeen bytes of data, starting with the field called ACCTNUM, are printed in
graphics format.

Examples of printing using PRINT commands:

FILE FILEIN FB 250 2500 SYS014
PRINT FILEIN

Here, a file print utility is being specified. Every record from the input file is
printed in graphics format.

FILE VSAMIN KSDS F 210
HEXPRINT VSAMIN
18–6 VISION:Results Reference Guide

Printing Using the Print Immediate Commands
A VSAM KSDS file is printed in its entirety in hexadecimal and graphics format.

FILE SYSIN CARDS STATUS CARDSTAT
*CARD FIELD DEFINITIONS
CARDKEY 5 1 NU

FILE ISAMMST KSDS RANDOM FINDKEY F 150
KEYLEN 5 KEYLOC 2 STATUS ISSTAT

IF CARDSTAT EQ 'E' STOP ENDIF
MOVE CARDKEY TO FINDKEY
READ ISAMMST
IF ISSTAT NE 'Y' GOTO ERRPRINT ENDIF
HEXPRINT ISAMMST
ACCEPTERRPRINT:
PRINT 'NO RECORD FOUND'
HEXPRINT FINDKEY
ACCEPT

In OS/390, a VSAM KSDS file is being read randomly using keys that
VISION:Results is reading in as instream data. If the record is found (ISSTAT EQ
‘Y'), it is printed in hexadecimal and graphics and another cycle is entered using
ACCEPT. If the record is not found, an error routine first prints out NO RECORD
FOUND on one line and then the bad key on the next line in hexadecimal and
graphics. Then the next cycle is entered using the ACCEPT command.

ERRMSG 16 VALUE 'NO RECORD FOUND'
ERRACCT 5 NU
.
.

MOVE FINDKEY TO ERRACCT
PRINT ERRMSG LENGTH 21
.
.

An error message consisting of a constant and the erroneous account number is
formatted and printed in graphics representation. The length printed includes
both fields.

FILE VARIN INPUT VB 80 844 SYS011 LENGTH VARLEN; VSE
RECFLD 1

HEXPRINT RECFLD LENGTH VARLEN

A variable-length file is printed in hexadecimal and graphics. This is the
recommended method of printing when you want only the data portion of the
record printed and not the Record Descriptor Word (RDW) prefix. To do this, use
the LENGTH dataname keyword in the FILE statement, and in the PRINT
command, specify a data name that identifies the first data byte (RECFLD) of the
File Print Commands 18–7

Other Print Features
record. Following this, code the LENGTH phrase using the same data name you
coded in the FILE statement. This approach is not necessary for VSAM
variable-length records, as there is no RDW.

FILE VARIN VB 80 844 LENGTH LEN1
VARINREC 80

FILE VAROUT VB 80 844 OUTPUT FROM VAROUT LENGTH LEN2
VAROUTREC 80

MOVE VARINREC TO VAROUTREC LENGTH LEN1
MOVE LEN1 TO LEN2
HEXPRINT VAROUT

A variable-length output record is being printed in hexadecimal and graphics
prior to its being written. To do this, it is important that the length be set in the
LEN2 field before issuing the PRINT command.

FILE VARIN VB 80 844 SYS011
HEXPRINT VARIN

A variable-length file is being printed in hexadecimal and graphics. Both the
Record Descriptor Word (RDW) and the data portion of the record are printed.

Other Print Features

Comments
Along with your data, you can also include up to 10 characters of comments to
print to the left of the data. DYLPRTCOMM is a special 10-byte field of character
data to which you can move whatever information you want before printing.

MOVE 'TRANS REC' TO DYLPRTCOMM
PRINT TRANSIN
MOVE 'MAST REC' TO DYLPRTCOMM
HEXPRINT MASTIN

Records from two files are printed. To better identify which is which, comments
are included in the print line.

This feature applies to both printing using the OPTION statement and using print
immediate commands.

If you do not move anything to the comments field before issuing the print
command, VISION:Results prints the data name or file name in the comments
portion of the line. However, if there is more than one data name in your print
command, you must move the data names to DYLPRTCOMM before issuing your
print command to have them appear in the comments area. This feature makes it
easy to set up a useful trace during debugging. If you are using the OPTION print,
comments are not filled in.

If you do not want the data name or file name to be printed, move an unprintable
character to DYLPRTCOMM, for example, X’00.’
18–8 VISION:Results Reference Guide

Other Print Features
Record Number
Whenever you are printing a file either with OPTION or using print immediate
commands, a record number is printed along with the record.

If you are printing an output record, the record number is one less than the actual
number if the print occurs before the write. This is because the number of an
output record is set after the write. Also, if you are printing records in a program
that is being sorted, the record number can be meaningless, depending on when
the print occurs.
File Print Commands 18–9

Other Print Features
18–10 VISION:Results Reference Guide

Chapter
19 V
SAM Processing
VISION:Results supports VSAM KSDS (key sequence data set), ESDS (entry
sequence data set), and RRDS (relative record data set) files. Under the virtual
storage access method (VSAM), record types can be fixed, variable, or variable
spanned.

The input and/or output modes supported are sequential retrieval, sequential
load/load extend/insert, random retrieval, random retrieval and update, limited
sequential (skip) retrieval by full or generic key, as well as sequential retrieval with
update.

� If you have specified the keyword VSAMCAT=Y in the DYLINSTL macro or
OPTION VSAMCAT in your program, you must specify VSAM in the FILE
statement.

� If you are using the VSAMCAT feature and the JCL contains the DD or DLBL
statement for the VSAM file during a FREEZE, verify, or compile and go run,
then you do not need to specify the file type (for example, KSDS, ESDS, or
RRDS) and other characteristics that are usually required on the FILE
statement. VISION:Results does this for you.

� If you are using the VSAMCAT feature and the JCL does not contain the DD or
DLBL statement for the VSAM file during a FREEZE, verify, or compile and go
run, then you need to specify the file type (for example, KSDS, ESDS, or RRDS)
and other characteristics that must be specified on the FILE statement.

� If you are using dynamically allocated VSAM files (files that use the
ALLOCATE command), then you need to specify the file type and other
characteristics on the FILE statement.

See the VISION:Results Reference Summary for more information about the
DYLINSTL macro. For information on the OPTION statement, see Chapter 4,
Using the OPTION Command.

For OS/390, VSAM files using record-level sharing (RLS) require VSAMCAT.
VSAM Processing 19–1

Syntax Format
Syntax Format
The keywords and operands pertaining only to VSAM ESDS, KSDS, or RRDS are
described in this chapter. Operands such as filename, recordsize, dataname, and
so on, are described in detail in Chapter 5, Data Name Qualification.

The examples provided show syntax for programming both with and without the
OPTION VSAMCAT statement in your program or the keyword VSAMCAT=Y
included in the DYLINSTL macro.

VSAM ESDS FILES
Throughout this section, items shown in bold are optional when using the
OPTION VSAMCAT statement or the VSAMCAT=Y keyword in the DYLINSTL
macro. Underlined items indicate the default value. When using the VSAMCAT
feature, you must enter VSAM in the FILE statement. Otherwise, the VSAMCAT
feature is not used for that file.

Note: In the preceding example, the RANDOMX, SKIPX, and RELBYTEX
keywords can only be used in OS/390.

VSAM KSDS FILES

FILE filename [VSAM]

ESDS [PASSWORD [{'password' | dataname2}]

{INPUT | OUTPUT FROM filename | IO}

[{F | V | S} [recordsize]]

{RANDOM dataname2 {CH | NU | BI | PD} [decimals] | RANDOMX dataname2|

SKIP dataname2 {CH | NU | BI | PD} [decimals] | SKIPX dataname2 SEQUENTIAL}

[RELBYTE dataname2] |RELBYTEX dataname2 [POSITION dataname2]

[STATUS dataname2] [COUNT dataname2] [LENGTH dataname2]

[DROPERR] [DUMMY] [REUSE | NULL]

[RETAIN | NORETAIN]

[{MODIFY modulename [nK]} [SIZE nnnnn]

[PARM ({IOAREA | WORK | dataname3...})]] [DYNAM]

[SYSnnn]

Figure 19-1 VSAM ESDS Files

FILE filename [VSAM]

KSDS [PASSWORD {'password' | dataname2}]

{INPUT | OUTPUT FROM filename | IO}

[{F | V | S} recordsize]]

{RANDOM dataname2 {CH | NU | BI | PD} [decimals] |

Figure 19-2 VSAM KSDS Files (Page 1 of 2)
19–2 VISION:Results Reference Guide

Creating a File
VSAM RRDS FILES

Creating a File
This section describes:

� The creation of a new VSAM file.

� The replacement of an old VSAM file.

SKIP dataname2 {CH | NU | BI | PD} [decimals] | SEQUENTIAL}

[KEYLEN nnn [KEYLOC nnnn]] [POSITION dataname2]

[REUSE | NULL] [ERASE dataname2] [PARTKEY nnn]

[STATUS dataname2] [COUNT dataname2] [LENGTH dataname2]

[DROPERR] [DUMMY]

[RETAIN | NORETAIN]

[{MODIFY modulename [nK]} [SIZE nnnnn]

[PARM ({IOAREA | WORK | dataname3...})]] [DYNAM]

[SYSnnn]

Figure 19-2 VSAM KSDS Files (Page 2 of 2)

FILE filename [VSAM]

RRDS [PASSWORD {'password' | dataname2}]

{INPUT | OUTPUT FROM filename | IO}

[{F} [recordsize]]

{RANDOM dataname2 {CH | NU | BI | PD} [decimals] |

SKIP dataname2 {CH | NU | BI | PD} [decimals] | SEQUENTIAL}

[RELREC dataname2] [POSITION dataname2] [ERASE dataname2]

[STATUS dataname2] [COUNT dataname2] [LENGTH dataname2]

[DROPERR] [DUMMY] [REUSE | NULL]

[RETAIN | NORETAIN]

[{MODIFY modulename [nK]} [SIZE nnnnn]

[PARM ({IOAREA | WORK | dataname3...})]] [DYNAM]

[SYSnnn]

Figure 19-3 VSAM RRDS Files
VSAM Processing 19–3

Creating a File
If you intend to read or update an existing file only, you do not need to be
concerned with this procedure.

To create either type of file, describe the file to the operating system using JCL (Job
Control Language). For example:

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

In addition, for VSAM files, you must first execute a program supplied by IBM
called IDCAMS (or Access Method Services) to DEFINE the attributes of the file
and store that information in the VSAM Catalog. See the IBM publication Access
Method Services User's Guide for Instructions about using IDCAMS. For example:

These statements define a key-sequenced (KSDS) VSAM file having a file name or
ddname of MYFILE, and having fixed-length records 40 bytes long, a 5-byte key
starting in location 2, and the ability to be reused (written over).

See Key Sequence VSAM (KSDS) Skip Sequential Read on page 19-12 for the
statements used to create VSAM files.

Key Sequence VSAM (KSDS) Create
Use VISION:Results statements to define the input file and the file to be created
(output). If you have not specified OPTION VSAMCAT in your program or the
keyword VSAMCAT=Y in the DYLINSTL macro and the JCL does not include the
DD or DLBL statement for the file, you must code one of the following:

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MYFILE,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MYFILE DD DSN=MY.FILE.IDENT,DISP= ...

Figure 19-4 VSAM JCL

DEFINE CLUSTER (NAME (MY.FILE.IDENT) -
FILE (MYFILE) -
TRACKS (4,1) -
KEYS (5,1) -
RECSZ (40,40) -
REUSE -
SPEED) -

DATA (NAME (MY.FILE.DATA) -
FREESPACE (50,25)) -

INDEX (NAME (MY.FILE.INDEX))

Figure 19-5 IDCAMS (Access Method Services)

F Fixed-length records

V Variable-length records

S Spanned variable-length records
19–4 VISION:Results Reference Guide

Creating a File
VSAM records are never blocked.

The example above reads each record on the input file and copies it to the output
file, unchanged. If record selection or reformatting is required, see the
VISION:Results Getting Started Guide for information on defining fields (data
items). For more information on record selection and data manipulation, see
Chapter 7, Using the IF Command and Chapter 10, Using the MOVE Command.

The keyword REUSE causes any data already in the file (should such be the case)
to be replaced by the new data. If REUSE is not specified, the new input records
are inserted among the existing records according to the key. The key of a new
record must not match that of an existing one. If REUSE is coded in your FILE
statement, it must also have been specified in the IDCAMS DEFINE or ALTER run.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

For example:

To create variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The records on the input file must be in sequence by key for this run. In other
words, each record written to the output file must have a key higher than the key
in the previous record. Duplicates are not allowed.

FILE TAPEIN FB 40 4800
FILE MYFILE KSDS OUTPUT FROM TAPEIN F REUSE

Figure 19-6 Key Sequence VSAM (KSDS)

FILE MYFILE VSAM OUTPUT FROM TAPEIN REUSE

Figure 19-7 Coding VSAM in the FILE Statement
VSAM Processing 19–5

Creating a File
Entry Sequence VSAM (ESDS) Create
Use VISION:Results statements to define the input file and the file to be created
(output). If you have not specified OPTION VSAMCAT in your program or the
keyword VSAMCAT=Y in the DYLINSTL macro and the JCL does not include the
DD or DLBL statement for the file, you must code one of the following:

VSAM records are never blocked.

The example above reads each record on the input file and writes it to the output
file, unchanged. If record selection or reformatting is required, see the
VISION:Results Getting Started Guide for information on defining fields (data
items). Also, see Chapter 7, Using the IF Command and Chapter 10, Using the MOVE
Command for record selection and data manipulation information.

The keyword REUSE causes any data already in the file (should such be the case)
to be replaced with the new data. If REUSE is not specified, all new records are
added to the end of any existing data. If REUSE is coded in your FILE statement,
it must also have been specified in the IDCAMS DEFINE or ALTER run.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

As each record is added to an ESDS VSAM file, its relative byte address (RBA) is
returned to you as either a 4-byte binary or 16-byte packed number. This number
can be used as the record key for subsequent random access to the file. You must
use RELBYTEX there is any chance that the returned RBA will exceed 4GB in
value. If you need this value, code:

� dataname contains the RBA of the record just written as a 4-byte binary number
when RELBYTE is used, or a 16-byte packed number when RELBYTEX is used.

� It can be any data name that is not defined elsewhere in your program.

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE TAPEIN FB 40 4800
FILE MYFILE ESDS OUTPUT FROM TAPEIN F REUSE

Figure 19-8 Coding in the FILE Statement Example 1

FILE filename ESDS ... RELBYTE dataname

or

FILE filename ESDS ... RELBYTEX dataname

Figure 19-9 Coding in the FILE Statement Example 2
19–6 VISION:Results Reference Guide

Creating a File
If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

To create variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

Relative Record VSAM (RRDS) Create
Use VISION:Results statements to define the input file and the file to be created
(output). You also need one or more procedural statements to set up the relative
record number (or slot number) of each output record.

If you have not specified OPTION VSAMCAT in your program or the keyword
VSAMCAT=Y in the DYLINSTL macro and the JCL does not include the DD or
DLBL statement for the file, you must code F (for fixed-length records). VSAM
records are never blocked.

The RELREC keyword is required. It must be followed by a data name not defined
elsewhere in the program. The value of the data name becomes the relative record
number of any given output record. Each record written to the file must have a
relative record number higher than the previous record. Duplicates are not
allowed.

The example above reads each record on the input file and copies it to the output
file, unchanged, using the bin number value in each input record to establish the
relative record number of each output record. If selection or reformatting is
required, see the VISION:Results Getting Started Guide for information on defining
fields (data items). Also, see Chapter 7, Using the IF Command and Chapter 10,
Using the MOVE Command for record selection and data manipulation information.

The keyword REUSE causes any data already in the file (should such be the case)
to be replaced by the new data. If REUSE is not specified, the new input records
are inserted among the existing records according to relative record number. The
number of a new record must not match that of an existing one. If REUSE is coded
in your FILE statement, it must also have been specified in the IDCAMS DEFINE
or ALTER run.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

FILE MYFILE VSAM OUTPUT FROM TAPEIN REUSE

Figure 19-10 Coding in the FILE Statement Example 3

FILE TAPEIN FB 40 4800
BIN_NUMBER 4 17 PD

FILE MYFILE RRDS OUTPUT FROM TAPEIN F REUSE RELREC BINNUM
MOVE BIN_NUMBER TO BINNUM

Figure 19-11 Relative Record VSAM (RRDS)
VSAM Processing 19–7

Sequential Read
If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

For example:

Sequential Read
This section describes reading a VSAM file starting with the first record and
reading serially until end of file occurs or a STOP command is issued by the
VISION:Results program.

To read a file, you need to describe the file to the operating system using JCL.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

See Key Sequence VSAM (KSDS) Sequential Read on page 19-8, Entry Sequence
VSAM (ESDS) Sequential Read on page 19-9, and Relative Record VSAM (RRDS)
Sequential Read on page 19-10 for the statements used to read VSAM files.

Key Sequence VSAM (KSDS) Sequential Read
Use a FILE statement to define the input file. If you have not specified OPTION
VSAMCAT in your program or the keyword VSAMCAT=Y in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file, you
must code one of the following:

VSAM records are never blocked.

FILE MYFILE VSAM OUTPUT FROM TAPEIN REUSE RELREC BINNUM

Figure 19-12 Coding VSAM Output in the FILE Statement

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MYFILE,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MYFILE DD DSN=MY.FILE.IDENT,DISP=SHR

Figure 19-13 Reading a File JCL

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE MYFILE KSDS F 40

Figure 19-14 Key Sequence VSAM (KSDS)
19–8 VISION:Results Reference Guide

Sequential Read
To read variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The example above reads each record on the input file in ascending order by key
and makes the record available to any procedure logic that follows. Record
selection and printing, data handling and definition, and reporting are described
in the VISION:Results Getting Started Guide and in Chapter 7, Using the IF Command,
Chapter 10, Using the MOVE Command, and Chapter 16, Using Report Statements.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

Entry Sequence VSAM (ESDS) Sequential Read
Use a FILE statement to define the input file. If you have not specified OPTION
VSAMCAT in your program or the keyword VSAMCAT=Y in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file, you
must code one of the following:

VSAM records are never blocked.

To read variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The example above reads each record on the input file and makes the record
available to any procedure logic that follows. Record selection and printing, data
handling and definition, and reporting are described in the VISION:Results Getting
Started Guide and Chapter 7, Using the IF Command, Chapter 10, Using the MOVE
Command, and Chapter 16, Using Report Statements.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

FILE MYFILE VSAM

Figure 19-15 Key Sequence VSAM (KSDS) Option

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE MYFILE ESDS F 40

Figure 19-16 Entry Sequence VSAM (ESDS)
VSAM Processing 19–9

Sequential Read
If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

For example:

As each record is read from an ESDS VSAM file, its relative byte address (RBA) is
returned to you as either a 4-byte binary or 16-byte packed number. This number
can be used as the record address for subsequent random access to the file. You
must use RELBYTEX if there is any chance that the returned RBA will exceed
46 bytes in value. If you need this value, code:

� dataname contains the RBA of the record just written as a 4-byte binary number
when RELBYTE is used, or a 16-byte packed number when RELBYTEX is used.

� It can be any data name that is not defined elsewhere in your program.

Relative Record VSAM (RRDS) Sequential Read
Use a FILE statement to define the input file. If you have not specified OPTION
VSAMCAT in your program or the keyword VSAMCAT=Y in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file, you
must code an F (for fixed-length records). VSAM records are never blocked.

The example above reads each record on the input file in ascending order by
relative record number and makes the record available to any procedure logic that
follows. Record selection and printing, data handling and definition, and
reporting are described in the VISION:Results Getting Started Guide and Chapter 7,
Using the IF Command, Chapter 10, Using the MOVE Command, and Chapter 16,
Using Report Statements.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

FILE MYFILE VSAM

Figure 19-17 Entry Sequence VSAM (ESDS) Option

FILE filename ESDS ... RELBYTE dataname

or

FILE filename ESDS ... RELBYTEX dataname

Figure 19-18 Coding in the FILE Statement Example 2

FILE MYFILE RRDS F 40

Figure 19-19 Relative Record VSAM (RRDS)
19–10 VISION:Results Reference Guide

Limited (Skip) Sequential Read
For example:

As each record is read from an RRDS VSAM file, its relative record number is
returned to you. This 4-byte binary number can be used as the record key for
subsequent random access to the file. If you need this value, code:

� recnum contains the relative record number of the record just read.

� It can be any data name that is not defined elsewhere in your program.

Limited (Skip) Sequential Read
This section describes reading a VSAM file by skipping to a particular record in the
file and reading records serially from that point until some condition is met or end
of file is encountered. In either case, another similar retrieval can then be initiated,
and so on, as often as needed. You must use a READ command to cause the file to
be read, and must code a STOP statement to end the run unless your program has
a SORT.

To read a file, describe the file to the operating system using JCL.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

See Key Sequence VSAM (KSDS) Skip Sequential Read on page 19-12, Entry
Sequence VSAM (ESDS) Skip Sequential Read on page 19-16, and Relative Record
VSAM (RRDS) Skip Sequential Read on page 19-18 for the statements used to read
VSAM files in skip sequential mode.

FILE MYFILE VSAM

Figure 19-20 Coding VSAM in the FILE Statement

FILE filename RRDS ... RELREC recnum

Figure 19-21 Relative Record Number of RRDS VSAM File

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MYFILE,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MYFILE DD DSN=MY.FILE.IDENT,DISP=SHR

Figure 19-22 Reading a VSAM File by Skipping to a Particular Record
VSAM Processing 19–11

Limited (Skip) Sequential Read
Key Sequence VSAM (KSDS) Skip Sequential Read
Use a FILE statement to define the input file. If you have not specified OPTION
VSAMCAT in your program or the keyword VSAMCAT=Y in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file, you
must code one of the following:

VSAM records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

For example:

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE MYFILE KSDS SKIP SEARCHKEY STATUS STATFLG
F 40 KEYLEN 5
POSITION POSCODE PARTKEY 3 (optional)

Figure 19-23 VSAM (KSDS) Skip Sequential Read without OPTION VSAMCAT

FILE MYFILE VSAM SKIP SEARCHKEY STATUS STATFLG
POSITION POSCODE PARTKEY 3 (optional)

Figure 19-24 VSAM (KSDS) Skip Sequential Read with OPTION VSAMCAT
19–12 VISION:Results Reference Guide

Limited (Skip) Sequential Read
The following keywords are required:

The following keyword is optional if you specified OPTION VSAMCAT in your
program or the VSAMCAT=Y keyword in the DYLINSTL macro and the JCL does
not include the DD or DLBL statement for the file:

SKIP dataname Any name not defined elsewhere in your program. Its
length is equal to the key length. It is used to hold the
key of the record to be searched for. It is assumed to
have a data type of CH (character). If your key is
signed numeric, packed decimal, or binary, you must
code NU, PD, or BI, respectively, after dataname:

SKIP dataname PD

Also, if the number of decimal places is other than
zero, code it after the data type:

SKIP dataname PD 2

Note: Reading in a skip sequential file always occurs
in a forward manner. However, skipping to a new
position within that file can occur forwards and
backwards from the current record position. The
POSITION dataname can be blank, G, or E.

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains one of the following
values after a READ has been issued for this file:

blank No record found.

Y Record found.

E End of file.

I Duplicate or invalid key.

KEYLEN nnn Specifies the length of the record key. The allowable
values for nnn are 1 to 255.
VSAM Processing 19–13

Limited (Skip) Sequential Read
The following keywords are optional:

Code procedure logic to position the file based on a starting key and read records
until some condition is met. For example:

Each record in a file INKEYS contains a STARTKEY and an ENDKEY. The
program initializes the SKIP dataname (SEARCHKEY) and reads the first record
on the VSAM file whose key is equal to or greater than the starting key. It then

POSITION dataname Any name not defined elsewhere in your program. It
is a 1-byte field that can be used to control the type of
search (positioning) as follows:

blank /
G

Start reading at the first record whose key
is equal to or greater than the value in the
SKIP dataname.

A blank is reset to a G after the next read.

E Start reading at the record whose key is
equal to the value in the SKIP dataname.

R Repeat the previous positioning.

VISION:Results recognizes the need to skip to a new starting point in the file by
comparing the contents of the SKIP dataname with its previous value. To restart
the process with the same SKIP key as the previous time (if required), move an
R to the POSITION dataname. The R is reset to the previous POSITION
dataname (E or G) after the next read.

PARTKEY nnn nnn is the length of the partial (generic) key. It can be
any value between 1 and 254, but it must be less than
the full key length (KEYLEN).

FILE MYFILE KSDS F 40
KEYLEN 5 SKIP SEARCHKEY
STATUS STATFLG
VSAMREC 40
VSAMKEY 51

FILE INKEYS F 80
STATUS INKEYFLG
STARTKEY 51
ENDKEY 56

.

.
NXTGROUP:
READ INKEYS
IF INKEYFLG EQ 'E' STOP ENDIF
MOVE STARTKEY TO SEARCHKEY
MOVE 'G' TO POSCODE (optional)

READLOOP:
READ MYFILE
IF STATFLG NE 'Y' GOTO NXTGROUP ENDIF
IF VSAMKEY GT ENDKEY GOTO NXTGROUP ENDIF
HEXPRINT VSAMREC
GOTO READLOOP

Figure 19-25 Code Procedure Logic Example (KSDS)
19–14 VISION:Results Reference Guide

Limited (Skip) Sequential Read
checks to make sure that a record was found. Finally, the key of the record just read
is compared to the highest key required (ENDKEY). All records on the file whose
keys fall within the limits are printed, and the program returns to read the next
INKEYS record.

When the INKEYS file reaches the end, the program issues a STOP command. You
must always tell VISION:Results when to end the run if a skip sequential file is
used.

To read variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

Generic Search
A generic search involves using a partial key to point to the group of records
required. For example, the first 3 bytes of your key contain a department number
and you want to obtain all the records for Department 341. Just add the PARTKEY
nnn clause to the FILE statement and move the department number to the SKIP
dataname.

KSDS is shown in bold and is optional when using the OPTION VSAMCAT
statement or the VSAMCAT=Y keyword in the DYLINSTL macro and the JCL does
not include the DD or DLBL statement for the file. Type VSAM in the FILE
statement.

VISION:Results starts reading records at the first one whose key is equal to or
greater than 341, followed by all binary 00s.

FILE MYFILE KSDS ... PARTKEY 3
.

WORKAREA
.

DEPT341 3 VALUE '341'
.

MOVE DEPT341 TO SEARCHKEY LENGTH 3
READLOOP:
READ MYFILE etc.
.
.

GOTO READLOOP

Figure 19-26 PARTKEY nnn Clause Added to the FILE Statement
VSAM Processing 19–15

Limited (Skip) Sequential Read
Entry Sequence VSAM (ESDS) Skip Sequential Read
Use a FILE statement to define the input file. If you have not specified OPTION
VSAMCAT in your program or the keyword VSAMCAT=Y in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file, you
must code one of the following:

VSAM records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

The following keywords are required:

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE MYFILE ESDS SKIP SEARCHRBA STATUS STATFLG
RELBYTE ESDSRBA F 40
POSITION POSCODE (optional)

Figure 19-27 VSAM (ESDS) Skip Sequential Read without OPTION VSAMCAT

FILE MYFILE VSAM SKIP SEARCHRBA STATUS STATFLG
RELBYTE ESDSRBA
POSITION POSCODE (optional)

Figure 19-28 VSAM (ESDS) Skip Sequential Read with OPTION VSAMCAT

SKIP dataname Any name not defined elsewhere in your program. Its
length is always 4. It holds the relative byte address
(RBA) of the record to be searched for. It cannot be
used with SKIPX or RELBYTEX

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains one of the following
values after a READ has been issued for this file:

blank Record not found.

Y Record found.

E End of file.

I Duplicate or invalid key.
19–16 VISION:Results Reference Guide

Limited (Skip) Sequential Read
The following keyword is optional:

RELBYTE dataname Any name not defined elsewhere in your program. Its
length is always 4. After a READ, the system returns
the 4-byte binary RBA of the record just read in
dataname. It cannot be used with RELBYTEX or
SKIPX.

RELBYTEX dataname Any name not defined elsewhere in your program. Its
length is always 16. After a READ, the system returns
the 16-byte packed RBA of the record just read in
dataname. Use this keyword instead of RELBYTE if
the VSAM file is greater than 4GB. It cannot be used
with RELBYTE or SKIP.

SKIPX dataname Any name not defined elsewhere in your program. Its
length is always 16. It holds the extended relative byte
address (xRBA) of the record to be searched for. se this
keyword instead of SKIP if the VSAM file is greater
than 4GB. It cannot be used with RELBYTE or SKIP.

POSITION
dataname

Any name not defined elsewhere in your program. It is a
1-byte field that can be used to control the type of search
(positioning) as follows:

E
(default)

Start reading at the record whose RBA is equal
to the value in dataname.

R Repeat the previous positioning.

VISION:Results recognizes the need to skip to a new starting point in the file by
comparing the contents of the SKIP or SKIPX dataname with its previous value.
To restart the process with the same RBA as the previous time (if required), move
an R to the POSITION dataname.
VSAM Processing 19–17

Limited (Skip) Sequential Read
Code procedure logic to position the file based on a starting key and read records
until some condition is met. For example:

Above, each record in a file INKEYS contains a STARTRBA and an ENDRBA. The
program initializes the SKIP dataname (SEARCHRBA) and reads the record on the
VSAM file that has an RBA equal to the starting RBA. It then checks to make sure
that the record was found. Finally, the RBA of the record just read is compared to
the highest RBA required (ENDRBA). All records on the file whose RBAs fall
within the limits are printed (together with their RBAs), and the program returns
to read the next INKEYS record.

When the INKEYS file reaches the end, the program issues a STOP command. It is
always necessary to tell VISION:Results when to end the run if a skip sequential
file is used.

To read variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

Relative Record VSAM (RRDS) Skip Sequential Read
Use a FILE statement to define the input file. If you have not specified OPTION
VSAMCAT in your program or the keyword VSAMCAT=Y in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file, you
must code an F (for fixed-length records). VSAM records are never blocked.

FILE MYFILE ESDS F 40
SKIP SEARCHRBA
STATUS STATFLG
RELBYTE ESDSRBA

ESDSREC 40

FILE INKEYS F 80
STATUS INKEYFLG

STARTRBA 4 1 BI
ENDRBA 4 5 BI
.
.
NXTGROUP:
READ INKEYS
IF INKEYFLG EQ 'E' STOP ENDIF
MOVE STARTRBA TO SEARCHRBA

READLOOP:
READ MYFILE
IF STATFLG NE 'Y' GOTO NXTGROUP ENDIF
IF ESDSRBA GT ENDRBA GOTO NXTGROUP ENDIF
MOVE ESDSRBA TO DYLPRTCOMM
HEXPRINT ESDSREC
GOTO READLOOP

Figure 19-29 Code Procedure Logic Example (ESDS)

FILE MYFILE RRDS F 40 SKIP SEARCHKEY STATUS STATFLG
POSITION POSCODE RELREC RECNUM (optional)

Figure 19-30 VSAM (RRDS) Skip Sequential Read without OPTION VSAMCAT
19–18 VISION:Results Reference Guide

Limited (Skip) Sequential Read
If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

The following keywords are required:

The following keywords are optional:

FILE MYFILE VSAM SKIP SEARCHKEY STATUS STATEFLG
POSITION POSCODE RELREC RECNUM (optional)

Figure 19-31 VSAM (RRDS) Skip Sequential Read with OPTION VSAMCAT

SKIP dataname Any name not defined elsewhere in your program. Its
length is always 4. It holds the relative record number
of the record to be searched for.

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains one of the following
values after a READ has been issued for this file:

blank No record found.

Y Record found.

E End of file.

I Duplicate or invalid key.

POSITION dataname Any name not defined elsewhere in your program. It
is a 1-byte field that can be used to control the type of
search (positioning) as follows:

blank /
G

Start reading at the first record in which the
relative record number is equal to or
greater than the value in the SKIP
dataname.

E Start reading at the record whose relative
record number is equal to the value in the
SKIP dataname.

R Repeat the previous positioning.

VISION:Results recognizes the need to skip to a new starting point in the file by
comparing the contents of the SKIP dataname with its previous value.
Therefore, to restart the process with the same SKIP key as the previous time (if
required), you would need to move an R to the POSITION dataname.

RELREC dataname Relative record number of the record read, if
positioning was successful.
VSAM Processing 19–19

Random Read
Code procedure logic to position the file based on a starting record number and
read records until some condition is met. For example:

Above, each record in a file INKEYS contains a STARTNUM and an ENDNUM.
The program initializes the SKIP dataname (SEARCHKEY) and reads the first
record on the VSAM file whose key is equal to or greater than the starting key. It
then checks to make sure that a record was found. Finally, the key of the record just
read is compared to the highest key required (ENDNUM). All records on the file
whose keys fall within the limits are printed, and the program returns to read the
next INKEYS record.

When the INKEYS file reaches the end, the program issues a STOP command. It is
always necessary to tell VISION:Results when to end the run if a skip sequential
file is used.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

Random Read
This section describes reading records, one at a time and in no particular sequence,
from a VSAM file. The program must identify precisely which record is wanted
prior to issuing the READ request. After the READ, one of two conditions exists:
either the requested record is found, or it is not found. If the record is not found,
the program must not attempt to access the record area because it may not have
been allocated.

FILE MYFILE RRDS F 40
SKIP SEARCHKEY
STATUS STATFLG POSITION POSCODE
RELREC RECNUM
VSAMREC 40

FILE INKEYS F 80 STATUS INKEYFLG
STARTNUM 4 BI
ENDNUM 4 BI

.

.
NXTGROUP:
READ INKEYS
IF INKEYFLG EQ 'E' STOP ENDIF
MOVE STARTNUM TO SEARCHKEY
MOVE 'G' TO POSCODE (optional)

READLOOP:
READ MYFILE
IF STATFLG NE 'Y' GOTO NXTGROUP ENDIF
IF RECNUM GT ENDNUM
GOTO NXTGROUP ENDIF
PRINT VSAMREC
GOTO READLOOP

Figure 19-32 Code Procedure Logic Example (RRDS)
19–20 VISION:Results Reference Guide

Random Read
To read a file, describe the file to the operating system using JCL.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

See Key Sequence VSAM (KSDS) Random Read on page 19-21, Entry Sequence
VSAM (ESDS) Random Read on page 19-23, and Relative Record VSAM (RRDS)
Random Read on page 19-25 for the statements used to read VSAM files in random
mode.

Key Sequence VSAM (KSDS) Random Read
Use a FILE statement to define the input file. If you have not specified OPTION
VSAMCAT in your program or the keyword VSAMCAT=Y in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file, you
must code one of the following:

VSAM records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

For example:

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MYFILE,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MYFILE DD DSN=MY.FILE.IDENT,DISP=SHR

Figure 19-33 Random Reading a File Using JCL

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE MYFILE KSDS RANDOM SEARCHKEY STATUS STATFLG
F 40 KEYLEN 5

Figure 19-34 Key Sequence VSAM (KSDS) Random Read without OPTION
VSAMCAT

FILE MYFILE VSAM RANDOM SEARCHKEY STATUS STATFLG

Figure 19-35 Key Sequence VSAM (KSDS) Random Read with OPTION VSAMCAT
VSAM Processing 19–21

Random Read
The following keywords are required:

The following keyword is optional if you specified OPTION VSAMCAT in your
program or the VSAMCAT=Y keyword in the DYLINSTL macro and the JCL does
not include the DD or DLBL statement for the file:

Code procedure logic to set up the search key, read, and check the result:

RANDOM dataname Any name not defined elsewhere in your program. Its
length is equal to the key length. It holds the key of the
record to be searched for. It is assumed to have a data
type of CH (character). If your key is signed numeric,
packed decimal, or binary, you must code NU, PD, or
BI, respectively, after dataname:

RANDOM dataname PD

Also, if the number of decimal places is other than
zero, code it after the data type:

RANDOM dataname PD 2

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains one of the following
values after a READ has been issued for this file:

blank No record found.

Y Record found.

E End of file.

I Invalid or duplicate key.

KEYLEN nnn Specifies the length of the record key. The allowable
values for nnn are 1 to 255.

FILE MYFILE KSDS F 40
KEYLEN 5
RANDOM SEARCHKEY
STATUS STATFLG

VSAMREC 40

FILE TAPEIN FB 80 3200
STATUS TAPESTAT

EMPLOYEE 5
.
.
READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLOYEE TO SEARCHKEY
READ MYFILE
IF STATFLG NE 'Y' GOTO NOTFOUND ENDIF
HEXPRINT VSAMREC
GOTO READLOOP

Figure 19-36 Code Procedure Logic Example (KSDS)
19–22 VISION:Results Reference Guide

Random Read
Above, each record in a file TAPEIN contains an employee number (EMPLOYEE).
The program moves this number to the RANDOM dataname as a key and issues a
READ for the VSAM file. If the record is not found, the program branches to an
error routine. If the record is found, the record prints and the program returns to
read another TAPEIN record.

When the TAPEIN file reaches the end, the program issues a STOP command. It is
always necessary to tell VISION:Results when to end the run if a RANDOM read
is used.

To read variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

Entry Sequence VSAM (ESDS) Random Read
Use a FILE statement to define the input file. If you have not specified OPTION
VSAMCAT in your program or the keyword VSAMCAT=Y in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file, you
must code one of the following:

VSAM records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

For example:

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE MYFILE ESDS RANDOM SEARCHRBA STATUS STATFLG F 40

Figure 19-37 Entry Sequence VSAM (ESDS) Random Read without OPTION
VSAMCAT

FILE MYFILE VSAM RANDOM SEARCHRBA STATUS STATFLG

Figure 19-38 Entry Sequence VSAM (ESDS) Random Read with OPTION VSAMCAT
VSAM Processing 19–23

Random Read
The following keywords are required:

For fixed-length records, the relative byte address (RBA) of any given record
number can be calculated. The RBA of any record is the sum of the lengths of all
preceding records. For fixed-length records, the RBA of any record n is found as
follows:

RBA = (n - 1) * length

Code procedure logic to set up the search key, read, and check the result:

RANDOM dataname Any name not defined elsewhere in your program. Its
length is always 4. It holds the relative byte address
(RBA) of the record to be searched for. It cannot be
used with RANDOMX.

RANDOMX dataname Any name not defined elsewhere in your program. Its
length is always 16. It holds the relative byte address
(RBA) of the record to be searched for. Use this
keyword instead of RANDOMX if the VSAM file is
greater than 4GB. It cannot be used with RANDOM.

STATUS dataname Any name not defined elsewhere in your program. It is
a 1-byte field that contains one of the following values
after a READ has been issued for this file:

blank Record not found.

Y Record found.

E End of file.

I Duplicate or invalid key.

FILE MYFILE ESDS F 40
RANDOM SEARCHRBA
STATUS STATFLG

VSAMREC 40

FILE TAPEIN FB 80 3200
STATUS TAPESTAT

RECNUM 4 BI
.
.
READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
SEARCHRBA = (RECNUM - 1) * 40
READ MYFILE
IF STATFLG NE 'Y' GOTO NOTFOUND ENDIF
HEXPRINT VSAMREC
GOTO READLOOP
.
.

Figure 19-39 Code Procedure Logic Example (ESDS)
19–24 VISION:Results Reference Guide

Random Read
Above, each record in a file TAPEIN contains the record number (RECNUM) of a
related record in an ESDS file. The ESDS file has fixed-length, 40-byte records. The
program calculates the RBA of the required record, places the result in the
RANDOM dataname (SEARCHRBA), and issues a READ for the VSAM file. If the
record is not found, the program branches to an error routine. If the record is
found, it is printed and the program returns to read another TAPEIN record.

When the TAPEIN file reaches the end, the program issues a STOP command. It is
always necessary to tell VISION:Results when to end the run if a RANDOM or
RANDOMX read is used.

To read variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL above.

Relative Record VSAM (RRDS) Random Read
Use a FILE statement to define the input file. If you have not specified OPTION
VSAMCAT in your program or the keyword VSAMCAT=Y in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file, you
must code an F (for fixed-length records). VSAM records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

FILE MYFILE RRDS F 40 RANDOM SEARCHKEY STATUS STATFLG

Figure 19-40 Relative Record VSAM (RRDS) Random Read without OPTION
VSAMCAT

FILE MYFILE VSAM RANDOM SEARCHKEY STATUS STATFLG

Figure 19-41 Relative Record VSAM (RRDS) Random Read with OPTION VSAMCAT
VSAM Processing 19–25

Random Read
The following keywords are required:

Code procedure logic to set up the search key, read, and check the result:

Above, each record in a file TAPEIN contains a slot number (SLOTNUM). The
program moves this number to the RANDOM dataname as a key and issues a
READ for the VSAM file. If the record is not found, the program branches to an
error routine. If the record is found, it is printed and the program returns to read
another TAPEIN record.

When the TAPEIN file reaches the end, the program issues a STOP command. It is
always necessary to tell VISION:Results when to end the run if a RANDOM read
is used.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL above.

RANDOM dataname Any name not defined elsewhere in your program. Its
length is always 4. It holds the relative record number
of the record to be searched for.

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains one of the following
values after a READ has been issued for this file:

blank No record found.

Y Record found.

E End of file.

I Duplicate or invalid key.

FILE MYFILE RRDS F 40
RANDOM SEARCHKEY
STATUS STATFLG

VSAMREC 40

FILE TAPEIN FB 80 3200
STATUS TAPESTAT

SLOTNUM 4 BI
.
.
READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE SLOTNUM TO SEARCHKEY
READ MYFILE
IF STATFLG NE 'Y' GOTO NOTFOUND ENDIF
HEXPRINT VSAMREC
GOTO READLOOP
.
.

Figure 19-42 Code Procedure Logic Example (RRDS)
19–26 VISION:Results Reference Guide

Sequential Update
Sequential Update
This section describes reading each record in a VSAM file, starting at the
beginning, and updating the file in place (that is, without copying the old file to a
new file). You must use a READ command to cause the file to be read, and a STOP
command must be coded to end the run, unless your program has a SORT.

Note: This type of run is not restartable. Once one record has been added,
changed, or deleted, the file is not the same, regardless of why the job ended.
Create a method to recover the original file, as a precaution, before running a
program that uses this technique.

For KSDS and RRDS VSAM files, you can add (insert) new records, change existing
records, and delete (physically remove) existing records.

For ESDS VSAM files, you can change existing records and add new records to the
end of the file only. You cannot change the length of an existing record. Records
can be logically deleted by setting a flag of your choice in the record, checked by
subsequent application programs to determine the status of the record. You can
remove deleted records by selectively copying the file to another file.

To read a file, describe the file to the operating system using JCL.

Note the disposition of OLD (above). This choice (also available under VSE, Levels
2 and up) prevents other users from accessing the file while your program is
updating it.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

See Key Sequence VSAM (KSDS) Sequential Update on page 19-27, Entry
Sequence VSAM (ESDS) Sequential Update on page 19-30, and Using the
RELBYTE or RELBYTEX dataname on page 19-31 for the statements needed to
sequentially update VSAM files.

Key Sequence VSAM (KSDS) Sequential Update
If you have not specified OPTION VSAMCAT in your program or the keyword
VSAMCAT=Y in the DYLINSTL macro and the JCL does not include the DD or
DLBL statement for the file, you must code one of the following:

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MSTRFL,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MSTRFL DD DSN=MY.FILE.IDENT,DISP=OLD

Figure 19-43 Reading a File Using JCL

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.
VSAM Processing 19–27

Sequential Update
VSAM records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

The following keywords are required:

The following keyword is optional if you specified OPTION VSAMCAT in your
program or the VSAMCAT=Y keyword in the DYLINSTL macro and the JCL does
not include the DD or DLBL statement for the file:

The following keywords are optional:

Suppose that you have a KSDS employee master file and want to implement a flat
9% raise for all employees hired before Oct. 15, 1995. In addition, you want to
delete the master record of any employee who was terminated before Apr. 15,
1995.

FILE MSTRFL KSDS IO F 40 KEYLEN 5
ERASE ERASEFLG STATUS STATFLG

MASTREC 40 MASTEMPL 5 2

Figure 19-44 Key Sequence VSAM (KSDS) Sequential Update without OPTION
VSAMCAT

FILE MSTRFL VSAM IO
ERASE ERASEFLG STATUS STATFLG

MASTREC 40 MASTEMPL 5 2

Figure 19-45 Key Sequence VSAM (KSDS) Sequential Update with OPTION
VSAMCAT

IO Allows the file to be updated in place. The record
format and record size must be specified on the FILE
statement in conjunction with this keyword, unless
VSAMCAT is in effect and VSAM is coded in the FILE
statement.

KEYLEN nnn Specifies the length of the record key. The allowable
values for nnn are 1 to 255.

ERASE dataname Any name not defined elsewhere in your program. It
is a 1-byte field that should contain an E to cause a
WRITE command to delete the record just read.

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains an E when end of file
occurs.
19–28 VISION:Results Reference Guide

Sequential Update
The following procedure logic can be coded:

To insert a record, read the file until you find the first record with a key higher than
one to be added. Then, build the new record in the record area and issue a WRITE.
Inserting a record causes the file to be positioned at that new record. The next
READ of the master file retrieves the same record that caused the original
insertion.

When the MSTRFL file reaches the end, the program issues a STOP command. You
must specify when to end the run if an IO file is used.

To update variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The file name MSTRFL must be the same as the file name or ddname specified in
your JCL (above).

FILE MSTRFL RSDS IO F 40
KEYLEN 5
ERASE ERASEFLG
STATUS STATFLG

MASTREC 40
MASTEMPL 5
HIRE_DATE 8 7
TERM_DATE 8 15
RATE 2 23 RI
.
.
READMSTR:
READ MSTRFL
IF MASTFLAG EQ 'E' STOP ENDIF

COMPARE:
IF (TERM_DATE NE 0 AND TERM_DATE LT 19950415)
MOVE 'E' TO ERASEFLG GOTO REWRITE ENDIF

IF (HIRE_DATE LT 19951015 AND TERM_DATE EQ 0)
RATE = RATE * 1.09 GOTO REWRITE ENDIF

GOTO READMSTR
REWRITE:
WRITE MSTRFL
GOTO READMSTR

Figure 19-46 Code Procedure Logic Example (KSDS)
VSAM Processing 19–29

Sequential Update
Entry Sequence VSAM (ESDS) Sequential Update
Use a FILE statement to define the input file. If you have not specified OPTION
VSAMCAT in your program or the keyword VSAMCAT=Y in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file, you
must code one of the following:

VSAM records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

The following keyword is required:

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE MSTRFL ESDS IO F 40 STATUS STATFLG RELBYTE MASTRBA

Figure 19-47 Entry Sequence VSAM (ESDS) Sequential Update without OPTION
VSAMCAT

FILE MSTRFL VSAM IO STATUS STATFLG RELBYTE MASTRBA

Figure 19-48 Entry Sequence VSAM (ESDS) Sequential Update with OPTION
VSAMCAT

IO Allows the file to be updated in place. Record format
and record size must be specified on the FILE
statement in conjunction with this keyword, unless
VSAMCAT is in effect and VSAM is coded in the FILE
statement.
19–30 VISION:Results Reference Guide

Sequential Update
The following keywords are optional:

Suppose that certain records on an ESDS file are missing a date. You need to find
those records and substitute today's date. The following procedure logic can be
coded:

When the MSTRFL file reaches the end, the program issues a STOP command. You
must specify when to end the run if an IO file is used.

To update variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The file name MSTRFL must be the same as the file name or ddname specified in
your JCL (above).

Using the RELBYTE or RELBYTEX dataname
If the records on the master file are identified by their relative byte address (RBA)
on a transaction file, the RELBYTE or RELBYTEX dataname can be used after a
READ command to match masters and transactions.

RELBYTE dataname Any name not defined elsewhere in your program. Its
length is always 4. After a READ, the system returns
the 4-byte binary, relative byte address (RBA) of the
record just read in dataname. It cannot be used with
RELBYTEX.

RELBYTEX dataname Any name not defined elsewhere in your program. Its
length is always 16. After a READ, the system returns
the 16-byte packed, relative byte address (RBA) of the
record just read in dataname. Use this keyword
instead of RELBYTE if the VSAM file is greater than
4GB. It cannot be used with RELBYTE.

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains an E when end of file
occurs.

FILE MSTRFL ESDS IO F 40
STATUS STATFLG
RELBYTE MASTRBA

MASTREC 40
DATEINFO 8 25
.
.
READFILE:
READ MSTRFL
IF STATFLG EQ 'E' STOP ENDIF
IF DATEINFO NE '00/00/00'
GOTO READFILE ENDIF

MOVE DYLDATE TO DATEINFO
WRITE MSTRFL
GOTO READFILE

Figure 19-49 Code Procedure Logic Example (ESDS)
VSAM Processing 19–31

Sequential Update
To add a record to the ESDS file after end of file (STATUS dataname = ’E'), move
the new record to the ESDS file record area, move X’FFFFFFFF’ (or -1) to the
RELBYTE dataname, or -1 to the RELBYTEX dataname, and issue the WRITE. This
process can be repeated as required.

Relative Record VSAM (RRDS) Sequential Update
Use VISION:Results statements to define the file. If you have not specified
OPTION VSAMCAT in your program or the keyword VSAMCAT=Y in the
DYLINSTL macro and the JCL does not include the DD or DLBL statement for the
file, you must code an F (for fixed-length records). VSAM records are never
blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

The following keyword is required:

The following keywords are optional:

FILE MSTRFL RRDS IO F 40 RELREC RECNUM
ERASE ERASEFLG STATUS STATFLG

MASTREC 40 MASTEMPL 5 2

Figure 19-50 Relative Record VSAM (RRDS) Sequential Update without OPTION
VSAMCAT

FILE MSTRFL VSAM IO RELREC RECNUM
ERASE ERASEFLG STATUS STATFLG

MASTREC 40 MASTEMPL 5 2

Figure 19-51 Relative Record VSAM (RRDS) Sequential Update with OPTION
VSAMCAT

IO Allows the file to be updated in place. The record
format and record size must be specified on the FILE
statement in conjunction with this keyword, unless
VSAMCAT is in effect and VSAM is coded in the FILE
statement.

RELREC dataname any name not defined elsewhere in your program. It
contains the relative record number of the last record
read and supplies the number of a new record to be
inserted.

ERASE dataname any name not defined elsewhere in your program. It
is a 1-byte field that should contain an E to cause a
WRITE command to delete the record just read.
19–32 VISION:Results Reference Guide

Random Update
Suppose that you have an RRDS employee master file and want to implement a flat
9% raise for all employees hired before October 15, 1995. In addition, you want to
delete the master record of any employee who was terminated before April 15,
1995.

The following procedure logic can be coded:

To insert a record, read the file until you find the first record whose number is
higher than the one to be added. Then, build the new record in the record area,
move its relative record number to the RELREC dataname, and issue a WRITE. The
insertion of a record causes the file to be positioned at that new record. The next
READ of the master file retrieves the same record that caused the original
insertion.

When the MSTRFL file reaches the end, the program issues a STOP command. You
must specify when to end the run if an IO file is used.

The file name MSTRFL must be the same as the file name or ddname specified in
your JCL (above).

Random Update
This section describes the random insertion, changing, and deletion of records on
a VSAM file. The file is updated in place (that is, without copying the old file to a
new file).

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains an E when end of file
occurs.

FILE MSTRFL RRDS IO F 40
RELBYTE MASTRBA
ERASE ERASEFLG
STATUS STATFLG

MASTREC 40
MASTEMPL 5 2
HIRE_DATE 8 7
TERM_DATE 8 15
RATE 2 23 BI
.
.
READMSTR:
READ MSTRFL
IF MASTFLAG EQ 'E' STOP ENDIF

COMPARE:
IF (TERM_DATE NE 0 AND TERM_DATE LT 19950415)
MOVE 'E' TO ERASEFLG GOTO REWRITE ENDIF

IF (HIRE_DATE LT 19951015 AND TERM_DATE EQ 0)
RATE = RATE * 1.09 GOTO REWRITE ENDIF

GOTO READMSTR
REWRITE:
WRITE MSTRFL
GOTO READMSTR

Figure 19-52 Code Procedure Logic Example (RRDS)
VSAM Processing 19–33

Random Update
Note: This type of run is not restartable. Once one record has been added,
changed, or deleted, the file is not the same, regardless of why the job ended.
Create a method of recovering the original file, as a precaution, before running a
program that uses this technique.

For KSDS and RRDS VSAM files, you can add (insert) new records, change existing
records, and delete (physically remove) existing records.

For ESDS VSAM files, you can change existing records and add new records to the
end of the file only. You cannot change the length of an existing record. Records
can be logically deleted by setting a flag of your choice in the record, checked by
subsequent application programs to determine the status of the record. You can
remove deleted records by selectively copying the file to another file.

To update a file, you need to describe the file to the operating system using JCL.

Note the disposition of OLD (above). This choice (also available under VSE, Levels
2 and up) prevents other users from accessing the file while your program is
updating it.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

See Key Sequence VSAM (KSDS) Random Update on page 19-34, Entry Sequence
VSAM (ESDS) Random Update on page 19-37, and Relative Record VSAM (RRDS)
Random Update on page 19-40 for the statements needed to randomly update
VSAM files.

Key Sequence VSAM (KSDS) Random Update
Use VISION:Results statements to define the input file. If you have not specified
OPTION VSAMCAT in your program or the keyword VSAMCAT=Y in the
DYLINSTL macro and the JCL does not include the DD or DLBL statement for the
file, you must code one of the following:

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MSTRFL,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MSTRFL DD DSN=MY.FILE.IDENT,DISP=OLD

Figure 19-53 Updating a File Using JCL

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.
19–34 VISION:Results Reference Guide

Random Update
VSAM records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

For example:

The following keywords are required:

FILE MSTRFL KSDS IO RANDOM SEARCHKEY F 40 KEYLEN 5
ERASE ERASEFLG STATUS STATFLG

MASTREC 40

Figure 19-54 Key Sequence VSAM (KSDS) Random Update without OPTION
VSAMCAT

FILE MSTRFL VSAM IO RANDOM SEARCHKEY
ERASE ERASEFLG STATUS STATFLG

MASTREC 40

Figure 19-55 Key Sequence VSAM (KSDS) Random Update with OPTION VSAMCAT

IO Allows the file to be updated in place. The record
format and record size must be specified on the FILE
statement in conjunction with this keyword, unless
VSAMCAT is in effect and VSAM is coded in the FILE
statement.

RANDOM dataname Any name not defined elsewhere in your program. Its
length is equal to the key length. It holds the key of the
record to be searched for. It is assumed to have a data
type of CH (character). If your key is signed numeric,
packed decimal, or binary, you must code NU, PD, or
BI, respectively, after dataname:

RANDOM dataname PD

Also, if the number of decimal places is other than
zero, code it after the data type:

RANDOM dataname PD 2

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains one of the following
values after a READ has been issued for this file:

blank No record found.

Y Record found.

E End of file.

I Duplicate or invalid key.
VSAM Processing 19–35

Random Update
The following keyword is optional if you specified OPTION VSAMCAT in your
program or the VSAMCAT=Y keyword in the DYLINSTL macro and the JCL does
not include the DD or DLBL statement for the file:

The following keyword is optional:

Suppose that a KSDS VSAM file uses employee number as its key. There is also a
transaction file with records in no particular sequence that have the same format
as records on the VSAM file. If the transaction employee number (EMPLOYEE) is
not on the VSAM file, the employee is added. If the employee transaction matches
a record on the VSAM file, you want to replace the VSAM record or delete it (if the
employee is terminated).

The following procedure logic can be coded:

When the TRANS file reaches the end, the program issues a STOP command. You
must specify when to end the run if an IO RANDOM update is used.

KEYLEN nnn Specifies the length of the record key. The allowable
values for nnn are 1 to 255.

ERASE dataname Any name not defined elsewhere in your program. It
is a 1-byte field that should contain an E to cause a
WRITE command to delete the record just read.

FILE MSTRFL KSDS IO F 40
KEYLEN 5
RANDOM SEARCHKEY
ERASE ERASEFLG
STATUS STATFLG

MASTREC 40

FILE TRANS F 40 STATUS TRANSEOF
TRANREC 40
EMPLOYEE 5 1
TERMINATE 1 6
.
.
READTRAN:
READ TRANS
IF TRANSEOF EQ 'E' STOP ENDIF
MOVE EMPLOYEE TO SEARCHKEY
READ MSTRFL
IF STATFLG NE 'Y' GOTO ADDRTN ENDIF
IF TERMINATE EQ 'Y' MOVE 'E' to ERASEFLG
GOTO REWRITE ENDIF

MOVE TRANREC TO MASTREC
REWRITE:
WRITE MSTRFL
GOTO READTRAN

ADDRTN:
MOVE TRANREC TO MASTREC
WRITE MSTRFL
GOTO READTRAN

Figure 19-56 Code Procedure Logic Example (KSDS)
19–36 VISION:Results Reference Guide

Random Update
Before a record can be replaced, it must be read and found. Before a record can be
added, it must be read and not found, even if you know it is not there.

To update variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The file name MSTRFL must be the same as the file name or ddname specified in
your JCL (above).

Entry Sequence VSAM (ESDS) Random Update
Use VISION:Results statements to define the input file. If you have not specified
OPTION VSAMCAT in your program or the keyword VSAMCAT=Y in the
DYLINSTL macro and the JCL does not include the DD or DLBL statement for the
file, you must code one of the following:

VSAM records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE MSTRFL ESDS IO RANDOM SEARCHRBA F 40
STATUS STATFLG

MASTREC 40 USEDCOUNT 4 27 PD

Figure 19-57 Entry Sequence VSAM (ESDS) Random Update without OPTION
VSAMCAT

FILE MSTRFL VSAM IO RANDOM SEARCHRBA
STATUS STATFLG

MASTREC 40 USEDCOUNT 4 27 PD

Figure 19-58 Entry Sequence VSAM (ESDS) Random Update with OPTION
VSAMCAT
VSAM Processing 19–37

Random Update
The following keywords are required:

Note that for fixed-length records, the relative byte address (RBA) of any given
record number can be calculated. The RBA of any record is the sum of the lengths
of all preceding records. Therefore, for fixed-length records, the RBA of any record
‘n’ is found as follows:

RBA = (n - 1) * length

Suppose that each record in a file TRANS contains the record number (RECNUM)
of a related record in an ESDS file. The ESDS file has fixed-length, 40-byte records.
The program adds the item count from the transaction record (ITEMS) to the
USEDCOUNT in the master record.

IO Allows the file to be updated in place. The record
format and record size must be specified on the FILE
statement in conjunction with this keyword, unless
VSAMCAT is in effect and VSAM is coded in the FILE
statement.

RANDOM dataname Any name not defined elsewhere in your program. Its
length is always 4. It holds the relative byte address
(RBA) of the record to be searched for. It cannot be
used with RANDOMX.

RANDOMX dataname Any name not defined elsewhere in your program. Its
length is always 16. It holds the relative byte address
(RBA) of the record to be searched for. Use this
keyword instead of RANDOMX if the VSAM file is
greater than 4GB. It cannot be used with RANDOM.

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains one of the following
values after a READ has been issued for this file:

blank Record not found.

Y Record found.

E End of file.

I Duplicate or invalid key.
19–38 VISION:Results Reference Guide

Random Update
The procedure logic calculates the RBA of the required record, places the result in
the RANDOM dataname (SEARCHRBA), and issues a READ for the VSAM file. If
the record is not found, the program branches to an error routine. If the record is
found, it is updated and the program returns to read another TRANS record.

When the TRANS file reaches the end, the program issues a STOP command. You
must specify when to end the run if an IO RANDOM read is used.

To update variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46. Remember that you cannot change the
length of a record in an ESDS file.

The file name MSTRFL must be the same as the file name or ddname specified in
your JCL (Figure 19-59).

Using the RANDOM/RANDOMX dataname
When performing Random Update processing, if you need to add a record to the
ESDS file after end of file (STATUS dataname is E), move the new record to the
ESDS record area. Then move X’FFFFFFFF’ or -1 to the RANDOM dataname, or
move -1 to the RANDOMX dataname, and issue the WRITE. This process can be
repeated as required.

FILE MSTRFL ESDS IO F 40
RANDOM SEARCHRBA
STATUS STATFLG

MASTREC 40
USEDCOUNT 4 27 PD

FILE TRANS F 40 STATUS TRANSEOF
RECNUM 4 BI
.
.
READTRAN:
READ TRANS
IF TRANSEOF EQ 'E' STOP ENDIF
SEARCHRBA = (RECNUM - 1) * 40
READ MSTRFL
IF STATFLG NE 'Y' GOTO KEYERROR ENDIF
USEDCOUNT = USEDCOUNT + ITEMS
WRITE MSTRFL
GOTO READTRAN
.
.

Figure 19-59 Code Procedure Logic Example (ESDS)
VSAM Processing 19–39

Random Update
Relative Record VSAM (RRDS) Random Update
Use VISION:Results statements to define the input file. If you have not specified
OPTION VSAMCAT in your program or the keyword VSAMCAT=Y in the
DYLINSTL macro and the JCL does not include the DD or DLBL statement for the
file, you must code an F (for fixed-length records). VSAM records are never
blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

For example:

The following keywords are required:

FILE MSTRFL RRDS F 40 IO RANDOM SEARCHKEY
ERASE ERASEFLG STATUS STATFLG

MASTREC 40

Figure 19-60 Relative Record VSAM (RRDS) Random Update without OPTION
VSAMCAT

FILE MSTRFL VSAM IO RANDOM SEARCHKEY
ERASE ERASEFLG STATUS STATFLG

MASTREC 40

Figure 19-61 Relative Record VSAM (RRDS) Random Update with OPTION
VSAMCAT

IO Allows the file to be updated in place. The record
format and record size must be specified on the FILE
statement in conjunction with this keyword, unless
VSAMCAT is in effect and VSAM is coded in the FILE
statement.

RANDOM dataname Any name not defined elsewhere in your program. Its
length is always 4. It holds the relative record number
of the record to be searched for.

STATUS dataname Any name not defined elsewhere in your program. It
is a 1-byte field that contains one of the following
values after a READ has been issued for this file:

blank No record found.

Y Record found.

E End of file.

I Duplicate or invalid key.
19–40 VISION:Results Reference Guide

Random Update
The following keyword is optional:

Suppose that an RRDS VSAM file uses employee number as its relative record
number and that a transaction file with records in no particular sequence has the
same format. If the transaction employee number (EMPLOYEE) is not on the
VSAM file, the employee is added. If the employee transaction matches a record
on the VSAM file, replace the VSAM record or delete it (if the employee is
terminated).

The following procedure logic can be coded:

When the TRANS file reaches the end, the program issues a STOP command. You
must specify when to end the run if an IO RANDOM update is used.

Before a record can be replaced, it must be read and found.

The file name MSTRFL must be the same as the file name or ddname specified in
your JCL (Figure 19-62).

ERASE dataname Any name not defined elsewhere in your program. It
is a 1-byte field that should contain an E to cause a
WRITE command to delete the record just read.

FILE MSTRFL RRDS IO F 40
RANDOM SEARCHKEY
ERASE ERASEFLG
STATUS STATFLG

MASTREC 40

FILE TRANS F 40 STATUS TRANSEOF
TRANREC 40
EMPLOYEE 5 1
TERMINATE 1 6
.
.
READTRAN:
READ TRANS
IF TRANSEOF EQ 'E' STOP ENDIF
MOVE EMPLOYEE TO SEARCHKEY
READ MSTRFL
IF STATFLG NE 'Y' GOTO ADDRTN ENDIF
IF TERMINATE EQ 'Y' MOVE 'E' TO ERASEFLG
GOTO REWRITE ENDIF

MOVE TRANREC TO MASTREC
REWRITE:
WRITE MSTRFL
GOTO READTRAN

ADDRTN:
MOVE TRANREC TO MASTREC
WRITE MSTRFL
GOTO READTRAN

Figure 19-62 Code Procedure Logic Example (RRDS)
VSAM Processing 19–41

Sequential Insert and Extend
Sequential Insert and Extend
This section describes inserting new records into an existing KSDS or RRDS VSAM
file, and writing additional records to the end of any VSAM file.

To extend a file, you need to describe the file to the operating system using JCL.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

See Key Sequence VSAM (KSDS) Sequential Insert/Extend on page 19-42, Entry
Sequence VSAM (ESDS) Sequential Insert/Extend on page 19-43, and Relative
Record VSAM (RRDS) Sequential Insert/Extend on page 19-44 for the statements
used to extend VSAM files.

Key Sequence VSAM (KSDS) Sequential Insert/Extend
Use VISION:Results statements to define the input file and the file to be extended
(output).

If you have not specified OPTION VSAMCAT in your program or the keyword
VSAMCAT=Y in the DYLINSTL macro and the JCL does not include the DD or
DLBL statement for the file, you must code one of the following:

VSAM records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MYFILE,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MYFILE DD DSN=MY.FILE.IDENT,DISP= ...

Figure 19-63 Extending a File Using JCL

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE TAPEIN FB 40 4800
FILE MYFILE KSDS OUTPUT FROM TAPEIN F STATUS OUTSTAT

Figure 19-64 Key Sequence VSAM (KSDS) Sequential Insert or Extend without
OPTION VSAMCAT
19–42 VISION:Results Reference Guide

Sequential Insert and Extend
For example:

To create variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The FILE statements above read each record on the input file and add it to the
output file, unchanged. If record selection or reformatting is required, see the
VISION:Results Getting Started Guide for information on defining fields (data
items). For record selection and data manipulation information, see Chapter 7,
Using the IF Command and Chapter 10, Using the MOVE Command.

The records on the input file must be in sequence by key for this run. In other
words, each record written to the output file must have a key higher than the key
in the previous record. Duplicates are not allowed.

REUSE must not be specified, so that the new input records are inserted among the
existing records according to key. If the key of a new record matches that of an
existing one, the write is ignored, the new record is dropped, and an I is returned
in the STATUS field. A successful write causes a Y to be returned in the STATUS
field.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

Entry Sequence VSAM (ESDS) Sequential Insert/Extend
Use VISION:Results statements to define the input file and the file to be extended
(output).

If you have not specified OPTION VSAMCAT in your program or the keyword
VSAMCAT=Y in the DYLINSTL macro and the JCL does not include the DD or
DLBL statement for the file, you must code one of the following:

VSAM records are never blocked.

FILE TAPEIN
FILE MYFILE VSAM OUTPUT FROM TAPEIN STATUS OUTSTAT

Figure 19-65 Key Sequence VSAM (KSDS) Sequential Insert or Extend with OPTION
VSAMCAT

F Fixed-length records.

V Variable-length records.

S Spanned variable-length records.

FILE TAPEIN FB 40 4800
FILE MYFILE ESDS OUTPUT FROM TAPEIN F

Figure 19-66 Entry Sequence VSAM (ESDS) Sequential Extend without OPTION
VSAMCAT
VSAM Processing 19–43

Sequential Insert and Extend
If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

To create variable-length records, see Considerations for Processing
Variable-Length Records on page 19-46.

The FILE statements above read each record on the input file and write it to the end
of the output file, unchanged. If record selection or reformatting is required, see
the VISION:Results Getting Started Guide for information on defining fields (data
items). For record selection and data manipulation information, see Chapter 7,
Using the IF Command and Chapter 10, Using the MOVE Command.

REUSE must not be specified when extending an ESDS file.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

As each record is added to an ESDS VSAM file, its relative byte address (RBA) is
returned to you as either a 4-byte binary or 16-byte packed number. This number
can be used as the record key for subsequent random access to the file. You must
use RELBYTEX if there is any chance that the returned RBA will exceed 4GB in
value. If you need this value, code:

� dataname contains the RBA of the record just written as a 4-byte binary number
when RELBYTE is used, or a 16-byte packed number when RELBYTEX is used.

� It can be any data name that is not defined elsewhere in your program.

Relative Record VSAM (RRDS) Sequential Insert/Extend
Use VISION:Results statements to define the input file and the file to be extended
(output). You also need one or more procedural statements to set up the relative
record number (or slot number) of each output record.

FILE TAPEIN
FILE MYFILE VSAM OUTPUT FROM TAPEIN

Figure 19-67 Entry Sequence VSAM (ESDS) Sequential Extend with OPTION
VSAMCAT

FILE filename ESDS ... RELBYTE dataname

or

FILE filename ESDS ... RELBYTEX dataname

Figure 19-68 Coding in the FILE Statement Example 2
19–44 VISION:Results Reference Guide

Sequential Insert and Extend
If you have not specified OPTION VSAMCAT in your program or the keyword
VSAMCAT=Y in the DYLINSTL macro and the JCL does not include the DD or
DLBL statement for the file, you must code F (for fixed-length records). VSAM
records are never blocked.

If you want to use the VSAMCAT feature, you must either include OPTION
VSAMCAT inyour program or set the DYLINSTL macro keyword VSAMCAT to
Y, and code VSAM in the FILE statement. If you include the DD or DLBL statement
for the file in the JCL, then specifying the file type and its characteristics is optional.

The RELREC keyword is required. It must be followed by a data name not defined
elsewhere in the program. The value of the data name becomes the relative record
number of any given output record. Each record written to the file must have a
relative record number higher than the previous record. Duplicates are not
allowed.

The example above reads each record on the input file and adds it to the output
file, unchanged, using the bin number value in each input record to establish the
relative record number of each output record. If selection or reformatting is
required, see the VISION:Results Getting Started Guide for information on defining
fields (data items). For record selection and data manipulation information, see
Chapter 7, Using the IF Command and Chapter 10, Using the MOVE Command.

REUSE must not be specified, so that the new input records are inserted among the
existing records according to relative record number. If the key of a new record
matches that of an existing one, the write is ignored, the new record is dropped,
and an I is returned in the STATUS field. A successful write causes a Y to be
returned in the STATUS field.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

FILE TAPEIN FB 40 4800
BIN_NUMBER 4 17 PD

FILE MYFILE RRDS OUTPUT FROM TAPEIN F RELREC BINNUM
STATUS OUTSTAT

MOVE BIN_NUMBER TO BINNUM

Figure 19-69 Relative Record VSAM (RRDS) Sequential Insert or Extend without
OPTION VSAMCAT

FILE TAPEIN FB 40 4800
BIN_NUMBER 4 17 PD

FILE MYFILE VSAM OUTPUT FROM TAPEIN RELREC BINNUM
STATUS OUTSTAT

MOVE BIN_NUMBER TO BINNUM

Figure 19-70 Relative Record VSAM (RRDS) Sequential Insert or Extend with OPTION
VSAMCAT
VSAM Processing 19–45

Considerations for Processing Variable-Length Records
Considerations for Processing Variable-Length Records
VISION:Results simplifies the processing of files with variable-length records and
spanned variable-length records. You do not have to worry about differences in
processing VSAM variable files. The processing for spanned variable-length
records is the same as for variable-length records. A spanned record is larger than
one VSAM control interval and therefore spans multiple VSAM control intervals.

Record Size
When specifying the logical record length for a variable file, you must specify the
maximum data length.

Block Size
Blocking has no meaning for VSAM files and should be ignored.

Location of Data within Record
VISION:Results considers position 1 of every variable-length VSAM record to be
the first byte of your data, so you should start data definitions at that position.
When the file name of a variable-length VSAM file is used as a data name, byte
position 1 is referenced as the first byte of the record (the RDW).

Length of Current Record
On input, VISION:Results keeps track of the length of the data in the record just
read. You can access this information by specifying the keyword LENGTH. A data
name specified in this way is a 2-byte binary field and contains the length of the
data in the record just read.

For output files, you must specify the length of the data portion of the current
record.

Output from Itself
If a file is defined to be output from itself, it has its own IO area assigned. It also
has a 2-byte binary length field assigned to the file. You can reference this length
field by specifying the keyword LENGTH followed by a data name. It is your
responsibility to move data to the area and place the length of the data in the
LENGTH dataname before the record is to be written, either using the automatic
cycle or a WRITE command. Failure to move a valid length to the LENGTH
dataname can result in records of the wrong length being written.

Output from an Input file
When a file is written from an input file, VISION:Results does not assign an IO area
for the file or a length field. VISION:Results references the IO area and length field
for the input file when the output file is written. VISION:Results places restrictions
on the type of file a variable output file can be written from. A variable VSAM file
19–46 VISION:Results Reference Guide

Numeric and Packed Key Considerations
cannot be written from a variable non-VSAM file. If another combination is
required, you must specify OUTPUT from itself for the file, move the data, and set
up the data length.

When a record is being written from an input area, the length is automatically set
up by VISION:Results when the record is read. LENGTH cannot be specified for
the output file because the length field does not exist for this file. You can specify
the LENGTH dataname for the input file if you want to adjust the length of the
record. You can shorten a record to be written by changing the contents of the
LENGTH dataname. Do not attempt to write a longer record.

If it is necessary to increase the length of a record, specify OUTPUT from itself on
the FILE statement, move the data, and set up the length. The LENGTH dataname
always contains the length of the data only.

File Printing of Variable Files
VISION:Results automatically handles the RDW. You need only concern yourself
with data.

Sorting a Variable File
To eliminate a possible error during SORT, variable-length records are moved
from the IO area to a fixed-length area for processing. This is transparent to you
and you do not need to worry about it.

If an error occurs, the record shown in the IO area in the PRINTERROR dump is
not necessarily the record you are processing. The variable record has been moved
to a work area. Check your record there.

Numeric and Packed Key Considerations
When processing files where you are building records or retrieving records in
random or skip mode, consider the sign of the key because the key has a data type
of numeric (zoned decimal) or packed. A positive sign for a numeric or packed
field can be C or F. This can be a problem if you are searching for a particular
record on a VSAM file and the key you are using to search has a different sign than
the key in the record. For example, a 2-byte packed field with the value 123C is not
considered equal to a 2-byte packed field with the value 123F. A NO RECORD
FOUND status is set.

In a VISION:Results program, you can run into an unlike sign problem under the
following circumstance: you have set up a packed key in the VSAM key area and
this key has developed a C sign (perhaps the key had been converted from numeric
to packed and a C sign resulted from this process). If the key in the record contains
an F sign, a status code of blank (no record found) is returned to the program after
a random retrieval read. The same situation can occur with numeric fields.
VSAM Processing 19–47

Numeric and Packed Key Considerations
To prevent or correct for unlike signs, treat the keys as character data. For example:

Note: Throughout this section, items shown in bold are optional when using the
OPTION VSAMCAT statement or the VSAMCAT=Y keyword in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file. When
using the VSAMCAT feature, you must enter VSAM in the FILE statement.
Otherwise, the VSAMCAT feature is not used for that file.

In Figure 19-71, the keys actually have a data type of packed but are defined as
character, so no sign change can occur. If the key has to be treated as packed for
other purposes, it can be redefined.

In Figure 19-72, a numeric key in the transaction file (TRANSIN) is defined as
character. FINDKEY is also defined as character (default). No sign change happens
when TRANACCT is moved to FINDKEY.

� To convert a packed key's sign from C to F, you can OR the field. For example:

In Figure 19-73, a 2-byte packed key is having its sign set to F.

� To convert a packed key's sign from F to C, you can AND the field. For example:

FILE VSAMIN KSDS F 120 RANDOM SEARCHKEY
STATUS STATUSFLAG KEYLEN 3

FILE TRANIN STATUS TRANEOF
KEYIN 3 CH ; (key is actually packed decimal)

PROCEDURE:
IF TRANEOF EQ 'E' STOP ENDIF
MOVE KEYIN TO SEARCHKEY ; (sign remains unchanged)
READ VSAMIN
IF STATUSFLAG NE 'Y' GOTO NOTFOUND ENDIF
.
.

Figure 19-71 Numeric and Packed Key Considerations

FILE VSAMIN2 KSDS F 130 RANDOM FINDKEY
STATUS VSSTAT KEYLEN 5

ACCOUNT 5 NU ...
FILE TRANSIN STATUS TRANSTAT
TRANACCT 5 ...
PROCEDURE:
IF TRANSTAT EQ 'E' STOP ENDIF
MOVE TRANACCT TO FINDKEY
READ VSAMIN2
.
.
.

Figure 19-72 Numeric and Packed Key Considerations Where Key is Treated as
Packed

COMBINE BITS X'000F' OR SRCHKEY

Figure 19-73 Convert a Packed Key's Sign From C to F

COMBINE BITS X'FFFC' AND SRCHKEY

Figure 19-74 Convert a Packed Key's Sign From F to C
19–48 VISION:Results Reference Guide

KSDS Examples
In Figure 19-74, a 2-byte packed key with an F sign is having its sign set to C.

KSDS Examples
Note: Throughout this section, items shown in bold are optional when using the
OPTION VSAMCAT statement or the VSAMCAT=Y keyword in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file. When
using the VSAMCAT feature, you must enter VSAM in the FILE statement.
Otherwise, the VSAMCAT feature is not used for that file.

Example 1 Fixed-Length KSDS In, KSDS Out

The entire input KSDS file is copied to another KSDS file.

The REUSE option must be specified when the output file was defined or altered
using IDCAMS.

Any data already in the KSDSOUT file is replaced with the contents of the input
file.

Example 2 Variable-Length KSDS In, Variable-Length File Out

The entire KSDS file is backed up to tape.

Because the output file is defined in the FILE statement as having variable-length
records, a standard record descriptor word (LLbb) is built on the front of each
output record before it is written.

The data length of the output record must be moved to the output file LENGTH
dataname on each cycle.

Example 3 Variable-Length File In, KSDS Out

FILE KSDSIN KSDS F 140
FILE KSDSOUT KSDS OUTPUT FROM KSDSIN F 140 REUSE

Figure 19-75 Example 1 Fixed-Length KSDS In, KSDS Out

FILE KSDSIN KSDS V 120 LENGTH INLEN
FILE TAPEOUT SYS006 TAPE OUTPUT FROM TAPEOUT
VB 120 2484 LENGTH OUTLEN

MOVE KSDSIN TO TAPEOUT LENGTH INLEN
MOVE INLEN TO OUTLEN

Figure 19-76 Example 2 Variable-Length KSDS In, Variable-Length File Out

FILE TAPEIN TAPE SYS029 VB 220 4484 LENGTH INLEN
FILE KSDSOUT KSDS OUTPUT FROM KSDSOUT
V 220 LENGTH OUTLEN REUSE

MOVE TAPEIN TO KSDSOUT LENGTH INLEN
MOVE INLEN TO OUTLEN

Figure 19-77 Example 3 Variable-Length File In, KSDS Out
VSAM Processing 19–49

KSDS Examples
The entire input file is copied to a KSDS file.

Because the input tape FILE statement defines the records as variable,
VISION:Results removes the record descriptor (LLbb) and moves the length of the
data to the input LENGTH dataname.

The data length of the output record must be moved to the output file LENGTH
dataname on each cycle.

The REUSE option must be specified when the KSDS file is defined or altered using
IDCAMS.

Any data already in the KSDSOUT file is replaced with the contents of the input
file.

Example 4 Fixed-Length File In, KSDS Out, with SORT

The entire input file is sorted by key. The sorted records are then written to a KSDS
file.

No JCL is supplied for SORTIN or SORTOUT; however, all other JCL normally
required for a sort is needed.

The REUSE option must be specified when the KSDS file is defined or altered using
IDCAMS.

Any data already in the KSDSOUT file is replaced with the sorted records.

Example 5 Skip Sequential Read Fixed-Length KSDS

FILE TAPEIN SYS041 FB 95 2850 TAPE
CUSTNUM 9 2

FILE KSDSOUT KSDS OUTPUT FROM TAPEIN F 95 REUSE

SORT TAPEIN USING CUSTNUM WORK 3

Figure 19-78 Example 4 Fixed-Length File In, KSDS Out, with SORT

FILE INVMAST KSDS SKIP PRODCODE STATUS SRCHFLAG F 75
KEYLEN 8 PARTKEY 2

MSTCLASS 2 3 (CLASS)
MSTPRODUCT 6 (PRODUCT'CODE)
QTYONHAND 5 29 PD Z (ON HAND)
QTYORDRD 5 42 PD Z (QUANTITY'ORDERED)
ORDRDATE 6 47 NU D (DATE'ORDERED)

FILE FINDERS SYS007 FB 80 1600 STATUS ENDFLAG
CLASSCODE 2

IF ENDFLAG EQ 'E' STOP ENDIF
MOVE CLASSCODE TO PRODCODE LENGTH 2
READINV:

Figure 19-79 Example 5 Skip Sequential Read Fixed-Length KSDS (Page 1 of 2)
19–50 VISION:Results Reference Guide

KSDS Examples
A generic search by class code is performed.

PARTKEY defines the length of the partial (generic) key.

All records found for each class on the FINDERS file are written to the report. Each
class commences on a new page.

Example 6 Random Read Fixed-Length KSDS

A random search of a KSDS file (CUSMSTR) is performed to obtain the customer's
name for a sales report line.

READ INVMAST
IF SRCHFLAG EQ 'E' REJECT ENDIF
IF MSTCLASS GT CLASSCODE MOVE 66 TO DYLLINE
REJECT ENDIF

LIST SUPPRESS MSTCLASS MSTPRODUCT ORDRDATE QTYORDRD QTYONHAND
GOTO READINV

T1 'INVENTORY REPORT FOR SELECTED PRODUCT CLASSES' WITH 2 AFTER
T1+120 DYLDATE

Figure 19-79 Example 5 Skip Sequential Read Fixed-Length KSDS (Page 2 of 2)

FILE SALES TAPE SYS035 FB 128 1280 STATUS ALLDONE
SALESMAN 3 3
CUSTNUM 6 26
PRODUCT 7 32
QUANTITY 3 54 PD Z
UNITPRICE 4 81 PD 2 E

FILE CUSMSTR KSDS RANDOM FINDCUST F 225 KEYLEN 6 STATUS MSTRSTAT
CUSTOMER 25 8

WORKAREA
CNAME 25 (CUSTOMER NAME)
TOT 7 PD 2 E
TALLY E 3

IF ALLDONE EQ 'E' STOP ENDIF
MOVE CUSTNUM TO FINDCUST
READ CUSMSTR
IF MSTRSTAT EQ 'Y' MOVE CUSTOMER TO CNAME
ELSE MOVE '*** NOT ON FILE ***' TO CNAME ENDIF

TOT = QUANTITY * UNITPRICE
LIST SUPPRESS SALESMAN CNAME PRODUCT UNITPRICE QUANTITY TOT
CONTROL SALESMAN
ON CHANGE IN SALESMAN
LIST 'TOTAL SALESMAN' AT CNAME TALLY SUM TOT
WITH 2 BEFORE AND EJECT AFTER

ON FINAL
LIST '** FINAL TOTAL **' AT PRODUCT SUM TOT

T1 'S A L E S B Y S A L E S M A N' WITH 2 AFTER
T1+100 DYLDATEPAG

Figure 19-80 Example 6 Random Read Fixed-Length KSDS
VSAM Processing 19–51

ESDS Examples
Example 7 Random Update Variable-Length KSDS

A KSDS file is randomly updated by adding new records, replacing existing
records, and deleting (erasing) others.

The length of an existing record in a KSDS file can be changed by altering the
LENGTH prior to rewriting. (See CHGRTN:).

ESDS Examples
Note: Throughout this section, items shown in bold are optional when using the
OPTION VSAMCAT statement or the VSAMCAT=Y keyword in the DYLINSTL
macro and the JCL does not include the DD or DLBL statement for the file. When
using the VSAMCAT feature, you must enter VSAM in the FILE statement.
Otherwise, the VSAMCAT feature is not used for that file.

Example 1 Fixed-Length ESDS In, ESDS Out

FILE ACCTMST KSDS IO RANDOM ACCTKEY STATUS MSTFLAG V 200
LENGTH MSTLEN KEYLEN 6 ERASE KILLIT MASTREC 200

FILE TRANS DISK 3350 VB 200 2044 STATUS TRANSEOF LENGTH TRANSLEN
TRANREC 200
TRANCODE 1 1
TRANACCT 6 5

READTRAN:
READ TRANS
IF TRANSEOF EQ 'E' STOP ENDIF
MOVE TRANACCT TO ACCTKEY
READ ACCTMST
IF TRANCODE EQ 'A' GOTO ADDRTN ENDIF
IF TRANCODE EQ 'D' GOTO DELRTN ENDIF

CHGRTN:
IF MSTFLAG NE 'Y' MOVE 'BAD CHANGE' TO DYLPRTCOMM
PRINT TRANREC GOTO READTRAN ENDIF

MOVE TRANREC TO MASTREC LENGTH TRANSLEN
MOVE TRANSLEN TO MSTLEN
GOTO WRITEMST

ADDRTN:
IF MSTFLAG EQ 'Y' MOVE 'BAD ADDN' TO DYLPRTCOMM
PRINT TRANREC PRINT MASTREC GOTO READTRAN ENDIF

MOVE TRANREC TO MASTREC LENGTH TRANSLEN
MOVE TRANSLEN TO MSTLEN
GOTO WRITEMST

DELRTN:
IF MSTFLAG NE 'Y' MOVE 'BAD DELETE' TO DYLPRTCOMM
PRINT TRANREC GOTO READTRAN ENDIF

MOVE 'E' TO KILLIT
WRITEMST:
WRITE ACCTMST
GOTO READTRAN

Figure 19-81 Example 7 Random Update Variable-Length KSDS

FILE ESDSIN ESDS F 140
FILE ESDSOUT ESDS OUTPUT FROM ESDSIN F 140 REUSE

Figure 19-82 Example 1 Fixed-Length ESDS In, ESDS Out
19–52 VISION:Results Reference Guide

ESDS Examples
The entire input ESDS file is copied to another ESDS file.

The REUSE option must be specified when the output file was defined or altered
using IDCAMS.

Any data already in the ESDSOUT file is replaced with the contents of the input
file.

Example 2 Variable-Length ESDS In, Variable-Length File Out

The entire ESDS file is backed up to tape.

Because the output file is defined in the FILE statement as having variable-length
records, a standard record descriptor word (LLbb) is built by VISION:Results on
the front of each output record before it is written.

The data length of the output record must be moved to the output file LENGTH
dataname on each cycle.

Example 3 Variable-Length File In, ESDS Out

The entire input file is copied to an ESDS file.

Because the input tape FILE statement defines the records as variable,
VISION:Results removes the record descriptor (LLbb) and moves the length of the
data to the input LENGTH dataname.

The data length of the output record must be moved to the output file LENGTH
dataname on each cycle.

The REUSE option must be specified when the ESDS file is defined or altered using
IDCAMS.

Any data already in the ESDSOUT file is replaced with the contents of the input
file.

FILE ESDSIN ESDS V 120 LENGTH INLEN
FILE TAPEOUT TAPE OUTPUT FROM TAPEOUT
VB 120 2484 LENGTH OUTLEN SYS006

MOVE ESDSIN TO TAPEOUT LENGTH INLEN
MOVE INLEN TO OUTLEN

Figure 19-83 Example 2 Variable-Length ESDS In, Variable-Length File Out

FILE TAPEIN TAPE SYS029 VB 220 4484 LENGTH INLEN
FILE ESDSOUT ESDS OUTPUT FROM ESDSOUT V 220 LENGTH OUTLEN REUSE
MOVE TAPEIN TO ESDSOUT LENGTH INLEN
MOVE INLEN TO OUTLEN

Figure 19-84 Example 3 Variable-Length File In, ESDS Out
VSAM Processing 19–53

ESDS Examples
Example 4 Fixed-Length File In, ESDS Out, with SORT

The entire input file is sorted by key. The sorted records are then written to an
ESDS file.

The REUSE option must be specified when the ESDS file is defined or altered using
IDCAMS.

Any data already in the ESDSOUT file is replaced with the sorted records.

Example 5 Variable-Length File In, ESDS Out (ESDSOUT), RBAs Saved in a Sequential Output File

A backup file is used to restore a variable-length ESDS file. After each VSAM
record is written, its customer number and Relative Byte Address are saved in the
output area for the CUSTKEY file. The resulting file can be used at a later time to
find a given customer, directly, on the ESDS file. See Random Read on page 19-20
and Random Update on page 19-33.

The REUSE option must be specified when the ESDS file is defined or altered using
IDCAMS.

Any data already in the ESDSOUT file is replaced with the contents of the input
file.

FILE TAPEIN SYS041 FB 95 2850 TAPE
CUSTNUM 9 2

FILE ESDSOUT ESDS OUTPUT FROM TAPEIN F 95 REUSE

SORT TAPEIN USING CUSTNUM WORK 3

Figure 19-85 Example 4 Fixed-Length File In, ESDS Out, with SORT

FILE BACKUP SYS015 TAPE VB 200 2044 LENGTH INLGTH
CUSTOMER 8 5

FILE ESDSOUT ESDS OUTPUT FROM ESDSOUT RELBYTE RBA V 200
LENGTH OUTLGTH REUSE

FILE CUSTKEY SYS016 TAPE FB 12 1200 OUTPUT FROM CUSTKEY
CUSTOUT 8
RBAOUT 4 BI

MOVE BACKUP TO ESDSOUT LENGTH INLGTH
MOVE INLGTH TO OUTLGTH
WRITE ESDSOUT
MOVE CUSTOMER TO CUSTOUT
MOVE RBA TO RBAOUT

Figure 19-86 Example 5 Variable-Length File In, ESDS Out, RBAs Saved in a
Sequential Output File
19–54 VISION:Results Reference Guide

Chapter
20 I
SAM Processing
Under the indexed sequential access method or ISAM file organization,
VISION:Results supports fixed and, for OS/390 users, variable-length records.

The input and/or output modes supported are sequential retrieval, sequential
load/load extend/insert, random retrieval, random retrieval and update, and
limited sequential (skip) retrieval by full or generic key.

Syntax Format
The keywords and operands pertaining only to ISAM are described in this chapter.
Operands such as filename, recordsize, dataname, and so on, are described in
detail in Chapter 5, Data Name Qualification.

FILE filename

ISAM

{INPUT | OUTPUT FROM filename | IO}

[{FB | VB | F | V} [recordsize [blocksize]]]

{RANDOM dataname2 {CH | NU | BI | PD} [decimals] |

SKIP dataname2 {CH | NU | BI | PD} [decimals] | SEQUENTIAL}

[KEYLEN nnn [KEYLOC nnnn]] [POSITION dataname2]

[STATUS dataname2] [COUNT dataname2] [LENGTH dataname2]

[BYPASS nn] [DROPERR] [DUMMY] [NULL]

[RETAIN | NORETAIN]

[[MODIFY modulename [nK]} [SIZE nnnnn]

[PARM ({IOAREA | WORK | dataname3...})]] [DYNAM]

{DISK {2311 | 2314 | 3330 | 3340 }]

[EXTENTS nn] [MASTER] [CYLOFL nn]

[SYSnnn] [ONEBUFF]

Figure 20-1 ISAM File Syntax Format
ISAM Processing 20–1

Creating a File
Creating a File
This section describes the creation of a new ISAM file or the replacement of an old
one. If you intend to read or update existing files only, this procedure is irrelevant
to you.

To create a file, describe the file to the operating system using JCL (Job Control
Language). For example:

The particulars of the JCL required vary from one installation to another. To
successfully code the JCL, you must be familiar with your installation standards.

ISAM Create
Use VISION:Results statements to define the input file and the file to be created
(output):

To create variable-length records, see Considerations for Processing
Variable-Length Records on page 20-23.

The records on the input file must be in sequence by key for this run. Each record
written to the output file must have a key higher than the key in the previous
record. Duplicates are not allowed.

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MYFILE,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MYFILE DD DSN=MY.FILE.IDENT,DISP= ...

Figure 20-2 Create an ISAM File Using JCL

(VSE) FILE TAPEIN FB 40 4800
FILE MYFILE ISAM OUTPUT FROM TAPEIN DISK 3340
FB 40 1600 KEYLEN 5 KEYLOC 2
CYLOFL 3 EXTENTS 2 (optional parameters)

(OS/390) FILE TAPEIN FB 40 4800
FILE MYFILE ISAM OUTPUT FROM TAPEIN
FB 40 1600 KEYLEN 5 KEYLOC 2

Figure 20-3 Defining the Input File and the Output File

KEYLEN nnn Specifies the length of the record key. The allowable values of
nnn are 1 to 255. This is a required parameter for VSE systems.

KEYLOC nnnn Specifies the starting location of the key within the data
portion of the record. The allowable values of nnnn are 1 to
4095. This is a required parameter for VSE systems.
20–2 VISION:Results Reference Guide

Creating a File
The example above reads each record on the input file and copies it to the output
file, unchanged. If record selection or reformatting is required, see the
VISION:Results Getting Started Guide for information on defining fields (data
items). See Chapter 7, Using the IF Command and Chapter 10, Using the MOVE
Command for information on record selection and data manipulation.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

OS/390 Considerations
OS/390 users can specify any or all of the second line of the ISAM FILE statement
as DCB subparameters in their JCL.

Various options can be specified using the OPTCD subparameter of the DCB
parameter in the JCL. See the IBM JCL Reference Manual for more information.

VSE Considerations
The DISK parameter is required and is coded as follows:

The following additional keywords are optional for VSE:

DISK nnnn Defines the type of disk that contains the file. Allowable values
are 2311, 2314, 3330, and 3340.

CYLOFL nn Where nn is the number of tracks to be reserved on each
cylinder for cylinder overflow. The default is 0. Specify this
parameter if you expect to add records to the file after it has
been initially loaded. An independent overflow area, also used
to hold inserted records, can be used in addition to or instead of
cylinder overflow.

MASTER This keyword specifies that a master index is allocated for this
file.

EXTENTS nn Where nn is the total number of extents allocated to the file. The
default is 3 (cylinder index, prime data, and independent
overflow). The value for nn must be between 2 and 20.

Each extent is identified in the JCL by an extent type code:

master index 4

cylinder index 4

prime data 1

independent overflow 2

Each extent is further numbered from 1 up (unless there is a
master index that has an extent sequence number of 0).
ISAM Processing 20–3

Sequential Read
Typical JCL for an ISAM file create run is:

The ISC subparameter on the DLBL statement (above) must be specified when
creating an ISAM file.

VSE ISAM files having one record to a block (unblocked) require special
consideration and should be avoided. If you must create this type of file, see
Unblocked ISAM Files in VSE Considerations on page 20-25.

Sequential Read
This section describes reading an ISAM file starting with the first record and then
reading serially until end of file occurs or a STOP command is issued by the
VISION:Results program.

To read a file, describe the file to the operating system using JCL.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

ISAM Sequential Read
Use a FILE statement to define the input file:

To read variable-length records, see Considerations for Processing
Variable-Length Records on page 20-23.

// ASSGN SYS005,X'190'
// ASSGN SYS006,X'191'
// DLBL MYFILE,'MY.FILE.IDENT',90/365,ISC
// EXTENT SYS005,111111,4,1,...Cylinder index
// EXTENT SYS005,111111,1,2,...Prime data
// EXTENT SYS006,123456,2,3,...Independent overflow

Figure 20-4 JCL for an ISAM File Create Run

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MYFILE,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MYFILE DD DSN=MY.FILE.IDENT,DISP=SHR

Figure 20-5 Reading a File Using JCL

(VSE) FILE MYFILE ISAM DISK 3340
FB 40 1600 KEYLEN 5 KEYLOC 2
CYLOFL 3 EXTENTS 2 (optional parameters)

(OS/390) FILE MYFILE ISAM FB 40

Figure 20-6 ISAM Sequential Read
20–4 VISION:Results Reference Guide

Sequential Read
The example above reads each record on the input file in ascending order by key
and makes the record available to any procedure logic that follows. Defining fields
(data items) is covered in the VISION:Results Getting Started Guide. See Chapter 7,
Using the IF Command and Chapter 10, Using the MOVE Command in this manual
for information on record selection and data manipulation.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

VSE Considerations
DISK, KEYLEN, and KEYLOC are required parameters.

The following additional keywords are optional for VSE:

DISK nnnn Defines the type of disk that contains the file. The allowable
values are 2311, 2314, 3330, 3340, and 3350.

KEYLEN nnn Specifies the length of the record key. The allowable values of
nnn are 1 to 255. This is a required parameter for VSE systems.

KEYLOC nnnn Specifies the starting location of the key within the data portion
of the record. The allowable values of nnnn are 1 to 4095. This is
a required parameter for VSE systems.

CYLOFL nn Where nn is the number of tracks reserved on each cylinder for
cylinder overflow. The default is 0. This parameter must be
supplied if cylinder overflow was specified when the file was
initially loaded.

MASTER This keyword specifies that a master index was allocated for this
file when it was loaded.

EXTENTS nn Where nn is the total number of extents allocated to the file. The
default is 3 (cylinder index, prime data, and independent
overflow). The value for nn must be between 2 and 20.

Each extent is identified in the JCL by an extent type code:

master index 4

cylinder index 4

prime data 1

independent overflow 2

Each extent is further numbered from 1 up (unless there is a master
index that has an extent sequence number of 0).
ISAM Processing 20–5

Skip Sequential Read
Typical JCL for reading an ISAM file is:

The ISE subparameter on the DLBL statement (above) must be specified when
reading an ISAM file.

VSE ISAM files having one record to a block (unblocked) require special
consideration. If you must read this type of file, see Unblocked ISAM Files in VSE
Considerations on page 20-25.

Skip Sequential Read
This section describes reading an ISAM file by skipping to a particular record in
the file and reading records serially from that point until some condition is met or
end of file is encountered. In either case, another similar retrieval can be initiated,
and so on, as often as needed. You must use a READ command to read the file, and
a STOP statement must be coded to end the run unless your program has a SORT.

To read either type of file, describe the file to the operating system using JCL (Job
Control Language).

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

ISAM Skip Sequential Read
Use a FILE statement to define the input file:

// ASSGN SYS005,X'190'
// ASSGN SYS006,X'191'
// DLBL MYFILE,'MY.FILE.IDENT',90/365,ISE
// EXTENT SYS005,111111,4,1,... Cylinder index
// EXTENT SYS005,111111,1,2,... Prime data
// EXTENT SYS006,123456,2,3,... Independent overflow

Figure 20-7 Typical JCL for Reading an ISAM File

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MYFILE,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MYFILE DD DSN=MY.FILE.IDENT,DISP=SHR

Figure 20-8 Skip Sequential Read

(VSE) FILE MYFILE ISAM SKIP SEARCHKEY STATUS STATFLG
DISK 3340 FB 40 1600 KEYLEN 5 KEYLOC 2
CYLOFL 3 EXTENTS 2 (optional parameters)
POSITION POSCODE (optional)

(OS/390) FILE MYFILE ISAM SKIP SEARCHKEY STATUS STATFLG
FB 40 KEYLEN 5
POSITION POSCODE (optional)

Figure 20-9 ISAM Skip Sequential Read
20–6 VISION:Results Reference Guide

Skip Sequential Read
The following keywords are required:

The following keyword is optional:

SKIP dataname Any name not defined elsewhere in your program. Its length
is equal to the key length. It holds the key of the record to be
retrieved. A CH (character) data type is assumed. If your key
is signed numeric, packed decimal, or binary, code NU, PD,
or BI, respectively, after dataname:

SKIP dataname PD

Also, if the number of decimal places is other than zero, code
it after the data type:

SKIP dataname PD 2

STATUS
dataname

Any name not defined elsewhere in your program. It is a
1-byte field that contains one of the following values after a
READ has been issued for this file:

blank No record found.

Y Record found.

E End of file.

I Duplicate or invalid key.

KEYLEN nnn Specifies the length of the record key. The allowable values
for nnn are 1 to 255.

POSITION
dataname

Any name not defined elsewhere in your program. It is a
1-byte field which can be used to control the type of search
(positioning) as follows:

blank / G
(default)

Start reading at the first record in which the key
is equal to or greater than the value in the SKIP
dataname.

E Start reading at the record in which the key is
equal to the value in the SKIP dataname.

R Repeat the previous positioning.

VISION:Results recognizes the need to skip to a new starting point in the file by
comparing the contents of the SKIP dataname with its previous value. To restart
the process with the same SKIP key as the previous time (if required), move an R
to the POSITION dataname.
ISAM Processing 20–7

Skip Sequential Read
Code procedure logic to position the file based on a starting key and read records
until some defined condition is met:

Above, each record in a file INKEYS contains a STARTKEY and an ENDKEY. The
program initializes the SKIP dataname (SEARCHKEY) and reads the first record
on the ISAM file whose key is equal to or greater than the starting key. It then
checks to make sure that a record was found. Finally, the key of the record just read
is compared to the highest key required (ENDKEY). All records on the file whose
keys fall within the limits are printed, and the program returns to read the next
INKEYS record.

When the INKEYS file reaches the end, the program issues a STOP command. You
must always specify when to end the run if a skip sequential file is used.

To read variable-length records, see Considerations for Processing
Variable-Length Records on page 20-23.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

Generic Search
A generic search uses a partial key to point to the group of records required.
Suppose that the first 3 bytes of your key contain a department number and you
want to obtain all the records for Department 341. Just fill the SKIP dataname with
binary zeros, and then move in the partial key:

This procedure starts reading records at the first one whose key is equal to or
greater than 341, followed by 2 bytes of binary 00s.

.

.
NXTGROUP:
READ INKEYS
IF INKEYFLG EQ 'E' STOP ENDIF
MOVE STARTKEY TO SEARCHKEY
MOVE 'G' TO POSCODE (optional)

READLOOP:
READ MYFILE
IF STATFLG NE 'Y' GOTO NXTGROUP ENDIF
IF ISAMKEY GT ENDKEY GOTO NXTGROUP ENDIF
HEXPRINT ISAMREC
GOTO READLOOP

Figure 20-10 Code Procedure Logic

WORKAREA
.

DEPT341 3 VALUE '341'
.

MOVE X'0000000000' TO SEARCHKEY
MOVE DEPT341 TO SEARCHKEY LENGTH 3
READLOOP:
READ MYFILE etc.
.
.

GOTO READLOOP

Figure 20-11 Generic Search
20–8 VISION:Results Reference Guide

Skip Sequential Read
VSE Considerations
DISK and KEYLOC are additional required parameters:

The following additional keywords are optional for VSE:

Typical JCL for reading an ISAM file is:

The ISE subparameter on the DLBL statement (above) must be specified when
reading an ISAM file.

VSE ISAM files having one record to a block (unblocked) require special
consideration. If you must read this type of file, see Unblocked ISAM Files in VSE
Considerations on page 20-25.

DISK nnnn Defines the type of disk that contains the file. The allowable
values are 2311, 2314, 3330, 3340, and 3350.

KEYLOC nnnn Specifies the starting location of the key within the data portion
of the record. The allowable values of nnnn are 1 to 4095.

CYLOFL nn Where nn is the number of tracks reserved on each cylinder for
cylinder overflow. The default is 0. This parameter must be
supplied if cylinder overflow was specified when the file was
initially loaded.

MASTER This keyword specifies that a master index was allocated for this
file when it was loaded.

EXTENTS nn Where nn is the total number of extents allocated to the file. The
default is 3 (cylinder index, prime data, and independent
overflow). The value of nn must be between 2 and 20.

Each extent is identified in the JCL by an extent type code:

master index 4

cylinder index 4

prime data 1

independent overflow 2

Each extent is further numbered from 1 up (unless there is a
master index that has an extent sequence number of 0).

// ASSGN SYS005,X'190'
// ASSGN SYS006,X'191'
// DLBL MYFILE,'MY.FILE.IDENT',90/365,ISE
// EXTENT SYS005,111111,4,1,... Cylinder index
// EXTENT SYS005,111111,1,2,... Prime data
// EXTENT SYS006,123456,2,3,... Independent overflow

Figure 20-12 Typical JCL for Reading an ISAM File
ISAM Processing 20–9

Random Read
Random Read
This section describes reading records, one at a time and in no particular sequence,
from an ISAM file. The program must identify precisely which record is wanted
prior to issuing the READ request. After the READ, one of two conditions exists:
either the requested record is found, or it is not found. If the record is not found,
the program must not attempt to access the record area because it may not have
been allocated.

To read a file, you need to describe the file to the operating system using JCL.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

ISAM Random Read
Use a FILE statement to define the input file:

The following keywords are required:

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MYFILE,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MYFILE DD DSN=MY.FILE.IDENT,DISP=SHR

Figure 20-13 Random Read

(VSE) FILE MYFILE ISAM RANDOM SEARCHKEY STATUS STATFLG
DISK 3340 FB 40 1600 KEYLEN 5 KEYLOC 2
CYLOFL 3 EXTENTS 2 (optional parameters)

(OS/390) FILE MYFILE ISAM RANDOM SEARCHKEY STATUS STATFLG
FB 40 KEYLEN 5

Figure 20-14 ISAM Random Read

RANDOM
dataname

Any name not defined elsewhere in your program. Its length is
equal to the key length. It holds the key of the record to be
retrieved. A CH (character) data type is assumed. If your key is
signed numeric, packed decimal, or binary, code NU, PD, or BI,
respectively, after dataname:

RANDOM dataname PD

Also, if the number of decimal places is other than zero, code it
after the data type:

RANDOM dataname PD 2
20–10 VISION:Results Reference Guide

Random Read
Code procedure logic to set up the search key, read, and check the result:

Above, each record in a file TAPEIN contains an employee number (EMPLOYEE).
The program moves this number to the RANDOM dataname as a key and issues a
READ for the ISAM file. If the record is not found, the program branches to an
error routine. If the record is found, it is printed and the program returns to read
another TAPEIN record.

When the TAPEIN file reaches the end, the program issues a STOP command. It is
always necessary to tell VISION:Results when to end the run if a RANDOM read
is used.

To read variable-length records, see Considerations for Processing
Variable-Length Records on page 20-23.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field that contains one of the following values after a READ has
been issued for this file:

blank No record found.

Y Record found.

E End of file.

I Invalid or duplicate key.

KEYLEN nnn Specifies the length of the record key. The allowable values for
nnn are 1 to 255.

.

.
READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLOYEE TO SEARCHKEY
READ MYFILE
IF STATFLG NE 'Y' GOTO NOTFOUND ENDIF
HEXPRINT ISAMREC
GOTO READLOOP
.
.

Figure 20-15 Code Procedure Logic
ISAM Processing 20–11

Random Read
VSE Considerations
DISK and KEYLOC are additional required parameters.

The following additional keywords are optional for VSE:

Typical JCL for reading an ISAM file is:

The ISE subparameter on the DLBL statement (above) must be specified when
reading an ISAM file.

VSE ISAM files having one record to a block (unblocked) require special
consideration. If you must read this type of file, see Unblocked ISAM Files in VSE
Considerations on page 20-25.

DISK nnnn Defines the type of disk that contains the file. The allowable values
are 2311, 2314, 3330, 3340, and 3350.

KEYLOC
nnnn

Specifies the starting location of the key within the data portion of
the record. The allowable values of nnnn are 1 to 4095.

CYLOFL
nn

Where nn is the number of tracks reserved on each cylinder for
cylinder overflow. The default is 0. This parameter must be supplied
if cylinder overflow was specified when the file was initially loaded.

MASTER This keyword specifies that a master index was allocated for this file
when it was loaded.

EXTENT
S nn

Where nn is the total number of extents allocated to the file. The
default is 3 (cylinder index, prime data, and independent overflow).
The value of nn must be between 2 and 20.

Each extent is identified in the JCL by an extent type code:

master index 4

cylinder index 4

prime data 1

independent overflow 2

Each extent is further numbered from 1 up (unless there is a master
index that has an extent sequence number of 0).

// ASSGN SYS005,X'190'
// ASSGN SYS006,X'191'
// DLBL MYFILE,'MY.FILE.IDENT',90/365,ISE
// EXTENT SYS005,111111,4,1,... Cylinder index
// EXTENT SYS005,111111,1,2,... Prime data
// EXTENT SYS006,123456,2,3,... Independent overflow

Figure 20-16 Typical JCL for Reading an ISAM File
20–12 VISION:Results Reference Guide

Sequential Update
Sequential Update
This section describes reading each record in an ISAM file, starting at the
beginning, and updating the file in place (that is, without copying the old file to a
new file). You must use a READ command to read the file, and a STOP command
must be coded to end the run, unless your program has a SORT.

Note: This type of run is not restartable. After one record has been added,
changed, or deleted, the file is not the same, regardless of why the job ended. As a
precaution before running a program that uses this technique, create a method of
recovering the original file.

You can add new records, change existing records, and flag records for deletion.
Generally speaking, deleted records remain physically in the file until removed by
a backup and restore (re-org) run.

To read a file, describe the file to the operating system using JCL (Job Control
Language).

Note the disposition of OLD. This choice (also available under VSE, Levels 2 and
up) prevents other users from accessing the file while your program is updating it.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

ISAM Sequential Update
Two file definitions of the ISAM file are required. Use VISION:Results statements
like these:

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MSTRFL,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MSTRFL DD DSN=MY.FILE.IDENT,DISP=OLD

Figure 20-17 Sequential Update

(VSE) FILE MSTRFL ISAM STATUS MASTFLAG
DISK 3340 FB 40 1600 KEYLEN 5 KEYLOC 2
CYLOFL 3 EXTENTS 2 (optional parameters)

MASTREC 40 MASTEMPL 5 2

FILE ISRAND ISAM IO RANDOM SEARCHKEY
DISK 3340 STATUS RANDFLAG
FB 40 1600 KEYLEN 5 KEYLOC 2
CYLOFL 3 EXTENTS 2 (optional parameters)

RANDREC 40 KILLIT 1 1

(OS/390) FILE MSTRFL ISAM FB 40 STATUS MASTFLAG
FB 40 KEYLEN 5

MASTREC 40 MASTEMPL 5 2

FILE ISRAND ISAM IO RANDOM SEARCHKEY
FB 40 KEYLEN 5 STATUS RANDFLAG

RANDREC 40 KILLIT 1 1

Figure 20-18 ISAM Sequential Update
ISAM Processing 20–13

Sequential Update
The first file definition describes the ISAM file as a sequential input file. The
second file definition describes the same file as a random input/output file. Two
different file names must be used, pointing to the same ISAM file, and JCL must be
supplied for each file name.

The following keywords are required:

This technique requires that the ISAM file be read sequentially using the MSTRFL
file. When a record is found that needs to be changed or added to the file, that
record is read using the ISRAND file. The required change is made in the record
area of the random file, and the record is then written (back) to the ISRAND file.

For example, you have an ISAM employee master file and you want to implement
a flat 9% raise for all employees hired before Oct. 15, 1995. In addition, you want
to delete the master record of any employee who was terminated before Apr. 15,
1995.

IO Allows the file to be updated in place. The record
format and record size must be specified on the FILE
statement in conjunction with this keyword.

RANDOM dataname Any name not defined elsewhere in your program. Its
length is equal to the key length. It holds the key of the
record to be retrieved. A CH (character) data type is
assumed. If your key is signed numeric, packed
decimal, or binary, code NU, PD, or BI respectively,
after dataname:

RANDOM dataname PD

Also, if the number of decimal places is other than zero,
code it after the data type:

RANDOM dataname PD 2

KEYLEN nnn Specifies the length of the record key. The allowable
values for nnn are 1 to 255.

STATUS dataname Any name not defined elsewhere in your program. It is
a 1-byte field that contains one of the following values
after a READ has been issued for this file:

blank No record found.

Y Record found.

E End of file.

I Duplicate or invalid key.
20–14 VISION:Results Reference Guide

Sequential Update

The following procedure logic can be coded:

New records can be inserted at any time. Move the key of the new record to the
RANDOM dataname (SEARCHKEY) and read the ISRAND file. Check to make
sure that the record is NOT found (RANDFLAG NE Y). Then, build the new record
in the random file record area (RANDREC) and issue a WRITE command to add
the record.

When the MSTRFL file reaches the end, the program issues a STOP command. You
must always specify when to end the run if a RANDOM update is used.

To update variable-length records, see Considerations for Processing
Variable-Length Records on page 20-23.

OS/390 Considerations
If OPTCD=L was specified as part of the DCB= parameter in the JCL when the
ISAM file was created, the system does not read any records with X’FF’ in the first
byte. Furthermore, if the addition of a record to the file results in the system
moving records from the prime data area into an overflow area, any records
having X’FF’ in the first byte are dropped.

VSE Considerations
DISK and KEYLOC are additional required parameters.

.

.
READMSTR:
READ MSTRFL
IF MASTFLAG EQ 'E' STOP ENDIF

COMPARE:
IF (TERM_DATE NE 0 AND TERM_DATE LT 950415)
GOTO UPDATE ENDIF

IF (HIRE_DATE LT 951015 AND TERM_DATE EQ 0)
GOTO UPDATE ENDIF

GOTO READMSTR
UPDATE:
MOVE MASTEMPL TO SEARCHKEY
READ ISRAND
IF RANDFLAG NE 'Y' GOTO KEYERROR ENDIF
IF TERM_DATE NE 0 MOVE X'FF' TO KILLIT
GOTO REWRITE ENDIF
RATE = RATE * 1.09

REWRITE:
WRITE ISRAND
GOTO READMSTR
.
.

Figure 20-19 Procedure Logic Code

DISK nnnn Defines the type of disk that contains the file. The allowable values
are 2311, 2314, 3330, 3340, and 3350.

KEYLOC
nnnn

Specifies the starting location of the key within the data portion of the
record. The allowable values of nnnn are 1 to 4095.
ISAM Processing 20–15

Sequential Update
The following additional keywords are optional for VSE:

Typical JCL for reading an ISAM file:

The ISE subparameter on the DLBL statement (above) must be specified when
reading or updating an ISAM file.

VSE ISAM files having one record to a block (unblocked) require special
consideration. If you must update this type of file, see Unblocked ISAM Files in
VSE Considerations on page 20-25.

CYLOFL nn Where nn is the number of tracks reserved on each cylinder for
cylinder overflow. The default is 0. This parameter must be
supplied if cylinder overflow is specified when the file is
initially loaded.

MASTER This keyword specifies that a master index is allocated for this
file when it is loaded.

EXTENTS nn Where nn is the total number of extents allocated to the file. The
default is 3 (cylinder index, prime data, and independent
overflow). The value for nn must be between 2 and 20.

Each extent is identified in the JCL by an extent type code:

master index 4

cylinder index 4

prime data 1

independent overflow 2

Each extent is further numbered from 1 up (unless there is a
master index that has an extent sequence number of 0).

// ASSGN SYS005,X'190'
// ASSGN SYS006,X'191'
// DLBL MSTRFL,'MY.FILE.IDENT',90/365,ISE
// EXTENT SYS005,111111,4,1,... Cylinder index
// EXTENT SYS005,111111,1,2,... Prime data
// EXTENT SYS006,123456,2,3,... Independent overflow

Figure 20-20 Typical JCL for Reading an ISAM File
20–16 VISION:Results Reference Guide

Random Update
Random Update
This section describes the random insertion, changing, and deletion of records on
an ISAM file. The file is updated in place, without copying the old file to a new file.

Note: This type of run is not restartable. Once one record has been added,
changed, or deleted, the file is not the same, regardless of why the job ended.
Before running a program that uses this technique, design a method of recovering
the original file.

For ISAM files, you can add new records, change existing records, and flag records
for deletion. Generally speaking, deleted records remain physically in the file until
removed by a backup and restore (re-org) run.

To update a file, describe the file to the operating system using JCL.

Note the disposition of OLD. This choice (also available under VSE, Levels 2 and
up) prevents other users from accessing the file while your program is updating it.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

ISAM Random Update
Use VISION:Results statements to define the input file:

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MSTRFL,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MSTRFL DD DSN=MY.FILE.IDENT,DISP=OLD

Figure 20-21 Random Update

(VSE) FILE MSTRFL ISAM IO RANDOM SEARCHKEY
DISK 3340 FB 40 1600 STATUS STATFLG
KEYLEN 5 KEYLOC 2
CYLOFL 3 EXTENTS 2 (optional parameters)

MASTREC 40 KILLIT 1 1

(OS/390) FILE MSTRFL ISAM IO RANDOM SEARCHKEY
FB 40 KEYLEN 5 STATUS STATFLG

MASTREC 40 KILLIT 1 1

Figure 20-22 ISAM Random Update
ISAM Processing 20–17

Random Update
The following keywords are required:

For example, you have an ISAM file that uses an employee number as its key. You
also have a transaction file with records in no particular sequence that have the
same format as records on the ISAM file. If the transaction employee number
(EMPLOYEE) is not on the ISAM file, the employee is to be added. If the employee
transaction matches a record on the ISAM file, you want to replace the ISAM
record or flag it for deletion, if the employee is terminated.

The following procedure logic can be coded:

IO Allows the file to be updated in place. The record
format and record size must be specified on the FILE
statement in conjunction with this keyword.

RANDOM dataname Any name not defined elsewhere in your program. Its
length is equal to the key length. It holds the key of the
record to be retrieved. A CH (character) data type is
assumed. If your key is signed numeric, packed
decimal, or binary, code NU, PD, or BI, respectively,
after dataname:

RANDOM dataname PD

Also, if the number of decimal places is other than zero,
code it after the data type:

RANDOM dataname PD 2

STATUS dataname Any name not defined elsewhere in your program. It is
a 1-byte field that contains one of the following values
after a READ has been issued for this file:

blank No record found.

Y Record found.

E End of file.

I Duplicate or invalid key.

KEYLEN nnn Specifies the length of the record key. The allowable
values for nnn are 1 to 255.

.

.
READTRAN:
READ TRANS
IF TRANSEOF EQ 'E' STOP ENDIF
MOVE EMPLOYEE TO SEARCHKEY
READ MSTRFL
IF STATFLG NE 'Y' GOTO ADDRTN ENDIF
IF TERMINATE EQ 'Y' MOVE X'FF' TO KILLIT

Figure 20-23 Procedure Logic Code (Page 1 of 2)
20–18 VISION:Results Reference Guide

Random Update
When the TRANS file reaches the end, the program issues a STOP command. You
must always specify when to end the run if an IO RANDOM update is used.

Before a record can be replaced, it must be read and found. Before a record can be
added, it must be read and not found, even if you know it is not there.

To update variable-length records, see Considerations for Processing
Variable-Length Records on page 20-23.

The file name MSTRFL must be the same as the file name or ddname specified in
your JCL (above).

VSE Considerations
DISK and KEYLOC are additional required parameters.

The following additional keywords are optional for VSE:

GOTO REWRITE ENDIF
MOVE TRANREC TO MASTREC

REWRITE:
WRITE MSTRFL
GOTO READTRAN

ADDRTN:
MOVE TRANREC TO MASTREC
WRITE MSTRFL
GOTO READTRAN

Figure 20-23 Procedure Logic Code (Page 2 of 2)

DISK nnnn Defines the type of disk that contains the file. The allowable
values are 2311, 2314, 3330, 3340, and 3350.

KEYLOC nnnn Specifies the starting location of the key within the data
portion of the record. The allowable values of nnnn are 1 to
4095.

CYLOFL nn Where nn is the number of tracks reserved on each cylinder
for cylinder overflow. The default is 0. This parameter must
be supplied if cylinder overflow is specified when the file is
initially loaded.

MASTER This keyword specifies that a master index is allocated for this
file when it is loaded.
ISAM Processing 20–19

Sequential Insert or Extend
Typical JCL for updating an ISAM file:

The ISE subparameter on the DLBL statement must be specified when updating an
ISAM file.

VSE ISAM files having one record to a block (unblocked) require special
consideration. If you must update this type of file, see Unblocked ISAM Files in
VSE Considerations on page 20-25.

Sequential Insert or Extend
This section describes the writing of additional records to the end of any ISAM file.

To extend a file, describe the file to the operating system using JCL.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

EXTENTS nn Where nn is the total number of extents allocated to the file.
The default is 3 (cylinder index, prime data, and independent
overflow). The value for nn must be between 2 and 20.

Each extent is identified in the JCL by an extent type code:

master index 4

cylinder index 4

prime data 1

independent overflow 2

Each extent is further numbered from 1 up (unless there is a
master index that has an extent sequence number of 0).

// ASSGN SYS005,X'190'
// ASSGN SYS006,X'191'
// DLBL MSTRFL,'MY.FILE.IDENT',90/365,ISE
// EXTENT SYS005,111111,4,1,... Cylinder index
// EXTENT SYS005,111111,1,2,... Prime data
// EXTENT SYS006,123456,2,3,... Independent overflow

Figure 20-24 Typical JCL for Updating an ISAM File

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL MYFILE,'MY.FILE.IDENT', ...
// EXTENT SYSnnn, ...

(OS/390) //MYFILE DD DSN=MY.FILE.IDENT,DISP= ...

Figure 20-25 Sequential Extend
20–20 VISION:Results Reference Guide

Sequential Insert or Extend
ISAM Sequential Extend
This method of adding records to an ISAM file should not be used if you need to
extend the file by more than a few records. The IBM ISAM I/O module must read
through the indexes for the entire file each time it adds a record whose key is
higher than any key in the file. The process takes longer and longer as each new
record is added to the end.

You can also sort the input file in descending order by key and add the records to
the file using the Random Update feature; or, to copy the ISAM file to a sequential
file, add the new records to the end of that file, and recreate the ISAM file from the
composite file (see Creating a File on page 20-2).

Use VISION:Results statements to define the input file and the file to be extended
(output):

To handle variable-length records, see Considerations for Processing
Variable-Length Records on page 20-23.

The FILE statements above read each record on the input file and add it to the end
of the output file, unchanged. see the VISION:Results Getting Started Guide for
information about Defining fields (data items). See Chapter 7, Using the IF
Command and Chapter 10, Using the MOVE Command in this manual for
information on record selection and data manipulation.

The records on the input file must be in sequence by key for this run. In other
words, each record written to the output file must have a key higher than the key
in the previous record. Duplicates are not allowed. All records on the input file
must have a key higher than the highest key on the ISAM file.

The file name MYFILE must be the same as the file name or ddname specified in
your JCL (above).

(VSE) FILE TAPEIN FB 40 4800
FILE MYFILE ISAM OUTPUT FROM TAPEIN DISK 3340
FB 40 1600 KEYLEN 5 KEYLOC 2
CYLOFL 3 EXTENTS 2 (optional parameters)

(OS/390) FILE TAPEIN FB 40 4800
FILE MYFILE ISAM OUTPUT FROM TAPEIN
FB 40 1600 KEYLEN 5 KEYLOC 2

Figure 20-26 ISAM Sequential Extend

KEYLEN nnn Specifies the length of the record key. The allowable values of
nnn are 1 to 255. This is a required parameter for VSE systems.

KEYLOC nnnn Specifies the starting location of the key within the data
portion of the record. The allowable values of nnnn are 1 to
4095. This is a required parameter for VSE systems.
ISAM Processing 20–21

Sequential Insert or Extend
OS/390 Considerations
Specify DISP=MOD on the DD statement that describes the ISAM file in the JCL.

VSE Considerations
The DISK parameter is required and is coded as follows:

The following additional keywords are optional for VSE:

Typical JCL for an ISAM file extend run is:

The ISE subparameter on the DLBL statement (above) must be specified when
extending an ISAM file.

VSE ISAM files having one record to a block (unblocked) require special
consideration. If you must extend this type of file, see Unblocked ISAM Files in
VSE Considerations on page 20-25.

DISK nnnn Defines the type of disk that contains the file. The allowable
values are 2311, 2314, 3330, 3340, and 3350.

CYLOFL nn Where nn is the number of tracks reserved on each cylinder for
cylinder overflow. The default is 0. An independent overflow
area, also used to hold inserted records, can be used in addition
to or instead of cylinder overflow.

MASTER This keyword specifies that a master index was allocated for
this file.

EXTENTS nn Where nn is the total number of extents allocated to the file. The
default is 3 (cylinder index, prime data, and independent
overflow). The value of nn must be between 2 and 20.

Each extent is identified in the JCL by an extent type code:

master index 4

cylinder index 4

prime data 1

independent overflow 2

Each extent is further numbered from 1 up (unless there is a
master index that has an extent sequence number of 0).

// ASSGN SYS005,X'190'
// ASSGN SYS006,X'191'
// DLBL MYFILE,'MY.FILE.IDENT',90/365,ISE
// EXTENT SYS005,111111,4,1,... Cylinder index
// EXTENT SYS005,111111,1,2,... Prime data
// EXTENT SYS006,123456,2,3,... Independent overflow

Figure 20-27 Typical JCL for an ISAM File Extend Run
20–22 VISION:Results Reference Guide

Considerations for Processing Variable-Length Records
Considerations for Processing Variable-Length Records
VISION:Results simplifies the processing of files with variable-length records and
spanned variable-length records.

Record Size
When specifying the logical record length for a variable file, you must specify the
maximum data length. VISION:Results adjusts this length to allow for the RDW
(record descriptor word).

Block Size
When specifying the maximum block size for ISAM files, specify the actual
physical size of the block. In calculating this, add 4 to the specified record length
(to allow for the RDW), multiply by the blocking factor and then add 4 (to allow
for the BDW - block descriptor word).

For example, a variable file, containing records with a maximum length of 200, that
is to be blocked 10 has a maximum block size of 2044 ((200+4)*10+4). The
maximum block size specified for a variable file does not have to allow for a fixed
number of the maximum length records. The specific application determines what
the optimum block size should be. VISION:Results, however, insists that the
specified block size be at least 8 greater than the record size given.

Location of Data within Record
VISION:Results assumes that position 1 of every variable record is the first byte of
data. It automatically takes care of the 4-byte RDW for non-VSAM variable files.
Users setting up data definitions for variable-length records should start defining
fields from the first byte of data.

Length of Current Record
On input, VISION:Results keeps track of the length of the data in the record just
read. You can access this information by specifying the keyword LENGTH. A data
name specified this way is a 2-byte binary field and contains the length of the data
in the record just read.

For output files, you must specify how long the data portion of the current record
is. This length is used to build an RDW before writing the record.

Output from Itself
If a file is defined to be output from itself, it has its own I/O area assigned. It also
has a 2-byte binary length field assigned to the file. Reference this length field by
specifying the keyword LENGTH followed by a data name. It is your
responsibility to move data to the area and place the length of the data in the
LENGTH dataname before the record is to be written, either using the automatic
cycle or a WRITE command. Failure to move a valid length to the LENGTH
dataname may result in wrong length records being written.
ISAM Processing 20–23

Considerations for Processing Variable-Length Records
Output from an Input file
When a file is written from an input file, VISION:Results does not assign an I/O
area for the file or a length field. VISION:Results references the I/O area and
length field for the input file when the output file is written. VISION:Results places
restrictions on the type of file a variable output file can be written from. A variable
ISAM file can be written only from another variable non-VSAM file. If other
combinations are required, you must specify OUTPUT from itself for the file, move
the data, and set up the data length.

When a record is being written from an input area, the length is automatically set
up by VISION:Results when the record is read. LENGTH cannot be specified for
the output file because the length field does not exist for this file. You can specify
LENGTH dataname for the input file if you want to adjust the length of the record.
You can shorten a record to be written by changing the contents of the LENGTH
dataname. Do not attempt to write a longer record. If it is necessary to increase the
length of a record, specify OUTPUT from itself on the FILE statement, move the
data, and set up the length. The LENGTH dataname always contains the length of
the data only.

File Printing of Variable Files
VISION:Results automatically handles the RDW. You need only concern yourself
with data. There is one exception. Whenever VISION:Results does a file print of
the record, either using the OPTION statement or one of the file print commands
(HEXPRINT, PRINT, and so on), the RDW is printed if it is present. This helps
programmers in debugging. The data that is defined at byte 1 in your data
definition is at byte 5 in the file print of your record if there is an RDW. This is also
true for the dump of the record in a PRINTERROR error analysis dump.

Sorting a Variable File
To eliminate a possible error during SORT, variable-length records are moved
from the I/O area to a fixed-length area for processing. This is transparent to you
and you do not need to worry about it.

If an error occurs in the execution, the record shown in the I/O area in the
PRINTERROR dump is not necessarily the record you are processing. The variable
record has been moved to a work area. Check your record there.

OS/390 users must specify variable record format in their FILE statement for an
ISAM file to have VISION:Results handle the RDW automatically. If the record
format is not specified at compile time, VISION:Results passes you the ENTIRE
record (including the RDW) in the record area.
20–24 VISION:Results Reference Guide

Unblocked ISAM Files in VSE Considerations
Unblocked ISAM Files in VSE Considerations
Blocked ISAM files and unblocked ISAM files are handled differently by the IBM
VSE I/O routines. The following sections outline the differences and provide
guidelines for processing unblocked ISAM files.

Sequential or Skip Sequential Read
When a blocked ISAM file is read, the system brings in only the data record (not
the key prefix). When an unblocked ISAM file is read sequentially, the key
precedes the data in the record area even though the key can also be embedded in
the record.

Example
Read an unblocked ISAM file whose record length is 35 and key length is 5.

The first byte of data is located in byte 6 of the record area. Also, note that the last
five bytes of data are beyond the end of the record area, strictly speaking. If you
need to access the last n bytes of the record, where n is the key length, set up a work
area and a variable length to move it and to obtain the entire record:

Sequential Load or Extend
Unblocked ISAM sequential output requires that the record be written from an
area containing the key followed by the data.

To create an unblocked ISAM file with a record length of 35 and a key length of 5:

The file WORKFL is not a real file, just an area from which to write. In this example,
SYS029 must be assigned to IGN (ignore) in the JCL. The key of the output record
is moved to WORKKEY and the data to WORKREC.

FILE ISAMIN F 35 ISAM DISK 3340 KEYLEN 5 KEYLOC 1
FIRSTBYTE 1 6
NEXTFLD 10 7

Figure 20-28 Sequential or Skip Sequential Read

MOVE FIRSTBYTE LENGTH 35 TO HOLDREC

Figure 20-29 Move First Byte of Data

FILE ISAMOUT F 35 ISAM DISK 3340
KEYLEN 5 KEYLOC 1 OUTPUT FROM WORKFL

FILE WORKFL F 40 TAPE NL SYS029
WORKKEY 5
WORKREC 35

Figure 20-30 Sequential Load or Extend
ISAM Processing 20–25

Numeric and Packed Key Considerations
Random Retrieval
Random retrieval of unblocked ISAM files works the same way as blocked ISAM.
Move the key you are searching for to your RANDOM dataname and issue a read.
The data is returned in your record area without the key prefix. Byte 1 of the data
is in byte 1 of the record area.

Random Update
In this type of access, the record must be randomly retrieved first (see Unblocked
ISAM Files in VSE Considerations on page 20-25). If the record is found (STATUS
dataname = Y), the replacement record only is moved to the output area. If the
record is not found, the key and data are moved to the output area. In both cases,
a WRITE command is issued to replace or add the record as necessary.

Remember to assign SYS029 to IGN, as before.

Numeric and Packed Key Considerations
When processing ISAM files where you are building records or retrieving records
in random or skip mode, consider the sign of the key if the key has a data type of
numeric (zoned decimal) or packed. A positive sign for a numeric or packed field
can be C or F. This can be a problem if you are searching for a particular record on
an ISAM file and the key you are using to search has a different sign than the key
in the record. For example, a 2-byte packed field with the value 123C is not
considered equal to a 2-byte packed field with the value 123F. A NO RECORD
FOUND status is set.

You can run into an unlike sign problem under the following circumstance: a
packed key in the ISAM key area has developed a C sign (perhaps the key had been
converted from numeric to packed and a C sign resulted from this process). If the
key in the record contains an F sign, a status code of blank (no record found) is
returned to the program after a random retrieval read. The same situation can
occur with numeric fields.

FILE ISAMUPD F 35 ISAM DISK 3340 RANDOM IKEY
KEYLEN 5 KEYLOC 1 IO FROM WORKFL

RECIN 35
FILE WORKFL F 40 TAPE NL SYS029
OLDREC 35 1
NEWKEY 5 1
NEWREC 35 6

Figure 20-31 Random Update
20–26 VISION:Results Reference Guide

ISAM Examples
To prevent or correct for unlike signs
1 Whenever possible, treat the keys as character data:

The keys actually have a data type of packed, but are defined as character, so no
sign change can occur. If the key has to be treated as packed for other purposes,
you can redefine it.

� To convert a packed key's sign from C to F, you can OR the field:

In Figure 20-32, a 2-byte packed key is having its sign set to F.

� To convert a packed key's sign from F to C, you can AND the field:

In Figure 20-33, a 2-byte packed key with an F sign is having its sign set to C.

ISAM Examples
Example 1 Fixed-Length ISAM In, ISAM Out

The entire ISAM file is copied to a new ISAM file.

FILE ISAMIN F 120 RANDOM SEARCHKEY
STATUS STATUSFLAG KEYLEN 3

FILE TRANIN STATUS TRANEOF
KEYIN 3 CH ; (key is actually packed decimal)

PROCEDURE:
IF TRANEOF EQ 'E' STOP ENDIF
MOVE KEYIN TO SEARCHKEY ; (sign remains unchanged)
READ ISAMIN
IF STATUSFLAG NE 'Y' GOTO NOTFOUND ENDIF
.
.

COMBINE BITS X'000F' OR SRCHKEY

Figure 20-32 Convert a Packed Key's Sign From C to F

COMBINE BITS X'FFFC' AND SRCHKEY

Figure 20-33 Convert a Packed Key's Sign From F to C

FILE ISAMIN ISAM FB 140 1400 DISK 3330
KEYLEN 7 KEYLOC 3 CYLOFL 2 EXTENTS 2

FILE ISAMOUT ISAM OUTPUT FROM ISAMIN FB 140 1400
DISK 3330 KEYLEN 7 KEYLOC 3 CYLOFL 4 EXTENTS 3

Figure 20-34 Example 1 Fixed-Length ISAM In, ISAM Out
ISAM Processing 20–27

ISAM Examples
Example 2 Variable-Length ISAM In, Variable-Length File Out (OS/390 only)

The entire ISAM file is unloaded to tape.

Record and block sizes can be specified in the JCL.

Example 3 Variable-Length File In, ISAM Out (OS/390 only)

The entire tape file is copied to create a new ISAM file.

The JCL for the ISAM file should indicate DISP=NEW.

Record and block size for the tape file is obtained from the tape label.

All characteristics of the ISAM file (except RECFM) are defined in the JCL.

Example 4 Fixed-Length File In, ISAM Out, with SORT

The entire input file is sorted by key. The sorted records are then used to load a
new ISAM file.

For OS/390, the JCL for the ISAM file must specify DISP=(NEW, and so on). For
VSE, the DLBL must indicate a file type of ISC.

No JCL is supplied for SORTIN or SORTOUT; however, all other JCL normally
required for a sort is needed.

Example 5 Skip Sequential Read Fixed-Length ISAM

A generic search by class code is performed.

The 8-byte key (in the WORKAREA) is padded with binary 0s to guarantee that
processing begins at the first record for any given class.

FILE ISAMIN ISAM VB 120
FILE TAPEOUT OUTPUT FROM ISAMIN VB 120 2484

Figure 20-35 Example 2 Variable-Length ISAM In, Variable-Length File Out (OS/390
only)

FILE TAPEIN VB
FILE ISAMOUT ISAM VB OUTPUT FROM TAPEIN

Figure 20-36 Example 3 Variable-Length File In, ISAM Out (OS/390 only)

FILE TAPEIN SYS041 FB 95 2850 TAPE
CUSTNUM 9 2

FILE ISAMOUT ISAM OUTPUT FROM TAPEIN FB 95 950
DISK 3340 KEYLEN 9 KEYLOC 2 EXTENTS 2 CYLOFL 1

SORT TAPEIN USING CUSTNUM WORK 3

Figure 20-37 Example 4 Fixed-Length File In, ISAM Out, with SORT
20–28 VISION:Results Reference Guide

ISAM Examples
All records found for each class on the FINDERS file are written to the report. Each
class commences on a new page.

Example 6 Random Read Fixed-Length ISAM

A random search of a master file (CUSMSTR) is performed to obtain the
customer’s name for a sales report line.

FILE INVMAST ISAM SKIP PRODCODE STATUS SRCHFLAG
DISK 3330 FB 75 1500 KEYLEN 8 KEYLOC 3

MSTCLASS 2 3 (CLASS)
MSTPRODUCT 6 (PRODUCT'CODE)
QTYONHAND 5 29 PD Z (ON HAND)
QTYORDRD 5 42 PD Z (QUANTITY'ORDERED)
ORDRDATE 6 47 NU D (DATE'ORDERED)

FILE FINDERS SYS007 FB 80 1600 STATUS ENDFLAG
CLASSCODE 2

WORKAREA
SRCHCLASS 2
FILLER 6 VALUE X'000000000000'

IF ENDFLAG EQ 'E' STOP ENDIF
MOVE CLASSCODE TO SRCHCLASS
MOVE SRCHCLASS TO PRODCODE LENGTH 8
READINV:
READ INVMAST
IF SRCHFLAG EQ 'E' REJECT ENDIF
IF MSTCLASS GT CLASSCODE MOVE 66 TO DYLLINE
REJECT ENDIF

LIST SUPPRESS MSTCLASS MSTPRODUCT ORDRDATE
QTYORDRD QTYONHAND

GOTO READINV

T1 'INVENTORY REPORT FOR SELECTED PRODUCT CLASSES' WITH 2 AFTER
T1+120 DYLDATE

Figure 20-38 Example 5 Skip Sequential Read Fixed-Length ISAM

FILE SALES TAPE SYS035 FB 128 1280 STATUS ALLDONE
SALESMAN 3 3
CUSTNUM 6 26
PRODUCT 7 32
QUANTITY 3 54 PD Z
UNITPRICE 4 81 PD 2 E

FILE CUSMSTR ISAM RANDOM FINDCUST STATUS MSTRSTAT
DISK 3340 FB 225 900 KEYLEN 6 KEYLOC 2 CYLOFL 2 EXTENTS 2

CUSTOMER 25 8

WORKAREA
CNAME 25 (CUSTOMER NAME)
TOT 7 PD 2 E
TALLY E 3

IF ALLDONE EQ 'E' STOP ENDIF
MOVE CUSTNUM TO FINDCUST
READ CUSMSTR
IF MSTRSTAT EQ 'Y' MOVE CUSTOMER TO CNAME
ELSE MOVE '*** NOT ON FILE ***' TO CNAME ENDIF

Figure 20-39 Example 6 Random Read Fixed-Length ISAM (Page 1 of 2)
ISAM Processing 20–29

ISAM Examples
Example 7 Random Update Fixed-Length ISAM

An ISAM file is updated randomly by adding new records, replacing existing
records, and flagging others for deletion.

For OS/390, if OPTCD=L was specified as a DCB subparameter when the ISAM
file was created, the X’FF’ placed in the first byte of a deleted record causes the
access method to ignore that record when reading the file and drop the record
while moving data to an overflow area.

For VSE, subsequent programs must check the MASTDEL byte themselves, after
reading a record, to find out if the record has been deleted.

TOT = QUANTITY * UNITPRICE
LIST SUPPRESS SALESMAN CNAME PRODUCT UNITPRICE QUANTITY TOT
CONTROL SALESMAN
ON CHANGE IN SALESMAN
LIST 'TOTAL SALESMAN' AT CNAME TALLY SUM TOT WITH 2 BEFORE
AND EJECT AFTER

ON FINAL LIST '** FINAL TOTAL **' AT PRODUCT SUM TOT
T1 'S A L E S B Y S A L E S M A N' WITH 2 AFTER
T1+100 DYLDATEPAG

Figure 20-39 Example 6 Random Read Fixed-Length ISAM (Page 2 of 2)

FILE ACCTMST ISAM IO RANDOM ACCTKEY
DISK 3330 FB 80 800 STATUS MSTFLAG
KEYLEN 6 KEYLOC 5 CYLOFL 2 EXTENTS 4

MASTREC 80
MASTDEL 1 1

FILE TRANS DISK 2311 FB 80 3600 STATUS TRANSEOF
TRANREC 80
TRANCODE 1 1
TRANACCT 6 5

READTRAN:
READ TRANS
IF TRANSEOF EQ 'E' STOP ENDIF
MOVE TRANACCT TO ACCTKEY
READ ACCTMST
IF TRANCODE EQ 'A' GOTO ADDRTN ENDIF
IF TRANCODE EQ 'D' GOTO DELRTN ENDIF

CHGRTN:
IF MSTFLAG NE 'Y' MOVE 'BAD CHANGE' TO DYLPRTCOMM
PRINT TRANREC GOTO READTRAN ENDIF

MOVE TRANREC TO MASTREC
GOTO WRITEMST

ADDRTN:
IF MSTFLAG EQ 'Y' MOVE 'BAD ADDN' TO DYLPRTCOMM
PRINT TRANREC PRINT MASTREC
GOTO READTRAN ENDIF

MOVE TRANREC TO MASTREC
GOTO WRITEMST

DELRTN:
IF MSTFLAG NE 'Y' MOVE 'BAD DELETE' TO DYLPRTCOMM
PRINT TRANREC GOTO READTRAN ENDIF

MOVE X'FF' TO MASTDEL
WRITEMST:
WRITE ACCTMST
GOTO READTRAN

Figure 20-40 Example 7 Random Update Fixed-Length ISAM
20–30 VISION:Results Reference Guide

Chapter
21 B
DAM Processing
VISION:Results supports Basic Direct Access Method (BDAM) files with fixed,
variable, or undefined record types. The records can be processed either
sequentially or randomly. The use of relative track and actual key, relative track
and actual record number, or relative block (OS/390 only) addressing schemes is
also supported with either sequential or random access methods.

Direct Access files are processed using BDAM in OS/390 and DAM in VSE. In this
chapter, whenever the term BDAM is used, it also refers to DAM, unless indicated
otherwise.

Syntax Format
The keywords and operands pertaining only to BDAM files are described in this
chapter. Operands such as filename, F, V, U, recordsize, and so on, are described
in detail in Chapter 6, Using the FILE Command.

FILE filename

BDAM {RELTRK dataname2 | RELBLK dataname2}

STATUS dataname2

{F | V | U} recordsize

{INPUT | OUTPUT FROM filename | IO}

{RANDOM dataname2 {CH | NU | BI | PD} [decimals]|

SEQUENTIAL [dataname2 {CH | NU | BI | PD} [decimals]]}

[KEYLEN nnn] [COUNT dataname2] [LENGTH dataname2]

[DISK {2311 | 2314 | 3330 | 3340 | 3350}]

[SYSnnn] [EXTENTS nn]

Figure 21-1 BDAM Syntax Format
BDAM Processing 21–1

Record Addressing Schemes
Record Addressing Schemes
The three types of addressing schemes are:

� Relative track and actual key.

� Relative track and actual record number.

� Relative block number (OS/390 only).

Relative Track and Actual Key
Fixed, variable, and undefined length records can be used. Specify the record
address as a 2-byte binary relative track number (the first track number is 0) and a
1- to 255-byte key. The following FILE statement keywords indicate this
addressing scheme:

Relative Track and Actual Record Number
Fixed, variable, and undefined length records can be used; however, variable and
undefined length records cannot be added to a file during random creation or
random update. Specify the record address as a 3-byte field containing a 2-byte
relative track number (the first track number is 0), followed by a 1-byte binary
record number (the first record number is 1). The following FILE statement
keyword indicates this addressing scheme:

BDAM Indicates BDAM file processing.

SEQUENTIAL dataname
or RANDOM dataname

Any name not defined elsewhere in your program. It
holds the record key. Its length is equal to the key
length. A CH (character) data type is assumed. If your
key is signed numeric, packed decimal, or binary, you
must code NU, PD, or BI, respectively, after dataname:

SEQUENTIAL dataname PD

Also, if the number of decimal places is other than
zero, code it after the data type:

RANDOM dataname PD 2

KEYLEN n Indicates the length of the key. Acceptable values for
n are 1 to 255.

RELTRK dataname Any name not defined elsewhere in your program. It
holds the relative track number and is a 2-byte binary
field.

BDAM Indicates BDAM file processing.

RELTRK dataname Any name not defined elsewhere in your program. It
holds the relative track number and actual record
number. It is a 3-byte binary field.
21–2 VISION:Results Reference Guide

Access Methods
Relative Block
The relative block addressing scheme is only available in OS/390. Fixed-length
records must be used—keys are not allowed. Specify the relative block number as
an ordinal number (the first block number is 0). The following FILE statement
keyword indicates this addressing scheme:

Access Methods
The two types of access methods are:

� Sequential

� Random

Sequential Access
This access method allows you to create and retrieve a direct access file using fixed,
variable, and undefined length records both with and without keys. The following
FILE statement keyword indicates this access method:

Random Access
This method allows you to create, retrieve, update, and add fixed, variable, and
undefined length records with a key, and fixed-length records without a key.
Variable and undefined length records without a key can be retrieved and
replaced only. The following FILE statement keyword indicates this access
method:

BDAM Indicates BDAM file processing.

RELBLK dataname Any name not defined elsewhere in your program. It holds
the relative block number. It is a 3-byte binary field.

SEQUENTIAL dataname The dataname is required only if the key is used (see
Record Addressing Schemes on page 21-2).

RANDOM dataname The dataname is required only if a key is used (see
Record Addressing Schemes on page 21-2).
BDAM Processing 21–3

I/O Statistics
I/O Statistics
VISION:Results maintains a count of records read or written. To use this count, the
following FILE statement keyword must be used:

For output files, this count is the number of records written. For input files, it is the
number of records read. For input/output files, it is the number of records added
or updated. Dummy records are not counted.

Random Create
This section describes the random creation of a new BDAM file or the replacement
of an old one. If you intend to read or update an existing file only, you do not need
to be concerned with this procedure.

To create a file, describe it to the operating system using JCL.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

The file name in your VISION:Results FILE statement must be the same as the file
name or ddname specified in your JCL (above).

When a BDAM file is being created randomly, all the tracks of the file are
initialized at open time with dummy records or capacity records. The BDAM file
should contain enough space to hold the maximum number of records expected in
the file. The total size of the data set is determined by the initial space allocation,
and that size cannot be changed unless the file is re-created.

See Relative Track Number and Actual Key on page 21-5, Relative Track Number
and Actual Record Number on page 21-7, and Relative Block Number on page 21-8
for the statements used to create a BDAM file using the relative track number and
actual key, relative track number and actual record number, or relative block
number addressing scheme.

COUNT dataname Any name not defined elsewhere in your program.
It is a 4-byte binary field.

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL filename,’DIRECT FILE',99365,DA
// EXTENT SYSnnn,...extent information

(OS/390) //BDAMFILE DD DSN=BDAM.FILE.IDENT,DISP=....

Figure 21-2 Create a New BDAM File Using JCL
21–4 VISION:Results Reference Guide

Random Create
Relative Track Number and Actual Key
Use VISION:Results statements to define the file to be created (output):

Specify the record format (F, V, or U) and the record size.

The following keywords are required:

(VSE) FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
RANDOM KEYAREA RELTRK TRKNUMB KEYLEN 5
LENGTH BLENGTH STATUS BDAMSTAT DISK 3350
EXTENT 2 (optional)

(OS/390) FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
RANDOM KEYAREA RELTRK TRKNUMB KEYLEN 5
LENGTH BLENGTH STATUS BDAMSTAT

Figure 21-3 Random Create – Relative Track Number and Actual Key

BDAM Indicates BDAM file processing.

OUTPUT FROM
filename

BDAM files can only be output from themselves.

RANDOM
dataname

Any name not defined elsewhere in your program. Its length
is equal to the key length. It holds the key of the record to be
written. A character (CH) data type is assumed. If your key
is signed numeric, packed decimal, or binary, code NU, PD,
or BI, respectively, after dataname:

RANDOM dataname PD

Also, if the number of decimal places is other than zero, code
it after the data type:

RANDOM dataname PD 2

RELTRK
dataname

Any name not defined elsewhere in your program. It holds
the relative track number. It is a 2-byte binary field.

KEYLEN n Specifies the length of the record key. Allowable values for n
are 1 to 255.

LENGTH
dataname

Any name not defined elsewhere in your program. It holds
the length of the record to be written. Required only for
undefined and variable-length records.

STATUS
dataname

Any name not defined elsewhere in your program. It is a
1-byte field that contains one of the following values after a
WRITE has been issued for this file:

Y Record was written correctly.

N Space was not found on the track.

L Length is incorrect.

I Invalid request.
BDAM Processing 21–5

Random Create
Undefined length records must be greater than or equal to 8 bytes; otherwise, an L
is returned in the STATUS dataname.

If you attempt to write a record whose key is already on the specified track or if
you try to write a record outside of the file, an I is returned in the STATUS
dataname.

The first byte of your key must not be high-values (X`FF'); otherwise, an I is
returned in the STATUS dataname.

If you try to write a record on a track that is already full, an N is returned in the
STATUS dataname.

To create variable-length records, see Other Considerations on page 21-34.

The following procedure logic can be coded:

Above, each record in a file TAPEIN contains an employee number (EMPLNUMB)
and employee data (EMPLDATA). The program:

� Moves the number to the RANDOM dataname as a key.

� Randomizes the number and moves the result to the RELTRK dataname as a
relative track number.

� Moves the data to the BDAM file record area.

� Issues a WRITE for the BDAM file.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

Note: The first relative track number is 0.

DISK type VSE only. Defines the type of disk that contains the file. Valid
values are 2311, 2314, 3330, 3340, and 3350.

EXTENTS n VSE only. Number of EXTENT statements in the JCL for this
file. Default is 1.

.

.
READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLNUMB TO KEYAREA
MOVE EMPLNUMB TO RAND_WORK
PERFORM RANDOMIZE TO RAND_X
MOVE RAND_WORK TO TRKNUMB
MOVE EMPLDATA TO BDAMREC
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERRORTN ENDIF
GOTO READLOOP

.

.

Figure 21-4 Coding the Procedure Logic
21–6 VISION:Results Reference Guide

Random Create
Relative Track Number and Actual Record Number
This addressing scheme can be used for fixed-length records only, when randomly
creating a file.

Use VISION:Results statements to define the file to be created (output):

Specify the record format as F (fixed) and the record size.

The following keywords are required:

If an attempt is made to write to an existing record or to write a record beyond the
end of a track or outside of the file, an I is returned in the STATUS dataname.

To create variable-length records, see Other Considerations on page 21-34.

(VSE) FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
RANDOM RELTRK RELADDR
STATUS BDAMSTAT DISK 3350
EXTENTS 2 (optional)

(OS/390) FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
RANDOM RELTRK RELADDR STATUS BDAMSTAT

BDAM Indicates BDAM file processing.

OUTPUT FROM
filename

BDAM files can only be output from themselves.

RANDOM No data name is required.

RELTRK
dataname

Any name not defined elsewhere in your program. It holds the
relative track number and the actual record number on that
track. It is a 3-byte binary field.

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field that contains one of the following values after a WRITE has
been issued for this file:

DISK type VSE only. Defines the type of disk that contains the file. Valid
values are 2311, 2314, 3330, 3340, and 3350.

EXTENTS n VSE only. Number of EXTENT statements in the JCL for this
file. Default is 1.

Y Record was written correctly.

I Invalid request.
BDAM Processing 21–7

Random Create
The following procedure logic can be coded:

Above, each record in a file TAPEIN contains an employee number (EMPLNUMB)
and employee data (EMPLDATA). The program does the following:

� Randomizes the number and moves the result to the RELTRK dataname as a
relative track number.

� Randomizes the number and moves the result to the RELTRK dataname as an
actual record number on that track.

� Moves the data to the BDAM file record area.

� Issues a WRITE for the BDAM file.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

Note: The first relative track number is 0 and the first actual record number is 1.

Relative Block Number
This addressing scheme can be used for fixed-length records only. It is not
available in VSE.

Use VISION:Results statements to define the file to be created (output):

.

.
WORKAREA
ADDRESS 3 BI
REDEF AT ADDRESS

ADDR_TT 2 BI
ADDR_R 1 BI

.

.
READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLNUMB TO RAND_WORK1
PERFORM RANDOMIZE1 TO RAND_X1
MOVE RAND_WORK1 TO ADDR_TT
MOVE EMPLNUMB TO RAND_WORK2
PERFORM RANDOMIZE2 TO RAND_X2
MOVE RAND_WORK2 TO ADDR_R
MOVE ADDRESS TO RELADDR
MOVE EMPLDATA TO BDAMREC
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERRORTN ENDIF
GOTO READLOOP

.

.

Figure 21-5 Coding the Procedure Logic

(OS/390) FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
RANDOM RELBLK BLKNUMB STATUS BDAMSTAT

Figure 21-6 Random Create — Relative Block Number (OS/390 only)
21–8 VISION:Results Reference Guide

Random Create
Note: This is only available in the OS/390 version of VISION:Results.

Specify the record format as F (fixed) and the record size.

The following keywords are required:

If an attempt is made to write to an existing record or to write a record outside of
the file, an I is returned in the STATUS dataname.

The following procedure logic can be coded:

In Figure 21-7, each record in a file TAPEIN contains an employee number
(EMPLNUMB) and employee data (EMPLDATA). The program does the
following:

� Randomizes the number and moves the result to the RELBLK data name as a
relative block number.

� Moves the data to the BDAM file record area.

� Issues a WRITE for the BDAM file.

BDAM

OUTPUT FROM
filename

BDAM files can only be output from themselves.

RANDOM No data name is required.

RELBLK
dataname

Any name not defined elsewhere in your program. It holds the
relative block number. It is a 3-byte binary field.

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field containing one of the following values after a WRITE has
been issued for this file:

Y Record was written correctly.
I Invalid request.

.

.

READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLNUMB TO RAND_WORK
PERFORM RANDOMIZE TO RAND_X
MOVE RAND_WORK TO BLKNUMB
MOVE EMPLDATA TO BDAMREC
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERRORTN ENDIF
GOTO READLOOP

.

.

Figure 21-7 Coding the Procedure Logic
BDAM Processing 21–9

Sequential Create
When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

The first relative block number is 0.

Sequential Create
This section describes the sequential creation of a new BDAM file or the
replacement of an old one. If you intend to read or update an existing file only, you
do not need to be concerned with this procedure.

To create a file, describe it to the operating system using JCL.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

The file name in your VISION:Results FILE statement must be the same as the file
name or ddname specified in your JCL (above).

When a file is being created, all records are written serially in the sequence in
which they are moved into the output buffer. All records on the first track must be
processed before records are written on the second or third track, and so on.

After the last record has been written, VISION:Results adds dummy records or
writes a capacity record to complete the final track on which data was written. If
OS/390, the rest of the tracks allocated to the file are no longer available to you. If
VSE, dummy records or capacity records are written on the remainder of the tracks
in the file.

See Sequential Create on page 21-10 for the statements used to create a BDAM file
using the relative track number and actual key, relative track number and actual
record number, or relative block number addressing scheme.

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL filename,'DIRECT FILE',99365,DA
// EXTENT SYSnnn,...extent information

(OS/390) //BDAMFILE DD DSN=BDAM.FILE.IDENT,DISP=....

Figure 21-8 Sequential Create a File Using JCL
21–10 VISION:Results Reference Guide

Sequential Create
Relative Track Number and Actual Key
Use VISION:Results statements to define the file to be created (output).

Specify the record format (F, V, or U) and the record size.

The following keywords are required:

(VSE) FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
SEQUENTIAL KEYAREA RELTRK TRKNUMB KEYLEN 5
LENGTH BLENGTH STATUS BDAMSTAT DISK 3350
EXTENT 2 (optional)

(OS/390) FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
SEQUENTIAL KEYAREA RELTRK TRKNUMB KEYLEN 5
LENGTH BLENGTH STATUS BDAMSTAT

Figure 21-9 Sequential Create — Relative Track Number and Actual Key

BDAM Indicates BDAM file processing.

OUTPUT FROM
filename

BDAM files can only be output from themselves.

SEQUENTIAL
dataname

Any name not defined elsewhere in your program. Its length
is equal to the key length. It holds the key of the record to be
written. A character (CH) data type is assumed. If your key
is signed numeric, packed decimal, or binary, code NU, PD,
or BI, respectively, after dataname:

SEQUENTIAL dataname PD

Also, if the number of decimal places is other than zero, code
it after the data type:

SEQUENTIAL dataname PD 2

RELTRK
dataname

Any name not defined elsewhere in your program. It holds
the relative track number. It is a 2-byte binary field.

KEYLEN n Specifies the length of the record key. Allowable values for n
are 1 to 255.

LENGTH
dataname

Required only for undefined and variable-length records.
Any name not defined elsewhere in your program. It holds
the length of the record to be written.

STATUS
dataname

Any name not defined elsewhere in your program. It is a
1-byte field that contains one of the following values after a
WRITE has been issued for this file:

Y Record was written correctly.

N Space was not found in the file.

L Length is incorrect.

I Invalid request.
BDAM Processing 21–11

Sequential Create
When records are written sequentially, you do not need to update the contents of
the relative track address. It is updated as follows:

� Records are written on the first available track until space is no longer available.
At such time, VISION:Results increments the relative track number by 1 and
continues writing on the next track.

� The value of the relative track number used by the system is made available to
you in the relative track address after the record is written.

To skip tracks, place the number of the track to advance to in the RELTRK
dataname. For example, to write a record on track 4 before you have filled tracks 2
and 3, move 4 to the RELTRK dataname before issuing the WRITE.

Note: If you attempt to skip more tracks than are allocated, your program aborts.

Dummy records or capacity records are added to complete the intervening
track(s).

If the initial relative track number value is not 0, VISION:Results completes the
preceding track(s) with dummy or capacity records.

The first byte of your key must not be high value (X’FF’); otherwise, an I is returned
in the STATUS dataname.

Note: On a sequential create, VISION:Results does not prevent you from writing
two or more records on the same track with the same key.

If you attempt to write a record on a previous track or outside of the file, an I is
returned in the STATUS dataname.

If you attempt to write a record, when end of file is reached, an N is returned in the
STATUS dataname.

Undefined length records must be greater than or equal to 8 bytes; otherwise, an L
is returned in the STATUS dataname.

To create variable-length records, see Other Considerations on page 21-34.

DISK type VSE only. Defines the type of disk that contains the file.
Valid values are 2311, 2314, 3330, 3340, and 3350.

EXTENTS n VSE only. Number of EXTENT statements in the JCL for this
file. Default is 1.
21–12 VISION:Results Reference Guide

Sequential Create
The following procedure logic can be coded:

Above, the TAPEIN file contains records that are in employee number sequence.
Each record contains an employee number (EMPLNUMB) and employee data
(EMPLDATA). The program moves the number to the SEQUENTIAL data name
as a key, moves the data to the BDAM file record area, and issues a WRITE for the
BDAM file.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

Note: The first relative track number is 0.

Relative Track Number and Actual Record Number
Use VISION:Results statements to define the file to be created (output):

Specify the record format (F, V, or U) and the record size.

The following keywords are required:

.

.

READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLNUMB TO KEYAREA
MOVE EMPLDATA TO BDAMREC
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERRORTN ENDIF
GOTO READLOOP

.

.

Figure 21-10 Create Variable-Length Records

(VSE) FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
SEQUENTIAL RELTRK RELADDR
LENGTH BLENGTH STATUS BDAMSTAT DISK 3350
EXTENTS 2 (optional)

(OS/390) FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
SEQUENTIAL RELTRK RELADDR
LENGTH BLENGTH STATUS BDAMSTAT

Figure 21-11 Sequential Create — Relative Track Number and Actual Record
Number

BDAM Indicates BDAM file processing.

OUTPUT FROM
filename

BDAM files can only be output from themselves.

SEQUENTIAL No data name is required.
BDAM Processing 21–13

Sequential Create
When records are written sequentially, you do not need to update the contents of
the relative track address. VISION:Results updates it as follows:

� When a record is written, VISION:Results increments the actual record number
by 1 and continues writing until space is no longer available on that track.
VISION:Results increments the relative track number by 1, sets the actual
record number to 1, and continues writing on the next track.

� The value of the relative track number and the actual record number used by
the system are made available to you in the relative track address after the
record is written.

To skip tracks, place the number of the track to advance to in the RELTRK
dataname and reset the actual record number (probably to 1). For example, to write
record 1 on track 4 before you have filled tracks 2 and 3, move X’000401' to the
RELTRK dataname before issuing the WRITE.

Note: If you attempt to skip more records than are on a track or more tracks than
are allocated, your program aborts.

To skip records within a track (fixed-length format only), put the next record
number you want to write into the actual record number portion of the relative
track address.

VISION:Results adds dummy records or writes capacity records to complete the
intervening track(s) or record(s).

RELTRK
dataname

Any name not defined elsewhere in your program. It holds
the relative track number and the actual record number on
that track. It is a 3-byte binary field.

LENGTH
dataname

Required for undefined and variable-length records only.
Any name not defined elsewhere in your program. It holds
the length of the record to be written.

STATUS
dataname

Any name not defined elsewhere in your program. It is a
1-byte field that contains one of the following values after a
WRITE has been issued for this file:

DISK type VSE only. Defines the type of disk that contains the file. Valid
values are 2311, 2314, 3330, 3340, and 3350.

EXTENTS n VSE only. Number of EXTENT statements in the JCL for this
file. Default is 1.

Y Record was written correctly.

N Space was not found in the file.

L Length is incorrect.

I Invalid request.
21–14 VISION:Results Reference Guide

Sequential Create
If the initial relative track number value is not 0 (initial actual record value is not
1), VISION:Results completes the preceding track(s) and/or record(s) with
dummy or capacity records.

If an attempt is made to write to an existing record or to write a record beyond the
end of a track or outside of the file, an I is returned in the STATUS dataname.

If you attempt to write a record when end of file is reached, an N is returned in the
STATUS dataname.

Undefined length records must be greater than or equal to 8 bytes; otherwise, an L
is returned in the STATUS dataname.

To create variable-length records, see Other Considerations on page 21-34.

The following procedure logic can be coded:

Above, the TAPEIN file contains records with employee data. The program moves
the data to the BDAM file record area and issues a WRITE to the BDAM file.

Note: The first relative track number is 0 and the first actual record number is 1.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

Relative Block Number
This addressing scheme can be used for fixed-length records only. It is not
available for VSE.

Use VISION:Results statements to define the file to be created (output):

Note: This is only available in the OS/390 version of VISION:Results.

Specify the record format as F (fixed) and the record size.

.

.

READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLDATA TO BDAMREC
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERRORTN ENDIF
GOTO READLOOP

.

.

Figure 21-12 Coding the Procedure Logic

(OS/390) FILE DAFILE BDAM OUTPUT FROM DAFILE F 35
SEQUENTIAL RELBLK BLKNUMB STATUS BDAMSTAT

Figure 21-13 Sequential Create — Relative Block Number
BDAM Processing 21–15

Sequential Create
The following keywords are required:

When records are written sequentially, you need not update the contents of the
relative block address. VISION:Results updates the contents as follows:

� Records are written on the first available track until space is no longer available.

� The value of the relative block number used by the system is made available to
you in the relative block address after the record is written.

Note: If you attempt to skip more records than are on a track or more tracks than
are allocated, the program aborts.

To skip blocks, place the number of the block to advance to in the RELBLK data
name. For example, to write the thirtieth block, when the last relative block
number is 10, move 30 to the RELBLK data name before issuing the WRITE.

Dummy records are added to complete the intervening block(s).

If the initial relative block number value is not 0, VISION:Results completes the
preceding block(s) with dummy records.

If you attempt to write an existing record or to write a record outside of the file, an
I is returned in the STATUS dataname.

If you attempt to write a record when end of file is reached, an N is returned in the
STATUS dataname.

BDAM Indicates BDAM file processing.

OUTPUT FROM
filename

BDAM files can only be output from themselves.

SEQUENTIAL No data name is required.

RELBLK
dataname

Any name not defined elsewhere in your program. It holds
the relative block number. It is a 3-byte binary field.

STATUS
dataname

Any name not defined elsewhere in your program. It is a
1-byte field that contains one of the following values after a
WRITE has been issued for this file:

Y Record was written correctly.

N Space was not found in the file.

I Invalid request.
21–16 VISION:Results Reference Guide

Random Read
The following procedure logic can be coded:

Above, the TAPEIN file contains records with employee data. The program moves
the data to the BDAM file record area and issues a WRITE to the BDAM file.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

The first relative block number is 0.

Random Read
This section describes reading records, one at a time and in no particular sequence,
from a BDAM file. The program must identify precisely which record is wanted,
prior to issuing the READ request. After the READ, one of two conditions exists:
either the requested record is found, or it is not found.

To read a file, describe it to the operating system using JCL.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

The file name in your VISION:Results FILE statement must be the same as the file
name or ddname specified in your JCL (above).

See the following sections for the statements used to read a BDAM file using the
relative track number and actual key, relative track number and actual record
number, or relative block number addressing scheme.

.

.

READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLDATA TO BDAMREC
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERRORTN ENDIF
GOTO READLOOP

.

.

Figure 21-14 Coding the Procedure Logic

(VSE) // ASSGN SYSnnn,X'cuu'
// DLBL filename,'DIRECT FILE',99365,DA
// EXTENT SYSnnn,...extent information

(OS/390) //BDAMFILE DD DSN=BDAM.FILE.IDENT,DISP=SHR

Figure 21-15 Read a File Using JCL
BDAM Processing 21–17

Random Read
Relative Track Number and Actual Key
Use VISION:Results statements to define the input file:

Specify the record format (F, V, or U) and the record size.

The following keywords are required:

(VSE) FILE DAFILE BDAM RANDOM KEYAREA F 35
RELTRK TRKNUMB KEYLEN 5
STATUS BDAMSTAT DISK 3350
LENGTH BLENGTH EXTENT 2 (optional keywords)

(OS/390) FILE DAFILE BDAM RANDOM KEYAREA F 35
RELTRK TRKNUMB KEYLEN 5
STATUS BDAMSTAT
LENGTH BLENGTH (optional)

Figure 21-16 Random Read — Relative Track Number and Actual Key

BDAM Indicates BDAM file processing.

RANDOM
dataname

Any name not defined elsewhere in your program. Its length is
equal to the key length. It holds the key of the record to be
retrieved. A character (CH) data type is assumed. If your key is
signed numeric, packed decimal, or binary, code NU, PD, or BI,
respectively, after dataname:

RANDOM dataname PD

Also, if the number of decimal places is other than zero, code it
after the data type:

dataname PD 2

RELTRK
dataname

Any name not defined elsewhere in your program. It holds the
relative track number. It is a 2-byte binary field.

KEYLEN n Specifies the length of the record key. Allowable values for n are
1 to 255.

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field that contains one of the following values after a READ has
been issued for this file:

DISK type VSE only. Defines the type of disk that contains the file. Valid
values are 2311, 2314, 3330, 3340, and 3350.

EXTENTS n VSE only. Number of EXTENT statements in the JCL for this file.
Default is 1.

Y Record was written correctly.

N Space was not found in the file.

I Invalid request.
21–18 VISION:Results Reference Guide

Random Read
The following procedure logic can be coded:

Each record in a file TAPEIN contains an employee number (EMPLNUMB). The
program moves the number to the RANDOM dataname as a key, randomizes the
number and moves the result to the RELTRK as a relative track number, and issues
a READ for the BDAM file. If a record is not read (STATUS dataname is not equal
to Y), the program branches to an error routine. If the record is read correctly
(STATUS dataname is equal to Y), it is printed and the program returns to read
another TAPEIN record.

If an attempt is made to read a record outside of the file, an I is returned in the
STATUS dataname.

The first byte of your key must not be high-values (X`FF'); otherwise, an I is
returned in the STATUS dataname. If a record is not found, an N is returned in the
STATUS dataname.

After a record is read, VISION:Results puts its length in the LENGTH data name.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

Note: The first relative track number is 0.

To read variable-length records, see Other Considerations on page 21-34.

LENGTH
dataname

Any name not defined elsewhere in your program. It holds the
length of the record obtained.

.

.

.

READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLNUMB TO KEYAREA
MOVE EMPLNUMB TO RAND_WORK
PERFORM RANDOMIZE TO RAND_X
MOVE RAND_WORK TO TRKNUMB
READ DAFILE
IF BDAMSTAT NE 'Y' GOTO NOTFOUND ENDIF
HEXPRINT BDAMREC
GOTO READLOOP

.

.

.

Figure 21-17 Coding the Procedure Logic
BDAM Processing 21–19

Random Read
Relative Track Number and Actual Record Number
Use VISION:Results statements to define the input file:

Specify the record format (F, V, or U) and the record size.

The following keywords are required:

The following procedure logic can be coded:

(VSE) FILE DAFILE BDAM RANDOM F 35
RELTRK RELADDR STATUS BDAMSTAT
DISK 3350
LENGTH BLENGTH EXTENTS 2 (optional keywords)

(OS/390) FILE DAFILE BDAM RANDOM F 35
RELTRK RELADDR STATUS BDAMSTAT
LENGTH BLENGTH (optional)

Figure 21-18 Random Read — Relative Track Number and Actual Record Number

BDAM Indicates BDAM file processing.

RANDOM No data name is required.

RELTRK
dataname

Any name not defined elsewhere in your program. It holds the
relative track number and the actual record number on that
track. It is a 3-byte binary field.

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field that contains one of the following values after a READ has
been issued for this file:

DISK type VSE only. Defines the type of disk that contains the file. Valid
values are 2311, 2314, 3330, 3340, and 3350.

EXTENTS n VSE only. Number of EXTENT statements in the JCL for this file.
Default is 1.

LENGTH
dataname

Any name not defined elsewhere in your program. It holds the
length of the record obtained.

.

.

.

WORKAREA
ADDRESS 3 BI
REDEF AT ADDRESS
ADDR_TT 2 BI
ADDR_R 1 BI

.

.

Figure 21-19 Coding the Procedure Logic (Page 1 of 2)

Y Record was written correctly.
N Space was not found in the file.
I Invalid request.
21–20 VISION:Results Reference Guide

Random Read
Each record in a file TAPEIN contains an employee number (EMPLNUMB). The
number is randomized and the result is moved to the RELTRK dataname as a track
number, the number is randomized and moved to the RELTRK dataname as an
actual record number on that track, and a READ is issued for the BDAM file.

If a record is not read (STATUS dataname is not equal to Y), the program branches
to an error routine. If the record is read correctly (STATUS dataname is equal to Y),
it is printed and the program returns to read another ‘TAPEIN’ record.

After a record is read, VISION:Results puts its length in the LENGTH data name.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

If an attempt is made to read a record beyond the track or outside of the file, an I
is returned in the STATUS dataname.

Note: The first relative track number is 0, and the first actual record number is 1.

If a record is not found, an N is returned in the STATUS dataname.

To read variable-length records, see Other Considerations on page 21-34.

Relative Block Number
Note: This section only applies to OS/390.

This addressing scheme can be used for fixed-length records only. It is not
available for VSE.

Use VISION:Results statements to define the input file:

Specify the record format as F (fixed) and the record size.

READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLNUMB TO RAND_WORK1
PERFORM RANDOMIZE1 TO RAND_X1
MOVE RAND_WORK1 TO ADDR_TT
MOVE EMPLNUMB TO RAND_WORK2
PERFORM RANDOMIZE2 TO RAND_X2
MOVE RAND_WORK2 TO ADDR_R
MOVE ADDRESS TO RELADDR
READ DAFILE
IF BDAMSTAT NE 'Y' GOTO NOTFOUND ENDIF
HEXPRINT BDAMREC
GOTO READLOOP

.

.

.

Figure 21-19 Coding the Procedure Logic (Page 2 of 2)

(OS/390) FILE DAFILE BDAM RANDOM F 35
RELBLK BLKNUMB STATUS BDAMSTAT

Figure 21-20 Random Read — Relative Block Number (OS/390 only)
BDAM Processing 21–21

Random Read

The following keywords are required:

The following procedure logic can be coded:

Above, each record in a file TAPEIN contains an employee number
(EMPLNUMB). The program randomizes the number, moves the result to the
RELBLK data name as a relative block number, and issues a READ for the BDAM
file. If the record is not read (STATUS dataname is not equal to Y), the program
branches to an error routine. If the record is read correctly (STATUS dataname is
equal to Y), it is printed and the program returns to read another TAPEIN record.

If an attempt is made to read a record outside of the file, an I is returned in the
STATUS dataname.

If a record is not found, an N is returned in the STATUS dataname.

Note: The first relative block number is 0.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), a STOP
command is issued. It is always necessary to tell VISION:Results when to end the
run if a BDAM file is used.

BDAM Indicates BDAM file processing.

RANDOM No data name is required.

RELBLK
dataname

The data name is any name not defined elsewhere in your program.
It holds the relative block number. It is a 3-byte binary field.

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field that contains one of the following values after a READ has
been issued for this file:

.

.

.

READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLNUMB TO RAND_WORK
PERFORM RANDOMIZE TO RAND_X
MOVE RAND_WORK TO BLKNUMB
READ DAFILE
IF BDAMSTAT NE 'Y' GOTO NOTFOUND ENDIF
HEXPRINT BDAMREC
GOTO READLOOP

.

.

.

Figure 21-21 Coding the Procedure Logic

Y Record was written correctly.

N Space was not found in the file.

I Invalid request.
21–22 VISION:Results Reference Guide

Sequential Read
Sequential Read
This section describes reading a BDAM file starting with the first record and
reading serially until end of file occurs or a STOP command is issued by the
VISION:Results program.

To read a file, describe it to the operating system using JCL.

VSE

OS/390

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

The file name in your FILE statement must be the same as the file name or ddname
specified in your JCL (above).

When a BDAM file is being read sequentially, relative addresses RELTRK
dataname and RELBLK dataname are not updated.

Note: The data name is required with the RELTRK and RELBLK keywords.

All records are returned to you, including dummy records (OS/390 fixed-length
records only). Records cannot be skipped.

See Sequential Read on page 21-23 for information about reading a BDAM file
using relative track number and actual key, relative track number and actual
record number, or relative block number addressing scheme.

Relative Track Number and Actual Key
Use VISION:Results statements to define the input file:

Specify the record format (F, V, or U) and the record size.

// ASSGN SYSnnn,X'cuu'
// DLBL filename,'DIRECT FILE',99365,DA
// EXTENT SYSnnn,...extent information

Figure 21-22 BDAM File Sequential Read (VSE)

//BDAMFILE DD DSN=BDAM.FILE.IDENT,DISP=SHR

Figure 21-23 BDAM File Sequential Read (OS/390)

(VSE) FILE DAFILE BDAM SEQUENTIAL KEYAREA F 35
RELTRK TRKNUMB KEYLEN 5
STATUS BDAMSTAT DISK 3350
LENGTH BLENGTH EXTENTS 2 (optional keywords)

(OS/390) FILE DAFILE BDAM SEQUENTIAL KEYAREA F 35
RELTRK TRKNUMB KEYLEN 5
STATUS BDAMSTAT
LENGTH BLENGTH (optional)

Figure 21-24 Sequential Read — Relative Track Number and Actual Key
BDAM Processing 21–23

Sequential Read
The following keywords are required:

The following procedure logic can be coded:

BDAM Indicates BDAM file processing.

SEQUENTIAL
dataname

The dataname is not required. It is any name not defined
elsewhere in your program. Its length is equal to the key
length. It holds the key of the record obtained. A character
(CH) data type is assumed. If your key is signed numeric,
packed decimal, or binary, code NU, PD, or BI,
respectively, after dataname:

SEQUENTIAL dataname PD

Also, if the number of decimal places is other than zero,
code it after the data type:

SEQUENTIAL dataname PD 2

RELTRK dataname Any name not defined elsewhere in your program.

KEYLEN n Required only if SEQUENTIAL dataname is used.
Specifies the length of the record key. Allowable values for
n are 1 to 255.

STATUS dataname Any name not defined elsewhere in your program. It is a
1-byte field that contains one of the following values after
a READ has been issued for this file:

DISK type VSE only. Defines the type of disk that contains the file.
Valid values are 2311, 2314, 3330, 3340, and 3350.

EXTENTS n VSE only. Number of EXTENT statements in the JCL for
this file. Default is 1.

LENGTH
dataname

Any name not defined elsewhere in your program. It holds
the length of the record obtained.

.

.

READLOOP:
READ DAFILE
IF BDAMSTAT EQ 'E' STOP ENDIF
IF BDAMSTAT EQ 'D' } OS/390 only
GOTO READLOOP ENDIF } OS/390 only

HEXPRINT KEYAREA
HEXPRINT BDAMREC
GOTO READLOOP

.

.

Figure 21-25 Coding the Procedure Logic

Y Record was read correctly.
D Dummy record (OS/390 fixed-length records only).
E End of file.
21–24 VISION:Results Reference Guide

Sequential Read
If an actual record is read (STATUS dataname is equal to Y), it is printed. If a
dummy record is read (STATUS dataname is equal to D), the program reads the
next one (OS/390 only). When the DAFILE reaches the end (STATUS dataname is
equal to E), the program issues a STOP command. You must always specify when
to end the run if a BDAM file is used.

The data name does not need to be specified in the SEQUENTIAL keyword. If a
data name is specified, the record's key is placed into that field.

To read variable-length records, see Other Considerations on page 21-34.

Relative Track Number and Actual Record Number
Use VISION:Results statements to define the input file:

Specify the record format (F, V, or U) and the record size.

The following keywords are required:

(VSE) FILE DAFILE BDAM SEQUENTIAL F 35
RELTRK RELADDR STATUS BDAMSTAT DISK 3350
LENGTH BLENGTH EXTENTS 2 (optional keywords)

(OS/390) FILE DAFILE BDAM SEQUENTIAL F 35
RELTRK RELADDR STATUS BDAMSTAT
LENGTH BLENGTH (optional)

Figure 21-26 Sequential Read — Relative Track Number and Actual Record
Number

BDAM Indicates BDAM file processing.

SEQUENTIAL No data name is required.

RELTRK
dataname

Any name not defined elsewhere in your program.

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field that contains one of the following values after a READ has
been issued for this file:

LENGTH
dataname

Any name not defined elsewhere in your program. It holds the
length of the record obtained.

DISK type VSE only. Defines the type of disk that contains the file. Valid
values are 2311, 2314, 3330, 3340, and 3350.

EXTENTS n VSE only. Number of EXTENT statements in the JCL for this file.
Default is 1.

Y Record was read correctly.

D Dummy record (OS/390 fixed-length records only).

E End of file.
BDAM Processing 21–25

Sequential Read
The following procedure logic can be coded:

If an actual record is read (STATUS dataname is equal to Y), it is printed. If a
dummy record is read (STATUS dataname is equal to D), the program reads the
next one (OS/390 only). When the DAFILE reaches the end (STATUS dataname is
equal to E), the program issues a STOP command. You must always specify when
to end the run if a BDAM file is used.

To read variable-length records, see Other Considerations on page 21-34.

Relative Block Number
Note: This section only applies to OS/390.

This addressing scheme can be used for fixed-length records only. It is not
available for VSE. Use VISION:Results statements to define the input file:

Specify the record format as F (fixed) and the record size.

The following keywords are required:

.

.
READLOOP:
READ DAFILE
IF BDAMSTAT EQ 'E' STOP ENDIF
IF BDAMSTAT EQ 'D' } OS/390 only
GOTO READLOOP ENDIF } OS/390 only

HEXPRINT BDAMREC
GOTO READLOOP

.

.

Figure 21-27 Coding the Procedure Logic

(OS/390) FILE DAFILE BDAM SEQUENTIAL F 35
RELBLK BLKNUMB STATUS BDAMSTAT

Figure 21-28 Sequential Read — Relative Block Number (OS/390 only)

BDAM Indicates BDAM file processing.

SEQUENTIAL No data name is required.

RELBLK
dataname

Any name not defined elsewhere in your program.

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field that contains one of the following values after a READ has
been issued for this file:

Y Record was read correctly.

D Dummy record (OS/390 fixed-length records only).

E End of file.
21–26 VISION:Results Reference Guide

Random Update
The following procedure logic can be coded:

If an actual record is read (STATUS dataname is equal to Y), it is printed. If a
dummy record is read (STATUS dataname is equal to D), the program reads the
next one (OS/390 only). When the DAFILE reaches the end (STATUS dataname is
equal to E), the program issues a STOP command. You must always specify when
to end the run if a BDAM file is used.

Random Update
This section describes the random insertion and changing of records on a BDAM
file. The file is updated in place, without copying the old file to a new file.

To update a file, describe the file to the operating system using JCL.

VSE

Note: This type of run is not restartable. Once one record has been added or
changed, the file is not the same, regardless of why the job ended. Create a method
of recovering the original file as a precaution before running a program that uses
this technique.

OS/390

.

.

READLOOP:
READ DAFILE
IF BDAMSTAT EQ 'E' STOP ENDIF
IF BDAMSTAT EQ 'D' GOTO READLOOP ENDIF
HEXPRINT BDAMREC
GOTO READLOOP

.

.

.

Figure 21-29 Coding the Procedure Logic

// ASSGN SYSnnn,X'cuu'
// DLBL filename,'DIRECT FILE',99365,DA
// EXTENT SYSnnn,...extent information

Figure 21-30 BDAM File Random Update (VSE)

//BDAMFILE DD DSN=BDAM.FILE.IDENT,DISP=OLD

Figure 21-31 BDAM File Random Update (OS/390)
BDAM Processing 21–27

Random Update
Note the disposition of OLD above.

The particulars of the JCL required vary from one installation to another. To code
the JCL successfully, you must be familiar with your installation standards.

The file name in your VISION:Results FILE statement must be the same as the file
name or ddname specified in your JCL (above).

If you do not issue a READ for a given record before you issue the WRITE, your
program aborts.

Note: Before a record can be replaced, it must be read and found. Before a record
can be added, it must be read and not found, even if you know it is not there.

See Random Update on page 21-27 for the statements needed to randomly update
a BDAM file using relative track number and actual key, relative track number and
actual record number, or the relative block number addressing scheme.

Relative Track Number and Actual Key
Use VISION:Results statements to define the input/output file:

Specify the record format (F, V, or U) and the record size.

The following keywords are required:

(VSE) FILE DAFILE BDAM IO RANDOM KEYAREA F 35
RELTRK TRKNUMB KEYLEN 5
STATUS BDAMSTAT DISK 3350
LENGTH BLENGTH EXTENTS 2 (optional keywords)

(OS/390) FILE DAFILE BDAM IO RANDOM KEYAREA F 35
RELTRK TRKNUMB KEYLEN 5
STATUS BDAMSTAT
LENGTH BLENGTH (optional)

Figure 21-32 Random Update — Relative Track Number and Actual Key

BDAM Indicates BDAM file processing.

IO Allows the file to be updated in place. Record format and record
size must be specified on the FILE statement in conjunction with
this keyword.

RANDOM
dataname

Any name not defined elsewhere in your program. Its length is
equal to the key length. It holds the key of the record to be
retrieved. A character (CH) data type is assumed. If your key is
signed numeric, packed decimal, or binary, code NU, PD, or BI,
respectively, after dataname:

RANDOM dataname PD

Also, if the number of decimal places is other than zero, code it
after the data type:

RANDOM dataname PD 2

RELTRK
dataname

Any name not defined elsewhere in your program. It holds the
relative track number. It is a 2-byte binary field.
21–28 VISION:Results Reference Guide

Random Update
If an attempt is made to read a record outside of your file, an I is returned in the
STATUS dataname.

The first byte of your key must not be high-values (X’FF’); otherwise, an I is
returned in the STATUS dataname.

If the relative track number, the actual key, or the record length (if the record was
found) is changed before the WRITE is issued, your program aborts.

Undefined length records must be greater than or equal to 8 bytes; otherwise, an L
is returned in the STATUS dataname.

The following procedure logic can be coded:

KEYLEN n Specifies the length of the record key. Allowable values for n are
1 to 255.

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field that contains one of the following values:

After a READ is issued:

After a WRITE is issued:

DISK type VSE only. Defines the type of disk that contains the file. Valid
values are 2311, 2314, 3330, 3340, and 3350.

EXTENTS n VSE only. Number of EXTENT statements in the JCL for this file.
Default is 1.

LENGTH
dataname

Required only for undefined and variable-length records. Any
name not defined elsewhere in your program. It holds the length
of the record.

.

.

.

READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLNUMB TO KEYAREA
MOVE EMPLNUMB TO RAND_WORK
PERFORM RANDOMIZE TO RAND_X

Figure 21-33 Coding the Procedure Logic (Page 1 of 2)

Y Record was found and read correctly.

N Record was not found.

I Invalid request.

Y Record was written correctly.

N Space was not found on the track.

L Length is incorrect.
BDAM Processing 21–29

Random Update
Above, each record in a file TAPEIN contains an employee number (EMPLNUMB)
and employee data (EMPLDATA). The program moves the number to RANDOM
dataname as a key, randomizes the number and moves the result to the RELTRK
dataname as a relative track number, and issues a READ for the BDAM file. If the
record is found (STATUS dataname is equal to Y), the program changes the fields
to be updated and replaces the record. If the record is not found (STATUS
dataname is equal to N), the program adds it to the file.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

Note: The first relative track number is 0.

To update variable-length records, see Considerations for Processing
Variable-Length Records on page 6-36.

Relative Track Number and Actual Record Number
You can replace fixed, variable, and undefined length records. You can only add
fixed-length records.

Use VISION:Results statements to define the input/output file:

Specify the record format (F, V, or U) and the record size.

MOVE RAND_WORK TO TRKNUMB
READ DAFILE
IF BDAMSTAT NE 'Y' GOTO ADDRECRD ENDIF

REWRRECD:
HEXPRINT BDAMREC
IF EMPHONE NE BLANKS MOVE EMPHONE TO BDPHONE ENDIF
IF EMPADDR NE BLANKS MOVE EMPADDR TO BDADDR ENDIF
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERWRITE ENDIF
GOTO READLOOP

ADDRECRD:
IF BDAMSTAT NE 'N' GOTO ERREAD ENDIF
MOVE EMPLDATA TO BDAMREC
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERWRITE ENDIF
GOTO READLOOP

.

.

.

Figure 21-33 Coding the Procedure Logic (Page 2 of 2)

(VSE) FILE DAFILE BDAM IO RANDOM F 35
RELTRK RELADDR STATUS BDAMSTAT
DISK 3350
LENGTH BLENGTH EXTENTS 2 (optional keywords)

(OS/390) FILE DAFILE BDAM IO RANDOM F 35
RELTRK RELADDR STATUS BDAMSTAT
LENGTH BLENGTH (optional)

Figure 21-34 Random Update — Relative Track Number and Actual Record
Number
21–30 VISION:Results Reference Guide

Random Update
The following keywords are required:

If an attempt is made to read a record beyond the end of the track or outside of
your file, an I is returned in the STATUS dataname.

If the relative track number, the actual record number, or the record length (if
the record was found), is changed before the WRITE is issued, your program
aborts.

Undefined length records must be greater than or equal to 8 bytes; otherwise, an L
is returned in the STATUS dataname.

To update variable-length records, see Other Considerations on page 21-34.

BDAM Indicates BDAM file processing.

IO Allows the file to be updated in place. Record format and record
size must be specified on the FILE statement in conjunction with
this keyword.

RANDOM No data name is required.

RELTRK
dataname

Any name not defined elsewhere in your program. It holds the
relative track number and the actual record number on that track.
It is a 3-byte binary field.

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field that contains one of the following values:

After a READ is issued:

After a WRITE is issued:

DISK type VSE only. Defines the type of disk that contains the file. Valid
values are 2311, 2314, 3330, 3340, and 3350.

EXTENTS n VSE only. Number of EXTENT statements in the JCL for this file.
Default is 1.

LENGTH
dataname

Required only for undefined and variable-length records. Any
name not defined elsewhere in your program. It holds the length
of the record.

Y Record was found.

N Record was not found.

I Invalid request.

Y Record was written correctly.

L Length is incorrect.
BDAM Processing 21–31

Random Update
The following procedure logic can be coded:

Each record in a file TAPEIN contains an employee number (EMPLNUMB) and
employee data (EMPLDATA). The program randomizes the number and moves
the result to the RELTRK dataname as a relative track number, randomizes the
number and moves the result to the RELTRK dataname as an actual record number
on that track, and issues a READ for the BDAM file. If the record is found (STATUS
dataname is equal to Y), the program changes the fields to be updated and replaces
the record. If the record is not found (STATUS dataname is equal to N), the
program adds it to the file.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

Note: The first relative track number is 0 and the first actual record number is 1.

Relative Block Number
Note: This section only applies to OS/390.

This addressing scheme can be used for fixed-length records only. It is not
available for VSE.

.

.
WORKAREA
ADDRESS 3 BI
REDEF AT ADDRESS
ADDR_TT 2 BI
ADDR_R 1 BI

.

.
READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLNUMB TO RAND_WORK1
PERFORM RANDOMIZE1 TO RAND_X1
MOVE RAND_WORK1 TO ADDR_TT
MOVE EMPLNUMB TO RAND_WORK2
PERFORM RANDOMIZE2 TO RAND_X2
MOVE RAND_WORK2 TO ADDR_R
MOVE ADDRESS TO RELADDR
READ DAFILE
IF BDAMSTAT NE 'Y' GOTO ADDRECRD ENDIF

REWRRECD:
HEXPRINT BDAMREC
IF EMPHONE NE BLANKS MOVE EMPHONE TO BDPHONE ENDIF
IF EMPADDR NE BLANKS MOVE EMPADDR TO BDADDR ENDIF
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERWRITE ENDIF
GOTO READLOOP

ADDRECRD:
IF BDAMSTAT NE 'N' GOTO ERREAD ENDIF
MOVE EMPLDATA TO BDAMREC
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERWRITE ENDIF
GOTO READLOOP

.

.

Figure 21-35 Coding the Procedure Logic
21–32 VISION:Results Reference Guide

Random Update
Use VISION:Results statements to define the input/output file:

Specify a record format of F (fixed) and the record size.

The following keywords are required:

If an attempt is made to read a record outside of your file, an I is returned in the
STATUS dataname.

If the relative block number is changed before a WRITE is issued, your program
aborts.

The following procedure logic can be coded:

(OS/390) FILE DAFILE BDAM IO RANDOM F 35
RELBLK BLKNUMB STATUS BDAMSTAT

Figure 21-36 Random Update — Relative Block Number (OS/390 only)

BDAM Indicates BDAM file processing.

IO Allows the file to be updated in place. Record format and record
size must be specified on the FILE statement in conjunction with
this keyword.

RANDOM No data name is required.

RELBLK
dataname

Any name not defined elsewhere in your program. It holds the
relative block number. It is a 3-byte binary field.

STATUS
dataname

Any name not defined elsewhere in your program. It is a 1-byte
field that contains one of the following values:

After a READ is issued:

After a WRITE is issued:

.

.
READLOOP:
READ TAPEIN
IF TAPESTAT EQ 'E' STOP ENDIF
MOVE EMPLNUMB TO RAND_WORK
PERFORM RANDOMIZE TO RAND_X
MOVE RAND_WORK TO BLKNUMB
READ DAFILE
IF BDAMSTAT NE 'Y' GOTO ADDRECRD ENDIF

REWRECD:

Figure 21-37 Coding the Procedure Logic (Page 1 of 2)

Y Record was found and read correctly.

N Record was not found.

I Invalid request.

Y Record was written correctly.
BDAM Processing 21–33

Other Considerations
Each record in a file TAPEIN contains an employee number (EMPLNUMB) and
employee data (EMPLDATA). The program randomizes the number, moves the
result to the RELBLK data name as a relative block number, and issues a READ for
the BDAM file. If the record is found (STATUS dataname is equal to Y), the
program changes the fields to be updated and replaces the record. If the record is
not found (STATUS dataname is equal to N), the program adds it to the file.

When the TAPEIN file reaches the end (STATUS dataname is equal to E), the
program issues a STOP command. You must always specify when to end the run
if a BDAM file is used.

Note: The first relative block number is 0.

Other Considerations

Processing Variable-Length Records
VISION:Results simplifies the processing of files with variable-length records.

HEXPRINT BDAMREC
IF BDAMSTAT NE 'Y' GOTO ERWRITE ENDIF
IF EMPHONE NE BLANKS MOVE EMPHONE TO BDPHONE ENDIF
IF EMPADDR NE BLANKS MOVE EMPADDR TO BDADDR ENDIF
WRITE DAFILE
GOTO READLOOP

ADDRECRD:
IF BDAMSTAT NE 'N' GOTO ERREAD ENDIF
MOVE EMPLDATA TO BDAMREC
WRITE DAFILE
IF BDAMSTAT NE 'Y' GOTO ERWRITE ENDIF
GOTO READLOOP

.

Figure 21-37 Coding the Procedure Logic (Page 2 of 2)

Record Size When specifying the logical record length for a variable file,
specify the maximum data length (not including the length of
the RDW).

Block Size Blocking has no meaning for BDAM files and is ignored.

Location of
Data within
Record

VISION:Results assumes that position 1 of every variable
record is the first byte of data. VISION:Results automatically
takes care of the 4-byte record descriptor word (RDW) for
BDAM variable files. When setting up data definitions for
variable-length records, start defining fields from the first
byte of data.
21–34 VISION:Results Reference Guide

Other Considerations
Numeric and Packed Key
When processing a BDAM file where you are building or retrieving records,
consider the sign of the key if the key has a data type of numeric (zoned decimal)
or packed. A positive sign for a numeric or packed field can be C or F. This can be
a problem if you are searching for a particular record on a BDAM file, and the key

Length of
Current Record

On input, VISION:Results keeps track of the length of the data
in the record just read. You can access this information by
specifying the keyword LENGTH and a data name. The data
name specified this way is a 2-byte binary field and contains
the length of the data in the record just read.

For output files, it is your responsibility to tell VISION:Results
how long the data portion of the current record is.

Output from
Itself

If a file is defined to be output from itself, it has its own I/O
area assigned. It also has a 2-byte binary length field assigned
to the file. You can reference this length field by specifying the
keyword LENGTH followed by a data name. It is your
responsibility to move data to the area and place the length of
the data in the LENGTH data name before the record is to be
written, either using the automatic cycle or a WRITE
command. Failure to move a valid length to the LENGTH
data name can result in wrong length records being written.

Output from an
Input File

This is not available.

File Printing
Variable Files

When a variable-length BDAM file is file printed (HEXPRINT,
PRINT, and so on), the RDW and the data portion of the
record are printed. The maximum length of the record is
always printed, regardless of the contents of the RDW. The
RDW does not have the correct value in it until after a WRITE
occurs. Either print the record after a WRITE or print the
LENGTH data name in conjunction with printing the record.

Sorting a
Variable File

To eliminate errors during SORT, variable-length records are
moved from the I/O area to a fixed-length area for processing.
This is transparent to you, and you do not need to be
concerned with this. If an error occurs in the VISION:Results
execution, the record shown in the I/O area in the
PRINTERROR dump is not necessarily the record you are
processing. The variable record has been moved to a work
area. Check your record there.

Record Format
Specifications

OS/390 users must specify variable record format in their
FILE statement to have VISION:Results handle the RDW
automatically. If the record format is not specified at compile
time, VISION:Results passes you the ENTIRE record
(including the RDW) in the record area.
BDAM Processing 21–35

Other Considerations
you are using to search has a different sign than the key in the record. For example,
a 2-byte packed field with the value 123C is not considered equal to a 2-byte
packed field with the value 123F. A NO RECORD FOUND status is set.

In a VISION:Results program, you can run into an unlike sign problem under the
following circumstances: you have set up a packed key in the BDAM key area and
this key has developed a C sign somewhere along the line (perhaps the key had
been converted from numeric to packed and a C sign resulted from this process).
If the key in the record contains an F sign, a status code of N (no record found) is
returned to the program after a random retrieval read. The same situation can
occur with numeric fields.

To prevent or correct for unlike signs, use one of the following approaches:

� Whenever possible, treat the keys as character data:

In Figure 21-38, the keys have a data type of packed but are defined as character,
so no sign change can occur. If the key has to be treated as packed, it can be
redefined.

In Figure 21-39, a numeric key in the transaction file (TRANSIN) is defined as
character. FINDKEY is also defined as character (default). No sign change happens
when TRANACCT is moved to FINDKEY.

� To convert a packed key's sign from C to F, you can OR the field.

FILE BDAMIN F 120 RANDOM SEARCHKEY RELTRK RELADDR
STATUS BDAMSTAT KEYLEN 3

FILE TRANIN STATUS TRANEOF
KEYIN 3 CH ; (key is actually packed decimal)
NUMBIN 3 BI
PROCEDURE:
IF TRANEOF EQ 'E' STOP ENDIF
MOVE KEYIN TO SEARCHKEY ; (sign remains unchanged)
MOVE NUMBIN TO RELADDR
READ BDAMIN
IF BDAMSTAT NE 'Y' GOTO NOTFOUND ENDIF

.

.

Figure 21-38 Treat the Keys as Character Data

FILE BDAMIN2 F 130 RANDOM FINDKEY RELTRK RELADDR2
STATUS BDSTAT KEYLEN 5
ACCOUNT 5 NU ...

FILE TRANSIN STATUS TRANSTAT
TRANACCT 5 ...
NUMBIN2 3 BI

PROCEDURE:
IF TRANSTAT EQ 'E' STOP ENDIF
MOVE TRANACCT TO FINDKEY
MOVE NUMBIN2 TO RELADDR2
READ BDAMIN2

.

.

Figure 21-39 Numeric Key is Defined as Character

COMBINE BITS X`000F' OR SRCHKEY

Figure 21-40 Convert a Packed Key's Sign from C to F
21–36 VISION:Results Reference Guide

BDAM Examples
In Figure 21-40, a 2-byte packed key is having its sign set to F.

� To convert a packed key's sign from F to C, you can AND the field:

In Figure 21-41, a 2-byte packed key with an F sign is having its sign set to C.

BDAM Examples
The VISION:Results test data included on your installation tape includes the
following BDAM examples.

Example 1 Random Create, Fixed-Length Record with a Key

COMBINE BITS X`FFFC' AND SRCHKEY

Figure 21-41 Convert a Packed Key's Sign from F to C

OPTION STRUCTURED
FILE ARFILE FB 352 5280 STATUS ASTAT
ACCTREC 352
ACCTNO 7 4 NU

FILE DACCTS BDAM F 352 OUTPUT FROM DACCTS RANDOM DAKEY NU
KEYLEN 7 RELTRK DATT STATUS DASTAT COUNT DACNT

DACCTREC 352

WORKAREA
PRIME 1 BI VALUE 29 ; 30 TRACKS ALLOCATED TO FILE
QUOTIENT 4 BI
REMAINDER 1 BI

READ ARFILE
DOWHILE ASTAT NE 'E ; READ RECORDS UNTIL END OF FILE
QUOTIENT = ACCTNO / PRIME ; USE PRIME
REMAINDER = ACCTNO - (QUOTIENT * PRIME); NUMBER DIVISION
MOVE REMAINDER TO DATT ; REMAINDER
MOVE ACCTNO TO DAKEY ; TECHNIQUE
MOVE ACCTREC TO DACCTREC ; TO CALCULATE
WRITE DACCTS ; TRACK NUMBER
IF DASTAT EQ 'N' DATT = DATT + 1 ; ALLOW OVERFLOW TO NEXT
WRITE DACCTS ; TRACK ONLY
IF DASTAT EQ 'N' LIST ACCTNO 'FILE IS FULL' DATT
MOVE 400 TO DYLRETURN
EXITDO

ENDIF
DYLCOUNT2 = DYLCOUNT2 + 1

ENDIF
IF DASTAT EQ 'I'
LIST ACCTNO 'RANDOMIZING ERROR' DATT
MOVE 401 TO DYLRETURN
EXITDO

ENDIF
READ ARFILE

ENDDO
MOVE 'DACCTS' TO DYLCNAME1
MOVE DACNT TO DYLCOUNT1
MOVE 'OVERFLOW' TO DYLCNAME2
STOP

Figure 21-42 Example 1 Random Create, Fixed-Length Record with a Key
BDAM Processing 21–37

BDAM Examples
Control Totals

� Automatic control totals do not occur for a BDAM file; therefore, the
DYLCOUNT fields are used instead.

� If space cannot be found to add a record to a track or its following overflow
track, either more space must be allocated to the file and a new prime number
used, or a different randomizing algorithm must be used.

Example 2 Sequential Read, Fixed-Length Record with a Key

VISION:RESULTS CONTROL TOTALS

FILE RECORD CHARACTER BLOCK DROPPED
ID COUNT COUNT COUNT BLOCK COUNT

ARFILE 200 70,400

RECORDS PAGES

FILE PRINT 1

REPORT PRINT

FIXED BLANK COUNT

FIXED DECIMAL DIVIDE

DACCTS 200

OVERFLOW

Figure 21-43 Example 1 Totals of Random Create, Fixed-Length Record with a Key

OPTION STRUCTURED

FILE DACCTS BDAM F 352 SEQUENTIAL
KEYLEN 7 RELTRK DATT STATUS DASTAT COUNT DACNT

DELFLAG 1 ; X'FF' MEANS RECORD WAS LOGICALLY DELETED
ACCTNO 7 4 NU (ACCOUNT NUMBER)
NAME 25 85 (NAME)
ADD1 25 110 (ADDRESS LINE 1)
ADD2 25 135 (CITY, STATE AND ZIP)

DOUNTIL DASTAT EQ 'E' OR ; READ RECORDS UNTIL END OF FILE
(DASTAT NE 'D' AND ; BYPASSING DUMMY RECORDS AND
DELFLAG NE X'FF') ; LOGICALLY DELETED RECORDS
READ DACCTS

ENDDO
SORT DACCTS USING ACCTNO
LIST ACCTNO NAME ADD1 ADD2

ON END OF SORTING
MOVE 'DACCTS' TO DYLCNAME1
MOVE DACNT TO DYLCOUNT1
STOP

T1 'ACCOUNTS DIRECTORY'
T1 + 1 DYLDATE
T1 + 100 DYLPAGE

Figure 21-44 Example 2 Sequential Read, Fixed-Length Record with a Key
21–38 VISION:Results Reference Guide

BDAM Examples
Control Totals

Output

� In VSE, dummy records are not returned to the program; therefore, a check
need not be made for them.

� It is not possible to physically delete a record from a BDAM file. Deleting can
only be accomplished logically. A field in the record (usually the first byte) is
selected to contain a flag (usually X`FF'). When the flag is on the record, the
record is treated as though it did not exist.

VISION:RESULTS CONTROL TOTALS

FILE RECORD CHARACTER BLOCK DROPPED
ID COUNT COUNT COUNT BLOCK COUNT

RECORDS PAGES

FILE PRINT 1

REPORT PRINT 4

FIXED BLANK COUNT

FIXED DECIMAL DIVIDE

DACCTS 200

Figure 21-45 Example 2 Totals of Sequential Read, Fixed-Length Record with a Key

01/15/99 ACCOUNTS DIRECTORY PAGE 1
ACCOUNT NUMBER NAME ADDRESS LINE 1 CITY, STATE AND ZIP

0000434 573 INEZ LOS ANGELES CA 90023
0002623 573 SO BOYLE AVE LOS ANGELES CA 90017
1001191 CARDOZA, MARY 1008 WESTMORELAND LA CA90007
1002775 S FE EMP HOSP ASSN 1063 PACIFIC AVE LA CA90023
1006231 DE LAUNEY, RAYMOND 1432 LOMITA ARCADIA CA91006
1006681 MYERS, EARL 3735 84TH LA CANADA CA91011
1009681 305 SO BOYLE AVE INGLEWOOD CA
1013637 STALLINS, LEO F 1655 CHAPEL RIALTO CA92376
1013904 HINDERLICH, PAUL 2835 SANTA INEZ LA CA90032
1014021 WOOD, ROGER D 123 MONTARA PINEDALE CA93650
1014617 MORRIS, CLARENCE E 214 E 55TH LONG BEACH CA90802
1014706 HOLLENBECK HOME TR 3734 LANERANCO STREE LA CA90033
1014889 SULLIVAN, JOSEPH C 635 GUIRADO ST BELLFLOWER CA90706
2000504 WILSON,HERNMAN 1946 W 43RD PL LOS ANGELES CA 90051
2002299 PLACIDO,ORTEGA 1247 S ST LOUIS ST LOS ANGELES CA 90023
2002922 FLOWERS,ETHEL 4420 ARKANSAS LOS ANGELES CA 90048
2004739 STEIDLEY,GURTHA N 330 S ST LOUIS ST SAN BERNADINO CA 92410
2005131 WICINSKI,ALEXANDER B 610 SOLWAY ST SOUTHGATE CA 90280
2005956 SOTO,RUFINO 1454 W BL AP B ONTARIO CA
2006286 BALDWIN,HARRY R 7015 NO VAN WIG AVE NEEDLES CA 93303
2007177 HART,GRADDIE 513 CIMARRON ST HIGHLAND CA 92346
2008831 ZERING,WILLIAM G 4723 E 37TH ST VAN NUYS CA
2009072 JONES,RUFUS G 3131 COLLIS AVE LOS ANGELES CA
2010933 QUINTNAR,ANTONIO G 3934 HORBART LA CA 90063
2011719 REED,LOWELL D 3255 W 77TH ST LOGANSPORT INDIANA
2013568 CULLENDER,EVERRETT J 1503 GEORGE ST APR # FONTANA CA 92335
2014017 HERNANDEZ,CARLOS 3171 E AVE 28 LOS ANGELES CA 90012
4003896 PETERSON, WALTER 610 N GARDNER AVE CULVER CITY CA90230
6001327 CARLON,MR MARIANO 3417 CEDAR LOS ANGELES CA

Figure 21-46 Example 2 Output of Sequential Read, Fixed-Length Record with a
Key
BDAM Processing 21–39

BDAM Examples
Example 3 Random Update, Fixed-Length Record with a Key

Control Totals

� Because a BDAM update is not restartable, as a precaution against loss of the
file, a copy is made of the file before the update occurs. If the update aborts,
then the BDAM file could be restored using the program shown in Example 1.

� In VSE, dummy records are not returned to the program; therefore, a check
need not be made for them.

OPTION STRUCTURED

REPORT01 ; BACK-UP BDAM FILE BEFORE UPDATE IN PLACE

FILE DACCTS BDAM F 352 SEQUENTIAL
KEYLEN 7 RELTRK DATT STATUS DASTAT COUNT DACNT

DACCTREC 352
DELFLAG 1 1 ; X'FF' MEANS RECORD HAS BEEN LOGICALLY DELETED

FILE TACCTS FB 352 OUTPUT FROM TACCTS
TACCTREC 352

READ DACCTS
DOWHILE DASTAT NE 'E' ; READ RECORDS UNTIL END OF FILE
IF DASTAT NE 'D' AND ; BYPASS DUMMY RECORDS AND
DELFLAG NE X'FF' ; LOGICALLY DELETED RECORDS
MOVE DACCTREC TO TACCTREC
WRITE TACCTS

ENDIF
READ DACCTS

ENDDO
MOVE 'DACCTS' TO DYLCNAME1
MOVE DACNT TO DYLCOUNT1
STOP

Figure 21-47 Example 3 Random Update, Fixed-Length Record with a Key

VISION:RESULTS CONTROL TOTALS

FILE RECORD CHARACTER BLOCK DROPPED
ID COUNT COUNT COUNT BLOCK COUNT

ARFILE 200 70,400

RECORDS PAGES

FILE PRINT 1

REPORT PRINT 1

FIXED BLANK COUNT

FIXED DECIMAL DIVIDE

DACCTS 200

Figure 21-48 Example 3 Totals of Random Update, Fixed-Length Record with a Key
21–40 VISION:Results Reference Guide

BDAM Examples
� After the backup of the BDAM file, you get into the actual update. This part of
the program randomizes the key and issues a read against the BDAM file to
determine if the record exists on the BDAM file.

REPORT02 ; UPDATE BDAM FILE IN PLACE

FILE UACCTS FB 80 STATUS USTAT
CODE 1 ; U = UPDATE, A = ADD, D = DELETE
UACCTNO 7 NU (ACCOUNT NUMBER)
UNAME 25
UADD1 25
UADD2 25

FILE DACCTS BDAM F 352 IO RANDOM DAKEY NU
KEYLEN 7 RELTRK DATT STATUS DASTAT COUNT DACNT

DACCTREC 352
DELFLAG 1 1 ;X'FF' MEANS RECORD HAS BEEN LOGICALLY DELETED
ACCTNO 7 4 NU
NAME 25 85
ADD1 25 110
ADD2 25 135

WORKAREA
PRIME 1 BI VALUE 29 ; 30 TRACKS ALLOCATED TO FILE
QUOTIENT 4 BI
REMAINDER 1 BI

READ UACCTS
DOWHILE USTAT NE 'E' ; READ RECORDS UNTIL END OF FILE
QUOTIENT = UACCTNO / PRIME ; USE PRIME NUMBER DIVISION
REMAINDER = UACCTNO - (QUOTIENT * PRIME)
MOVE REMAINDER TO DATT ; REMAINDER TECHNIQUE TO
MOVE UACCTNO TO DAKEY ; CALCULATE TRACK NUMBER
READ DACCTS
CASE DASTAT

Figure 21-49 Example 3 Part 1 Output of Random Update, Fixed-Length Record
with a Key
BDAM Processing 21–41

BDAM Examples
� This part of the program handles the condition when the record is not on the
BDAM file.

� Addition of a record to the file is handled in the same way as when adding a
record to the file in a random create.

WHEN EQ 'N' ;RECORD NOT ON BDAM FILE
CASE CODE
WHEN EQ 'A' ; ADD RECORD TO BDAM FILE
MOVE SPACES TO DACCTREC
MOVE UACCTNO TO DAKEY
MOVE UACCTNO TO ACCTNO
MOVE UNAME TO NAME
MOVE UADD1 TO ADD1
MOVE UADD2 TO ADD2
WRITE DACCTS
IF DASTAT EQ 'N'
DATT = DATT + 1 : ALLOW OVERFLOW TO
WRITE DACCTS ; NEXT TRACK ONLY
IF DASTAT EQ 'N'
LIST UACCTNO 'FILE IS FULL' DATT
MOVE 400 TO DYLRETURN
EXITDO

ENDIF
DYLCOUNT2 = DYLCOUNT2 + 1

ENDIF
LIST UACCTNO 'ADDED'
DYLCOUNT4 = DYLCOUNT4 + 1

ELSE ; UPDATE OR DELETE BDAM RECORD
LIST UACCTNO 'MISSING'
DYLCOUNT5 = DYLCOUNT5 + 1

ENDCASE

Figure 21-50 Example 3 Part 2 Output of Random Update, Fixed-Length Record
with a Key
21–42 VISION:Results Reference Guide

BDAM Examples
� Part 3 of the program handles the condition when the record is on the BDAM
file, whether or not it is logically deleted.

WHEN EQ 'Y' ; RECORD FOUND ON BDAM FILE
IF DELFLAG NE X'FF' ; CHECK LOGICALLY DELETED RECORD

CASE CODE
WHEN EQ 'U' ; UPDATE RECORD ON BDAM FILE
IF UNAME NE BLANKS
MOVE UNAME TO NAME

ENDIF
IF UADD1 NE BLANKS
MOVE UADD1 TO ADD1

ENDIF
IF UADD2 NE BLANKS
MOVE UADD2 TO ADD2

ENDIF
WRITE DACCTS
LIST UACCTNO 'UPDATED'
DYLCOUNT6 = DYLCOUNT6 + 1

WHEN EQ 'D' ; DELETE RECORD ON BDAM FILE
MOVE X'FF' TO DELFLAG ; LOGICALLY DELETE RECORD
WRITE DACCTS
LIST UACCTNO 'DELETED'
DYLCOUNT3 = DYLCOUNT3 + 1

ELSE ; ADD RECORD TO BDAM FILE
LIST UACCTNO 'DUPLICATE'
DYLCOUNT7 = DYLCOUNT7 + 1

ENDCASE
ELSE ; LOGICALLY DELETED RECORD
CASE CODE
WHEN EQ 'A' ; ADD RECORD TO BDAM FILE
MOVE SPACES TO DACCTREC
MOVE UACCTNO TO DACCTREC
MOVE UNAME TO NAME
MOVE UADD1 TO UADD1
MOVE UADD2 TO UADD2
WRITE DACCTS ; REPLACE LOGICALLY DELETED RECORD
LIST UACCTNO 'ADDED'
DYLCOUNT4 = DYLCOUNT4 + 1

ELSE ; UPDATE OR DELETE BDAM RECORD
LIST UACCTNO `MISSING'
DYLCOUNT5 = DYLCOUNT5 + 1

ENDCASE
ENDIF

Figure 21-51 Example 3 Part 3 Output of Random Update, Fixed-Length Record
with a Key
BDAM Processing 21–43

BDAM Examples
� Part 4 of the program handles an error condition and termination of the
program.

� The DYLCOUNT counters keep track of the update counts. They are shown in
Figure 21-53.

� BDAM file count of 3 is derived from deleted (actually an update), added, and
updated counts.

ELSE ; INVALID REQUEST
LIST UACCTNO 'RANDOMIZING ERROR' DATT
MOVE 401 TO DYLRETURN
EXITDO

ENDCASE
READ UACCTS
ENDDO
MOVE 'DACCTS' TO DYLCNAME1
MOVE DACNT TO DYLCOUNT1
MOVE 'OVERFLOW' TO DYLCNAME2
MOVE 'DELETED' TO DYLCNAME3
MOVE 'ADDED' TO DYLCNAME4
MOVE 'MISSING' TO DYLCNAME5
MOVE 'UPDATED'TO DYLCNAME6
MOVE 'DUPLICATE' TO DYLCNAME7
STOP

Figure 21-52 Example 3 Part 4 Output of Random Update, Fixed-Length Record
with a Key

VISION:RESULTS CONTROL TOTALS

FILE RECORD CHARACTER BLOCK DROPPED
ID COUNT COUNT COUNT BLOCK COUNT

UACCTS 6 480

RECORDS PAGES

FILE PRINT 1

REPORT PRINT 1

FIXED BLANK COUNT

FIXED DECIMAL DIVIDE

DACCTS 3

OVERFLOW

DELETED 1

ADDED 1

MISSING 2

UPDATED 1

DUPLICATE 1

Figure 21-53 Example 3 Totals of Output of Random Update, Fixed-Length Record
with a Key
21–44 VISION:Results Reference Guide

BDAM Examples
� This report shows the update activity.

The contents of the records in the VACCTS file are as follows:

Example 4 Reorganize File, Fixed-Length Record with a Key

� The first part of the program copies the valid records to a temporary file and
counts them.

� In VSE, dummy records are not returned to the program; therefore, a check
need not be made for them.

ACCOUNT NUMBER

2007177 UPDATED
7777777 MISSING
8888888 MISSING
6123031 DELETED
6666666 ADDED
7012837 DUPLICATE

Figure 21-54 Example 3 Report of Output of Random Update, Fixed-Length
Record with a Key

1 2 3 4 5 6 7
123456789012345678901234567890123456789012345678901234567890123456789012345

U2007177HART,GARY
U7777777JONES,FRED
D8888888
D6123031
A6666666BAKER,JOHN 1234 MAIN STREET ANYTOWN, CA 91023
A7012837JONES,FRED

Figure 21-55 Example 3 Contents of Output of Random Update, Fixed-Length
Record with a Key

OPTION STRUCTURED

REPORT01 ; COPY BDAM FILE RECORDS TO A TEMPORARY FILE

FILE DACCTS BDAM F 352 SEQUENTIAL
KEYLEN 7 RELTRK DATT STATUS DASTAT COUNT DACNT

DACCTREC 352
DELFLAG 1 1 ; X'FF' MEANS RECORD HAS BEEN LOGICALLY DELETED

FILE TACCTS FB 352 OUTPUT FROM TACCTS
TACCTREC 352

READ DACCTS
DOWHILE DASTAT NE 'E' ; READ RECORDS UNTIL END OF FILE
IF DASTAT NE 'D' AND ; BYPASS DUMMY RECORDS AND
DELFLAG NE X'FF' ; LOGICALLY DELETED RECORDS
MOVE DACCTREC TO TACCTREC
WRITE TACCTS

ENDIF
READ DACCTS

ENDDO
MOVE 'DACCTS' TO DYLCNAME1
MOVE DACNT TO DYLCOUNT1
STOP

Figure 21-56 Example 4 Reorganize File, Fixed-Length Record with a Key
BDAM Processing 21–45

BDAM Examples
Control Totals

VISION:RESULTS CONTROL TOTALS

FILE RECORD CHARACTER BLOCK DROPPED
ID COUNT COUNT COUNT BLOCK COUNT

TACCTS 200 70,400

RECORDS PAGES

FILE PRINT 1

REPORT PRINT 1

FIXED BLANK COUNT

FIXED DECIMAL DIVIDE

DACCTS 201

Figure 21-57 Example 4 Totals Part 1 of Reorganize File, Fixed-Length Record with a
Key
21–46 VISION:Results Reference Guide

BDAM Examples
� The second part of the program recreates the BDAM file on top of the old file
using the valid BDAM records from the temporary file.

Control Totals

REPORT02 ; BUILD NEW BDAM FILE ON TOP OF OLD FILE
; USING RECORDS COPIED TO TEMPORARY FILE

FILE DACCTS BDAM F 352 OUTPUT FROM DACCTS RANDOM DAKEY NU
KEYLEN 7 RELTRK DATT STATUS DASTAT COUNT DACNT

DACCTREC 352

FILE TACCTS FB 352 STATUS TSTAT
TACCTREC 352
TACCTNO 7 4 NU

WORKAREA
PRIME 1 BI VALUE 29 ; 30 TRACKS ALLOCATED TO FILE
QUOTIENT 4 BI
REMAINDER 1 BI

READ TACCTS
DOWHILE TSTAT NE 'E' ; READ RECORDS UNTIL END OF FILE
QUOTIENT = TACCTNO / PRIME ; USE PRIME NUMBER DIVISION
REMAINDER = TACCTNO - (QUOTIENT * PRIME) ; REMAINDER TECHNIQUE TO
MOVE REMAINDER TO DATT ; CALCULATE TRACK NUMBER
MOVE TACCTNO TO DAKEY
MOVE TACCTREC TO DACCTREC
WRITE DACCTS
IF DASTAT EQ 'N'
DATT = DATT + 1 ; ALLOW OVERFLOW TO NEXT
WRITE DACCTS ; TRACK ONLY
IF DASTAT EQ 'N'
LIST TACCTNO 'FILE IS FULL' DATT
MOVE 400 TO DYLRETURN
EXITDO

ENDIF
DYLCOUNT2 = DYLCOUNT2 + 1

ENDIF
IF DASTAT EQ 'I'
LIST TACCTNO 'RANDOMIZING ERROR' DATT
MOVE 401 TO DYLRETURN
EXITDO

ENDIF
READ TACCTS

ENDDO
MOVE 'DACCTS' TO DYLCNAME1
MOVE DACNT TO DYLCOUNT1
MOVE 'OVERFLOW' TO DYLCNAME2
STOP

Figure 21-58 Example 4 Totals Part 2 of Reorganize File, Fixed-Length Record with a
Key

VISION:RESULTS CONTROL TOTALS

FILE RECORD CHARACTER BLOCK DROPPED
ID COUNT COUNT COUNT BLOCK COUNT

TACCTS 200 70,400

RECORDS PAGES

Figure 21-59 Example 4 Totals of Reorganize File, Fixed-Length Record with a Key
(Page 1 of 2)
BDAM Processing 21–47

BDAM Examples
FILE PRINT 1

REPORT PRINT

FIXED BLANK COUNT

FIXED DECIMAL DIVIDE

DACCTS 200

Figure 21-59 Example 4 Totals of Reorganize File, Fixed-Length Record with a Key
(Page 2 of 2)
21–48 VISION:Results Reference Guide

Chapter
22 U
sing PDS and SSL Support
VISION:Results supports retrieval from and update of partitioned data sets (PDS
for OS/390) and retrieval only from source statement libraries (SSL for VSE). PDS
support is described in Using the PDS Function on page 22-2. SSL support is found
in Source Statement Library Support on page 22-23.

VISION:Results supports direct access of OS/390 partitioned data sets. You can
selectively extract, interrogate, rename, alias, and print PDS members. You can
also selectively update, copy, and add new members, as well as read and change
PDS directory entries.

Applications of the PDS function include:

� Listing load module attributes in a format you specify.

� Converting libraries.

� Listing members of PROCLIB, MACLIB, and so on, in member name sequence.

� Backing up PROCLIB, MACLIB to tape.

� Giving alias names to PDS members.

� Copying and updating existing members.

� Adding and replacing members.

The program examples at the end of this chapter illustrate many of these
techniques.

When a PDS function is used, member records or directory records are returned,
depending on the type of command issued. The PDS function can access both
directory records and member records within the same program.
Using PDS and SSL Support 22–1

Using the PDS Function
Using the PDS Function
The PDS function is defined using a FILE statement. A program can contain an
unlimited number of PDS files, restricted only by the amount of usable memory.
The PDS function can handle up to 50 libraries that are concatenated together
using JCL, subject to the constraints described in the appropriate IBM OS/390 or
Data Administration Guide and Using Data Sets manual.

Specific directory records can be read starting with the first record in the directory.
Similarly, member records are read sequentially from the first record in the
member. Use the READMEM command to read a member record. Use the
READDIR command to read a directory record.

To write to a member record, use WRITEMEM. Use WRITEDIR to write to a
directory record. All information contained in the member record and all
information contained in the directory record are available to the program for
processing purposes.

Input to VISION:Results
The PDS FILE statement has the same format as the VISION:Results FILE
statement, with the addition of the keywords PDS, MEMBER, and NEWNAME.
The complete format of the PDS FILE statement is:

FILE filename
This entry is required. The command FILE identifies this statement as a file
definition. The file name is required. It is used in the READDIR, READMEM,
WRITEDIR, and WRITEMEM statements to specify the file the records are read
from or written to. The file name is also the ddname used in the JCL. For example,
if you have the FILE statement:

FILE SRCLIB PDS GENINFO FB 80 MEMBER MEMNAME
STATUS STCOND

then the DD statement for this file is:

//SRCLIB DD DSN=My.Source.Library,DISP=SHR

FILE filename

PDS dataname MEMBER dataname [NEWNAME dataname] STATUS dataname

[INPUT | OUTPUT FROM filename]

[{FB | VB | F | V | U} [recordsize [blocksize]]]

[LENGTH dataname]

[COUNT dataname]

Figure 22-1 Input to VISION:Results
22–2 VISION:Results Reference Guide

Using the PDS Function
PDS dataname
The PDS keyword is required to define the file as a PDS organized file. The
required data name is the name of the data set ID area, a 50-byte field that contains
the following information after the file is opened:

To access the fields within the data set ID area, move the data set ID area to a field
in a work area that has the subordinate fields defined. The example in List All
Member Names of a PDS (Columns in Horizontal Alphabetic Sequence) on
page 22-11 illustrates this point.

MEMBER dataname
This entry is required. The data name is the name of an 8-byte field that contains
the name of the member to be processed. When the READDIR command is
executed, the member name associated with the directory record read is
automatically placed in the MEMBER dataname. Blanks must be moved to the
MEMBER field before each execution of the READDIR command.

To read or update a specific member, move the name of that member into the
MEMBER dataname and, upon the next execution of the READMEM or
WRITEMEM command, a record is read from, or a change is written to, that
member.

Contents Size Location

DSNAME 44 1

VOLID 6 45
Using PDS and SSL Support 22–3

Using the PDS Function
STATUS dataname
Required. The data name is the name of a 1-byte field that contains the condition
code returned from a READMEM, READDIR, WRITEMEM, or WRITEDIR
command. Check the STATUS data name after each read or write command is
executed. The condition codes are as follows.

FB|VB|F|V|U recordsize blocksize
The record format and record size are required; the block size is optional. Record
format, recordsize, and blocksize are compared to the corresponding data found
in the DCB at the time the file is opened. If different, processing is terminated.
Recordsize is required to resolve the compiler's allocation of record space in
memory. For undefined records (load libraries) with 0 record length, blocksize can
be used instead of record length.

LENGTH dataname
Optional for fixed-length records. Required for variable-length or
undefined-format records. The data name is a 2-byte binary field that contains the
length of the record.

COUNT dataname
Optional. The data name is a 5-byte packed field that is incremented by 1 each time
a READMEM or WRITEMEM command for the given file is executed. Within your
program, you can re-initialize the COUNT dataname whenever convenient (for
example, at the beginning of each member).

Code Description

Y The command was successfully executed.

E After a READMEM command, the E status means no more records exist
in the member being processed. After a READDIR command, the E
status means no more directory records exist, that is, end-of-directory
has been reached.

Setting the STATUS dataname to a blank after an E is set allows
continued file access. Blanking the STATUS dataname after a CLOSE
statement also allows further file access.

N After a READMEM command, the N status means that the member you
are attempting to read could not be found in the PDS library. After a
WRITEMEM command, the N status means that the write could not be
done.
22–4 VISION:Results Reference Guide

READMEM and READDIR Commands
NEWNAME dataname
Optional. The data name is the name of an 8-byte field to which an alias name for
an existing PDS member or a new name for an existing PDS member is moved for
processing. It is used in conjunction with either the ALIAS or CHANGE keywords
and is only specified if the file has been opened as output. If coded, NEWNAME
must immediately follow the MEMBER dataname in the PDS file definition.

INPUT
Default. The PDS file is opened as input.

OUTPUT FROM filename
PDS files can only be output from themselves. The record must be written from its
own output hold area after the record is moved to this area during the program
logic.

READMEM and READDIR Commands
The READMEM and READDIR commands function in the same way as the READ
command. The READMEM command reads member records sequentially until
end-of-member occurs, passing back one record per READMEM execution. The
READDIR command reads directory records sequentially until end-of-directory
occurs, passing back one directory record per READDIR execution. After reading
all the records from a member, the member name is blanked out automatically.
The READMEM command is coded as follows:

READMEM filename

where filename is the name (as defined in the FILE statement) of the PDS file
containing the member(s) to be read. The member record returns to the file area
implicitly or explicitly defined directly under the FILE statement. Examples in this
chapter demonstrate this concept.

The READDIR command is coded as follows:

READDIR filename [dirarea]

where filename is the name (as defined in the FILE statement) of the PDS file from
which directory records are to be read. The directory area (dirarea) is optional. If
omitted, the READDIR command places the member name in the directory record
into the MEMBER dataname and the actual directory record is not made accessible
to the VISION:Results program.

When the directory area (dirarea) is present in the READDIR command, the
member name in the directory area is moved into the MEMBER dataname and the
directory record is moved into the directory area. If you only read the directory
area sequentially, after completion, the member name should be blanked out
manually.
Using PDS and SSL Support 22–5

WRITEMEM and WRITEDIR Commands
If you process both the directory entry and member records, it is not necessary to
blank the member name out. The directory area must be defined in a
VISION:Results work area as a 75-byte field. The format of the PDS directory
record is shown in PDS Directory Format on page 22-22.

WRITEMEM and WRITEDIR Commands
The WRITEMEM and WRITEDIR commands function in the same way as the
WRITE command. The WRITEMEM command writes information to a specified
PDS member. The WRITEDIR command writes information to a specified PDS
directory. The WRITEMEM command is coded as follows:

WRITEMEM filename

where filename is the name (as defined in the FILE statement) of the PDS file to
which information is to be written.

The WRITEDIR command is coded as follows:

WRITEDIR filename [dirarea]
[ADD|ALIAS|CHANGE|REPLACE|SCRATCH]

where filename is the name (as defined in the FILE statement) of the PDS file to
which information is to be written. As in the READDIR command, the directory
area (dirarea) is optional. If specified, information can be written to the PDS
directory user area.

The STATUS data name can be checked after you have issued the WRITEDIR
command. If the status code is Y, the WRITEDIR was successful; otherwise, the
status code is set to N.

PDS Output Rules and Recommendations
� A maximum of 16 output files can be open at any one time in your program.

� The same data set cannot be referenced on more than one PDS FILE OUTPUT
statement per program.

� Because you are responsible for file recovery when a PDS file is opened as
output, open all PDS output files as DISP=OLD. File integrity can be
compromised if PDS output files are opened as DISP=SHR.
22–6 VISION:Results Reference Guide

WRITEMEM and WRITEDIR Commands
ADD Keyword
The ADD keyword writes a new entry to the PDS directory. To use the command:

� Collect member records.

� Move the new entry name to the MEMBER field.

� Issue the WRITEMEM file name command to write the new member. At least
one WRITEMEM command must be issued before the WRITEDIR command
can be issued.

� Issue the WRITEDIR filename ADD command to write a new directory entry.

The ADD keyword is coded as follows:

WRITEDIR filename ADD

where filename is the name of the PDS file to which you are adding a new entry.

If you attempt to ADD an entry that is already in the directory, the command is
ignored and an N is returned in the STATUS field.

ALIAS Keyword
The ALIAS keyword writes an additional entry to the PDS directory and gives a new
name (an alias) to a PDS member. The member can then be referenced using either
the alias or the member name.

To use the ALIAS keyword command
1. Code the NEWNAME keyword and an associated user-supplied data name

in the PDS file statement.
2. Move the alias name to that field.

3. Move the name of the member you want to alias to the MEMBER field.

Both moves must be done before issuing the WRITEDIR command.

The ALIAS keyword is coded as follows:

WRITEDIR filename ALIAS

where filename is the name of the PDS file containing the member you want to
alias.

CHANGE Keyword
The CHANGE keyword writes an entry to the PDS directory and changes the name
of a PDS member. After the CHANGE has been made, the member can only be
accessed using the new name.
Using PDS and SSL Support 22–7

WRITEMEM and WRITEDIR Commands
To use the CHANGE keyword command
1. Code the NEWNAME keyword and an associated user-supplied data name

in the PDS file statement.
2. Move the new member name to that field.

3. Move the old member name to the MEMBER field.

Both moves must be done before issuing the WRITEDIR command.

The CHANGE keyword is coded as follows:

WRITEDIR filename CHANGE

where filename is the name of the PDS file containing the member you want to
rename.

REPLACE Keyword
The REPLACE keyword writes a directory entry. Use it when you have updated
the contents of a PDS member and want to reference the updated version with the
same name. After you issue the REPLACE command, only the updated version of
the member can be accessed.

To use the REPLACE command
1. Move the entry name to the MEMBER field.

2. Make any needed changes to the member (this may require issuing the
READMEM command to read the PDS member).

3. Issue the WRITEMEM file name command to write the new member.

4. Issue the WRITEDIR file name REPLACE command. The directory entry now
points to the new member.

The REPLACE keyword is coded as follows:

WRITEDIR filename REPLACE

where filename is the name of the PDS file containing the entry name you want to
reassign.

If you attempt to execute a REPLACE where the entry name is not in the directory,
the entry is added to the directory but the STATUS field is set to N.

If OPTION PDSREPA or the DYLINSTL parameter PDSREPL=Y has been
specified, the STATUS field is set to A.
22–8 VISION:Results Reference Guide

PDS Examples
SCRATCH Keyword
The SCRATCH keyword deletes an entry from the PDS directory. After the
SCRATCH is executed, the PDS member is no longer accessible. To use the
command, move the entry name you want to delete to the MEMBER field before
issuing the WRITEDIR command.

The SCRATCH keyword is coded as follows:

WRITEDIR filename SCRATCH

where filename is the name of the PDS file containing the entry name you want to
delete.

To terminate reading the directory at any time and to re-initiate it at the
beginning of the directory file

1. Issue a CLOSE filename command that closes the file.
2. Move a blank into the STATUS data name.

When the next READDIR command is executed, the first record in the directory
file is read.

WRITEDIR and WRITEMEM commands can only be used with files opened for
output. READDIR and READMEM commands are limited to input files.

PDS Examples
The following examples illustrate some potential uses of the PDS function. After
the narrative portion for each example, the SYSOUT of the described example is
provided. For a complete description of the statements used, see the specific
chapter in this manual.

Example 1 Print Three Members

In this example, the members OPEN, CLOSE, and GETMAIN are printed in their
entirety from SYS1.MACLIB. No directory information is included in the report.

About the Program Narrative
The numbers at the left of the following example are for reference purposes only.

The PDS file is defined in Statement 1. The data set ID area data name must always
be defined after the keyword PDS, even though you do not use it elsewhere in your
program. The name of the member to read is moved into the data name
MEMNAME at the appropriate times. In Statement 2, MEMREC is the name of the
field into which the member records are read.

Statements 3 through 8 control the reading and printing of each member by
moving the member name into MEMNAME and performing the read-print logic.
The execution of the program is terminated in Statement 9. The read-print logic is
in Statements 10 through 21.
Using PDS and SSL Support 22–9

PDS Examples
The reading of each member record is invoked in Statement 11. If the status byte
returned is a Y denoting successful execution, the member record is listed and the
logic branches back to read another member record. If the status byte returned is
an N, the requested member did not exist in the library and the member name is
printed with the message NOTFOUND. If the status returned was neither blank
nor N, the program assumes that it was E, for end-of-member, and exits the
performed logic.

VISION:Results Program

SYSOUT

1 FILE MEMFILE FB 80 PDS DSNAREA MEMBER MEMNAME
STATUS EOFIN

2 MEMREC 80

3 MOVE 'CLOSE' TO MEMNAME
4 PERFORM READWRIT TO READWRITX
5 MOVE 'GETMAIN' TO MEMNAME
6 PERFORM READWRIT TO READWRITX
7 MOVE 'OPEN' TO MEMNAME
8 PERFORM READWRIT TO READWRITX
9 STOP

10 READWRIT:
11 READMEM MEMFILE
12 IF EOFIN EQ 'Y'
13 LIST SUPPRESS MEMNAME (MEMBER NAME)

MEMREC (CONTENTS OF MEMBER)
14 GOTO READWRIT
15 ENDIF
16 IF EOFIN EQ 'N'
17 MOVE 'NOTFOUND' TO DYLPRTCOMM
18 PRINT MEMNAME
19 ENDIF
20 MOVE SPACE TO EOFIN
21 READWRITX:

22 T1 'COMPUTER ASSOCIATESTEST '
'DYLPDS—EXAMPLE 1'
WITH 2 AFTER

Figure 22-2 Example 1 Print Three Members

COMPUTER ASSOCIATES TEST DYLPDS—EXAMPLE 1
CONTENTS OF MEMBER

MEMBER NAME
CLOSE MACRO 00020000

&CNAME CLOSE &PAR1,&MF=I,&TYPE=,&MODE= @02C 00021510
.* 00023010
.*CLOSE MACRO @L1A 00026010
.* @L1A 00029010
.*$MAC(CLOSE): @L1A 00032010
.* @L1A 00035010
.* COPYRIGHT TYPE=ASMMAC, @L1A 00036210
.* CLASS=RST, @L1A 00037410
.* LEVEL=(HDP2230), @L1A 00038610
.* SECSTMT='IBM INTERNAL USE ONLY' @L1A 00039810
.* @L1A 00041010
.* STATUS = MVS/XA DFP RELEASE 2.3 @L1C 00042010
.* @L1A 00043010
.*CHANGE ACTIVITY - AS FOLLOWS: @L1A 00044010
.* * 00047010
.*$L1=ACB31BIT,HDP2230,,STLSS: O/C/E SUPPORT OF 31-BIT VSAM @L1A 00050010
.*$01=OY05946,HDP2230,,NSDRJV: EXTRA INSTRUCTION WITH MODE=31 @01A 00051010
.*$02=OY07793,HDP2230,870720,STLSS: REMOVE SPLEVEL DEPENDENCE @02A 00052010
.* * 00053010
.* ** 00054010
.* @02D 00056010

LCLA &ACTR,&ASUM,&CTR,&CTR1,&LGTH,&NUMBER 00060000
LCLB &MFESW,&MFISW,&MFI2SW,&NULLSW,&B(5),&MSW @L1C 00080010
LCLC &PARA 00100000

.* @02D 00110010

Figure 22-3 Example 1 Output—Print Three Members (Page 1 of 2)
22–10 VISION:Results Reference Guide

PDS Examples
Example 2 List All Member Names of a PDS (Columns in Horizontal Alphabetic Sequence)

This example lists the names of the members in the partitioned data set
Z01.DY.DYLMAC. The names are printed 10 across on the report. In this example,
the PDS data name area gets the volume serial number of the disk pack containing
the Z01.DY.DYLMAC library.

Program Narrative
The numbers at the left of the following example are for reference purposes only.

The member names are taken from the directory records. The PDS file is defined
in Statement 1. The volume serial number is taken from the data set ID area field
DSNAREA. The READDIR command places the member names into the field
MEMNAME. The name of the status indicator is STATIND. Because you do not
have access to the individual fields in the data set ID area, you need to define in a
work area a field WDSNAREA that maps the fields in the data set ID area (see
Statements 2 through 6). The fields within the print line are defined in Statements
8 through 11.

The directory record is read using the READDIR command shown in Statement 12.
The directory record area is not included in the READDIR command because you
are only interested in the member name, which is available in MEMNAME. When
the status returned becomes E, the directory file is at end; at this point, the last print
line is written and the program is terminated. The information in the data set ID
area is available after the first execution of the READDIR command. Therefore, the
DSNAREA must be moved to the work area field once after the execution of the
first READDIR command, as shown in Statements 15 through 18.

The remainder of the program is standard VISION:Results code that builds and
prints the print line. The volume serial number appears in the second title line as
the contents of the data set ID area field, WVOLID.

&NUMBER SETA N'&PAR1 00120000
.* @02D 00130010
&CTR SETA 1 00140000
&CTR1 SETA 2 00160000

AIF (N'&SYSLIST LE 1).TYPE IF ONLY 1 (PARMLIST) A45585 00185000
IHBERMAC 238 EXCESSIVE POS. PARMS A45585 00190000

.TYPE AIF (T'&TYPE NE 'O' AND '&TYPE' NE 'T').ERROR8 A45585 00195000
AIF (T'&MODE EQ 'O').MFTEST @L1A 00199110
AIF ('&MODE' NE '31' AND '&MODE' NE '24').ERROR9 @L1A 00203210
AIF ('&MODE' EQ '24').MFTEST @L1A 00207310

&MSW SETB 1 SET MODE=31 SWITCH @L1A 00211410
.MFTEST AIF ('&MF' EQ 'L').RTEL @L1C 00215510

AIF ('&MF' EQ 'I').TESTI 00220000
AIF (N'&MF LE 1).ERROR3 00240000
AIF ('&MF(1)' NE 'E').ERROR3 00260000

&CNAME IHBINNRA &MF(2) 00280000
.*—— 00293310

AIF ('&PAR1' EQ '').RGFLIP @L1C 00306610
.LOOPA AIF ('&PAR1(&NUMBER)' NE '').LOOPB 00320000
&NUMBER SETA &NUMBER-1 00340000

AIF (&NUMBER EQ 0).RGFLIP 00360010
AGO .LOOPA 00380000

.LOOPB AIF ('&PAR1(&CTR)' NE '').TESTCTR 00400000
&NULLSW SETB 1 00420000
.TESTCTR AIF (&CTR EQ &NUMBER).QUITNOW 00440000

AIF ('&PAR1(&CTR1)' EQ '').NULLTWO 00460000
&MFESW SETB 1 00480000

AGO .CLRSW 00500000
.ERTRTRN AIF (&CTR1 EQ &NUMBER).THRUNOW 00580000

AIF (&NULLSW).NOFIRST 00600000
AIF ('&PAR1(&CTR)'(1,1) EQ '(').REGISTR 00620000
LA 14,&PAR1(&CTR) PICK UP DCB ADDRESS 00640000
AIF (NOT &MSW).MODE24A @L1A 00646610

&ACTR SETA &ACTR+4 @L1A 00653210
.MODE24A ST 14,&ACTR.(1,0) STORE INTO LIST @L1C 00659810

Figure 22-3 Example 1 Output—Print Three Members (Page 2 of 2)
Using PDS and SSL Support 22–11

PDS Examples
VISION:Results Program

SYSOUT

1 FILE LIBFILE FB 80 PDS DSNAREA MEMBER MEMNAME
STATUS STATIND

2 WORKAREA
3 WDSNAREA 52 1
4 WDSNAME 44 1
5 WVOLID 6
6 WRECLNG 2 BI

7 WORKAREA
8 MEMBNAMES 100
9 M1 8 1 M2 8 9 M3 8 17 M4 8 25
10 M5 8 33 M6 8 41 M7 8 49 M8 8 57
11 M9 8 65 M10 8 73

12 READDIR LIBFILE
13 IF STATIND EQ 'E' PERFORM LISTDET TO LISTEND
14 STOP ENDIF
15 ON ONE
16 MOVE DSNAREA TO WDSNAREA
17 MOVE 0 TO INW
18 ENDONE
19 MOVE MEMNAME TO M1 (INW)
20 IF INW LT 72 INW = INW + 8 ACCEPT ENDIF
21 LISTDET:
22 LIST M1 (MEMBER'NAME) M2 (MEMBER'NAME)

M3 (MEMBER'NAME) M4 (MEMBER'NAME)
M5 (MEMBER'NAME) M6 (MEMBER'NAME)
M7 (MEMBER'NAME) M8 (MEMBER'NAME)
M9 (MEMBER'NAME) M10 (MEMBER'NAME)

23 MOVE 0 TO INW
24 MOVE SPACES TO MEMBNAMES
25 LISTEND:

26 T1 'COMPUTER ASSOCIATES TEST'
'DYLPDS—EXAMPLE 2'

27 T2 'VISION:RESULTS SUPPORT UTILITY—-XXXXXX'
28 T2+77 WVOLID
29 T3 'COMPUTER ASSOCIATES MACLIB' WITH 2 AFTER

Figure 22-4 Example 2 List All Member Names of a PDS (Columns in Horizontal
Alphabetic Sequence)

COMPUTER ASSOCIATES TEST DYLPDS—EXAMPLE 2
VISION:RESULTS SUPPORT UTILITY—-TSO005

COMPUTER ASSOCIATES MACLIB

MEMBER MEMBER MEMBER MEMBER MEMBER MEMBER MEMBER MEMBER MEMBER MEMBER
NAME NAME NAME NAME NAME NAME NAME NAME NAME NAME

AADVR00 ADDRV00 AFDRV00 AIDRV00 AIPSW00 ALCNF00 ALDRV00 ALFQA00 APERR00 APSMP00
ARABD00 ARCPE00 ARCP00 ARCP00D ARCP10D ARDBLWD ARDRV05 AREND00D ARERR00 ARFP00
ARIO00 ARIO00D ARPHTAB ARPH00D ARPUB00D ARSPY00 ARSPY00D ARSR00D ASBND00 ASMNONE
ASPSNCOM ASPSN00 ASRNG00 ASRPS00 AVAGE00 AVCNF00 AVCNW00 AVDRV00 AVFJG00 AVFRQ00
AVRPS00 AVRRN00 AVRSR00 AVSBI00 AVSRN00 AVSRT00 AVSSM00 AVTMG00 AWCNR00 AWCTL00
AWDRV00 AWDYL00 AWIO00D AZDRV00 AZSPY00 DAENATF DAENATI DAENCOM DAENDAT DAENDDV
DAENDFQ DAENDHS DAENDMY DAENDPS DAENDSP DAENDST DAENDVR DAENDWS DAENPKF DAENPSN
DAENSRT DAENSRT2 DAINDVR DAINITZ DAINLOAD DAINRFLD DAINSCB DAINSCN DAPSAG DAPSCN
DAPSFQ DAPSRAN DAPSSP DARTDBW DARTDID DARTDVR DARTFPT DARTMTD DARTPHT DARTPRTD
DARTSDD DARTSPY DARTSPYD DYLATAB DYLAUDA DYLAUDB DYLAUDC DYLDECRY DYLDUMMY DYLENCRY
DYLFMTJG DYLPSEVC DYLPSEVS DYLPSOBJ DYLRAND DYLRAND2 DYLSMFTC DYLSNDCD DYLTSORT IJFFZZZZ
IJFVZZWZ IJFVZZZZ IJGFOZZZ IJGVIZZZ IJGVOZZZ IJJFCBID IVCNCB IVFQCB NEGTRY TRYTIME
XXXX

Figure 22-5 Example 2 Output—List All Member Names of a PDS (Columns in
Horizontal Alphabetic Sequence)
22–12 VISION:Results Reference Guide

PDS Examples
Example 3 Backup to Tape Members of a PDS and Add IEBUPDTE Control Statements in Front of
Each Member

In this example, all members with names starting with the prefix LOW are read
from the macro library SYS1.MACLIB and written to tape. An IEBUPDTE ADD
control statement is written in front of each member. This is done so that these
members can be restored using the IBM IEBUPDTE utility.

The IEBUPDTE control statement prints as each member is written to tape. This
provides a list of the members backed up to tape.

Program Narrative

The numbers at the left of the following example are for reference purposes only.

In this example, you are reading both directory records and member records in our
program. The PDS file has been defined in Statement 1 and the member record
field in Statement 2. The backup file is defined in Statement 3 and the backup
record field in Statement 4.

Because you need access to just the first three characters of the member name in
MEMNAME, provide a work area field into which you can move MEMNAME.
That field is WMEMNAME and the prefix field is WMEMPRFX, as defined in
Statements 6 and 7. The IEBUPDTE Statement is defined in Statements 9 through
11. At the appropriate time, the member name is moved from MEMNAME to the
field SELECTED, which is a part of the IEBUPDTE statement.

The READDIR command in Statement 12 reads the directory record. You are only
interested in the member name, so you have not included a directory area in the
READDIR command. When the status returned becomes E, the program
terminates. In Statements 14 and 15, the member name is tested for the prefix
LOW; if the prefix is not LOW, the directory record is rejected and the flow of logic
returns to the top of the program.

The IEBUPDTE statement is built, written, and printed in Statements 16 through
19. The READMEM command reads the member in Statement 21. A status of E
means that end-of-member is reached and the program goes back to reading
directory records. In Statements 23 and 24, the member records are written to tape.

VISION:Results Program

1 FILE LIBFILE FB 80 PDS DSNFIELD MEMBER MEMNAME
2 STATUS STATIND

MEMREC 80

3 FILE BACKFIL FB 80 OUTPUT FROM BACKFIL
4 BACKREC 80

5 WORKAREA
6 WMEMNAME 8 1
7 WMEMPRFX 3 1

8 WORKAREA
9 ADDREC 20 1
10 ADDNAME 12 1 VALUE './ ADD NAME='

Figure 22-6 Example 3 Backup to Tape Members of a PDS and Add IEBUPDTE
Control Statements in Front of Each Member (Page 1 of 2)
Using PDS and SSL Support 22–13

PDS Examples
SYSOUT

Example 4 List Selected Member Records of a PDS

This example lists selected member records from each member of the PDS file
DYL.PUB.PROCLIB. There may be occasions when it is necessary to do a global
scan of a PDS file to locate multiple occurrences of a particular word or statement
(for example, the members of a production PROCLIB that have STEPLIB DD
statements included in the JCL stream).

Program Narrative
The numbers at the left of the following example are for reference purposes only.

The PDS file is defined in Statement 2. The procedural logic consists of a
DOWHILE loop for reading the directory entries. This loop starts at Statement 14
and ends at Statement 37. The directory entries are read using the READDIR
commands at Statements 13 and 36. Note that the optional directory area is omitted
in the READDIR commands because you do not need to access the actual directory
records. The read directory loop terminates when the PDS status code is E,
signifying that end of file was reached for reading directory entries.

For each directory entry read using the READDIR command, the member name is
moved directly to the field defined by the data name MEM (Statement 2) and a
DOWHILE loop reads each member record. This loop starts at Statement 22 and
ends at Statement 34. The member records are read using the READMEM
commands at Statements 21, 28, and 32. The read member loop terminates when
the PDS status code is E, signifying that end of file was reached for reading
member entries.

11 SELECTED 8 VALUE ' '

12 READDIR LIBFILE
13 IF STATIND EQ 'E' STOP ENDIF
14 MOVE MEMNAME TO WMEMNAME
15 IF WMEMPRFX NE 'LOW' REJECT ENDIF
16 MOVE MEMNAME TO SELECTED
17 MOVE ADDREC TO BACKREC
18 WRITE BACKFIL
19 PRINT ADDREC

20 MEMBREAD:
21 READMEM LIBFILE
22 IF STATIND EQ 'E' REJECT ENDIF
23 MOVE MEMREC TO BACKREC
24 WRITE BACKFIL
25 GOTO MEMBREAD

Figure 22-6 Example 3 Backup to Tape Members of a PDS and Add IEBUPDTE
Control Statements in Front of Each Member (Page 2 of 2)

./ ADD NAME=LOWUP

./ ADD NAME=LOWUP2

./ ADD NAME=LOWUP3

./ ADD NAME=LOWUP4

./ ADD NAME=LOWUP5

Figure 22-7 Example 3 Output—Backup to Tape Members of a PDS and Add
IEBUPDTE Control Statements in Front of Each Member
22–14 VISION:Results Reference Guide

PDS Examples
When a member record is read, the program looks for the literal //STEPLIB
(Statement 23). If found, the statement and all of its concatenated data sets are
listed. This is accomplished by the DOUNTIL loop at Statements 24 through 29.

After all the member records have been read, the status code is reset to blank
(Statement 35) to prepare for continuing on with reading directory entries.

VISION:Results Program

1 OPTION STRUCTURED

2 FILE LIBFILE FB 80 PDS DSNAREA MEMBER MEM STATUS PDSSTAT
3 PDSREC 80 1
4 POS1 10 1
5 COMMAND 72 1

6 WORKAREA
7 PROCLINE 131 1 VALUE ' '
8 PROCNAME 8 2
9 PROCSTMT 80 15

10 WORKAREA
11 BLKLINE 1 VALUE 'N'

12 REPORT 48 LONG
13 READDIR LIBFILE

14 DOWHILE PDSSTAT NE 'E' ; READ DIRECTORY LOOP.
15 IF BLKLINE EQ 'Y'
16 MOVE SPACES TO PROCLINE
17 LIST PROCLINE ()
18 ENDIF
19 MOVE 'N' TO BLKLINE
20 MOVE MEM TO PROCNAME
21 READMEM LIBFILE
22 DOWHILE PDSSTAT NE 'E' ; READ MEMBER LOOP.
23 IF POS1 EQ '//STEPLIB '
24 DOUNTIL POS1 NE '// ' OR PDSSTAT EQ 'E' ; PRINT LOOP.
25 MOVE PDSREC TO PROCSTMT
26 LIST PROCLINE ()
27 MOVE SPACES TO PROCNAME
28 READMEM LIBFILE
29 ENDDO ; END PRINT LOOP.
30 MOVE 'Y' TO BLKLINE
31 ELSE
32 READMEM LIBFILE
33 ENDIF
34 ENDDO ; END MEMBER LOOP.
35 MOVE ' ' TO PDSSTAT
36 READDIR LIBFILE
37 ENDDO ; END DIRECTORY LOOP.
38 STOP

39 T1 'VISION:RESULTS PDS EXAMPLE 4' WITH 2 AFTER
40 T2 'COMPUTER ASSOCIATES PROCLIB' WITH 3 AFTER
41 T3 ' ' WITH 2 AFTER
42 T3+2 'PROCEDURE NAME'

Figure 22-8 Example 4 List Selected Member Records of a PDS
Using PDS and SSL Support 22–15

PDS Examples
SYSOUT

Example 5 Assign an Alias Name to a PDS Member

In this example, you assign a second directory name to PDS member TBL01 so that
you can access it using either name.

Program Narrative
The numbers at the left of the following example are for reference purposes only.

The PDS file is defined in Statement 1. You have coded NEWNAME and an
associated user supplied data name, NEWINFO, so that you can move the alias
name to that field later in the program. You have also specified OUTPUT FROM,
indicating that this PDS file is to be opened as output, and allowing us to write to
the file.

VISION:RESULTS EXAMPLE 4

COMPUTER ASSOCIATES PROCLIB

PROCEDURE NAME

COBUCL //STEPLIB DD DSN=SYS1.V4.COBLIB,DISP=SHR *VERSION 4 COMPILER & L
IB*

COBUCLG //STEPLIB DD DSN=SYS1.V4.COBLIB,DISP=SHR *VERSION 4 COMPILER & L
IB*

CVDSKCMS //STEPLIB DD DSN=CODLOAD,DISP=SHR

CVLODOBJ //STEPLIB DD DSN=AUDLOAD,DISP=SHR

CVTAPCMS //STEPLIB DD DSN=CODLOAD,DISP=SHR

CV280 //STEPLIB DD DSN=DUMYLOAD,DISP=SHR
// DD DSN=BK28030,DISP=SHR
// DD DSN=AUDLOAD,DISP=SHR
//STEPLIB DD DSN=DUMYLOAD,DISP=SHR
// DD DSN=BK28030,DISP=SHR
// DD DSN=BKAUD21F,DISP=SHR
// DD DSN=AUDLOAD,DISP=SHR
//STEPLIB DD DSN=DUMYLOAD,DISP=SHR
// DD DSN=BK28030,DISP=SHR
// DD DSN=BKAUD21F,DISP=SHR
// DD DSN=AUDLOAD,DISP=SHR
//STEPLIB DD DSN=DUMYLOAD,DISP=SHR
// DD DSN=BK28030,DISP=SHR
// DD DSN=BKAUD21F,DISP=SHR
// DD DSN=AUDLOAD,DISP=SHR
//STEPLIB DD DSN=DUMYLOAD,DISP=SHR
// DD DSN=BK28030,DISP=SHR
// DD DSN=BKAUD21F,DISP=SHR
// DD DSN=AUDLOAD,DISP=SHR
//STEPLIB DD DSN=DUMYLOAD,DISP=SHR
// DD DSN=BK28030,DISP=SHR
// DD DSN=BKAUD21F,DISP=SHR
// DD DSN=AUDLOAD,DISP=SHR
//STEPLIB DD DSN=DUMYLOAD,DISP=SHR
// DD DSN=BK28030,DISP=SHR
//STEPLIB DD DSN=MEN.MI.PUB.LOD,DISP=SHR
//STEPLIB DD DSN=MEN.MI.PUB.LOD,DISP=SHR

Figure 22-9 Example 4 Output—List Selected Member Records of a PDS
22–16 VISION:Results Reference Guide

PDS Examples
Before you can issue the WRITEDIR command, move the entry name you want to
alias to the MEMBER field and move the alias name to the NEWNAME field. These
moves are accomplished in Statements 2 and 3.

Statement 4 writes the alias name to the directory. The member can now be
accessed by specifying either TBL01 or RATETBL.

The procedure is the same if you want to use the CHANGE command to change
the name of a PDS member. Move the old member name to the MEMBER field.
Move the new member name to the NEWNAME field and issue the WRITEDIR
file name CHANGE command.

VISION:Results Program

SYSOUT

Example 6 Copy and Update a PDS File

In this program, you want to perform a global scan of a PDS file to locate all
STEPLIB DD statements. As the file is read, each STEPLIB statement found is
replaced with a new STEPLIB statement. The entire PDS file is copied, and all
STEPLIB statements are updated.

Program Narrative
The numbers at the left of the following example are for reference purposes only.

This program reads and writes both directory and member records. Two PDS file
statements are coded that access the same PDS file. One is opened as input, the
other as output (Statements 2 and 4).

1 FILE WRITPDS FB 80 PDS DSNAREA MEMBER OLDINFO
NEWNAME NEWINFO OUTPUT FROM WRITPDS STATUS PDSSTAT

2 MOVE 'TBL01' TO OLDINFO
3 MOVE 'RATETBL' TO NEWINFO

4 WRITEDIR WRITPDS ALIAS

5 IF PDSSTAT EQ 'Y'
6 LIST 'TBL01 ALIAS: ' NEWINFO
7 ELSE
8 PRINT 'WRITE FAILED'
9 ENDIF
10 STOPRUN:
11 STOP
12 T1 'PDS EXAMPLE 5' WITH 3 AFTER

Figure 22-10 Example 5 Assign an Alias Name to a PDS Member

PDS EXAMPLE 5

TBL01 ALIAS: RATETBL

Figure 22-11 Example 5 Output—Assign an Alias Name to a PDS Member
Using PDS and SSL Support 22–17

PDS Examples
Because you want to access the entire PDS directory record, you have defined it in
a work area (Statements 8-13). DIRINFO is the data name that references the entire
directory record. When you issue the READDIR command later in the program,
the member name is moved to the MEMBER field and the directory record is
moved into this directory area.

To accomplish the reading and writing of all directory and member records, two
DOWHILE loops are used. The main loop processes all of the directory records,
while the secondary loop is nested within the main loop to process all of the
member records for each directory entry.

First, the directory is read (Statement 17). Then, the main DOWHILE loop is
entered that processes all of the directory records (Statement 18). As each directory
is read, the member name in the MEMBER field of the input file is moved to the
MEMBER field of the output file for further processing (Statement 19). Because
you are accessing the entire directory record, you can test the alias bit to determine
whether or not the entry is an alias. If it is, a message is issued along with the
member name and further processing of this directory entry is bypassed by exiting
the main DOWHILE loop (Statements 20-23).

Next, the program issues the initial read of the member record and enters the
secondary DOWHILE loop (Statements 24-25). This loop sequentially processes all
member records for that particular directory entry. The input record is moved to
the output record area and each record is tested for a match with the character
string //STEPLIB. When a match is encountered, the STEPLIB statement is
replaced with a new STEPLIB statement (Statements 15-16) and written to a report
(Statements 26-31).

All member records, including the updated //STEPLIB statements, are written to
the output file, OUTPDS (Statement 32). The status byte, WRITSTAT, is tested after
each WRITEMEM command. If the status byte is not Y, the program is terminated.
If it is Y, the next member record is read and the secondary loop continues until the
entire member file is read and written. At this point, you exit the secondary loop
and move a space to READSTAT to initialize it for the next directory read.

The WRITEDIR with REPLACE is then issued to write the directory entry only,
which now points to the updated version of the member. If the WRITEDIR
command fails, a message is printed and the program reads the next directory
entry and continues this cycle until all members have been processed.

VISION:Results Program

1 OPTION STRUCTURED

2 FILE INPDS FB 80 PDS DSNAREA MEMBER OLDMEM INPUT STATUS READSTAT
3 INREC 80 1

4 FILE OUTPDS FB 80 PDS GENINFO MEMBER NEWMEM STATUS WRITSTAT
5 OUTPUT FROM OUTPDS
6 OUTREC 80 1
7 FILESTMT 10 1

8 WORKAREA

Figure 22-12 Example 6 Copy and Update a PDS File (Page 1 of 2)
22–18 VISION:Results Reference Guide

PDS Examples
SYSOUT

9 DIRINFO 75 1
10 DIRNAME 8 2
11 DIRPNTR 3 BI
12 DIRALIAS 1 BI
13 DIRUSER 62

14 WORKAREA
15 NEWFILE 80
16 VALUE '//STEPLIB DD DSN=SYS3.PROD.LOADLIB,DISP=SHR'
17 READDIR INPDS DIRINFO
18 DOWHILE READSTAT NE 'E'
19 MOVE OLDMEM TO NEWMEM
20 IF DIRALIAS ONES X'80'
21 LIST OLDMEM 'MAY HAVE TO BE RE-ESTABLISHED'
22 EXITDO
23 ENDIF
24 READMEM INPDS
25 DOWHILE READSTAT NE 'E'
26 MOVE INREC LENGTH 80 TO OUTREC
27 IF FILESTMT EQ '//STEPLIB '
28 MOVE NEWFILE TO OUTREC LENGTH 80
29 LIST NEWMEM (MEMBER NAME) 'BEFORE: ' INREC ()
30 LIST ' ' AT NEWMEM 'AFTER: ' OUTREC () WITH 2 AFTER
31 ENDIF
32 WRITEMEM OUTPDS
33 IF WRITSTAT NE 'Y'
34 PRINT 'MEMBER FAILED'
35 STOP
36 ENDIF
37 READMEM INPDS
38 ENDDO
39 MOVE SPACE TO READSTAT
40 WRITEDIR OUTPDS DIRINFO REPLACE
41 IF WRITSTAT NE 'Y'
42 PRINT 'DIRECTORY FAILED'
43 ENDIF
44 READDIR INPDS DIRINFO
45 ENDDO
46 STOP

47 T1 'VISION:RESULTS PDS EXAMPLE 6' WITH 3 AFTER

Figure 22-12 Example 6 Copy and Update a PDS File (Page 2 of 2)

VISION:RESULTS PDS EXAMPLE 6

MEMBER NAME

MEMBER1 BEFORE: //STEPLIB DD DSN=SYS1.PROD.LOADLIB,DISP=SHR
AFTER: //STEPLIB DD DSN=SYS3.PROD.LOADLIB,DISP=SHR

MEMBER2 BEFORE: //STEPLIB DD DSN=SYS1.PROD.LOADLIB,DISP=SHR
AFTER: //STEPLIB DD DSN=SYS3.PROD.LOADLIB,DISP=SHR

MEMBER3 BEFORE: //STEPLIB DD DSN=SYS1.PROD.LOADLIB,DISP=SHR
AFTER: //STEPLIB DD DSN=SYS3.PROD.LOADLIB,DISP=SHR

MEMBER3 BEFORE: //STEPLIB DD DSN=SYS1.PROD.LOADLIB,DISP=SHR
AFTER: //STEPLIB DD DSN=SYS3.PROD.LOADLIB,DISP=SHR

Figure 22-13 Example 6 Output—Copy and Update a PDS File
Using PDS and SSL Support 22–19

PDS Examples
Example 7 Add New Members to a PDS

In this example, records from a transaction file are read in and all records with the
same distributor code are grouped and added to the PDS as new members.

Program Narrative
The numbers at the left of the following example are for reference purposes only.

An initial read of the transaction file is issued and the main DOWHILE loop is
entered (Statements 14-15). The distributor code, DISTCODE, is moved to the
SAVECODE work area, and then the secondary DOUNTIL loop is entered
(Statements 16-17). In this loop, as long as DISTCODE equals SAVECODE, the
transaction records are moved to the output area and then written to the output
PDS file. If the record cannot be written, a message is printed and the program
stops (Statements 18-24).

The program then reads the next transaction record and checks to see if the
distributor code has changed. This is checked at the end of the DOUNTIL loop. If
the distributor code has changed, this means that a completely new member has
been written, and the program exits the secondary loop.

The new member is added to the PDS directory by moving SAVECODE to
NEWDATA (the member field of the PDS file) and issuing the WRITEDIR
command with ADD (Statements 27-28). This adds the new member to the
directory, giving it the name found in NEWDATA. If an N is returned in
NEWSTAT following this command, it indicates that the entry that the program is
attempting to add is already in the directory. If this occurs, the program lists the
member name found in SAVECODE with a message and the program stops
(Statements 29-32).

If the new member name has been successfully written to the directory, the
program begins processing the next transaction record. This cycle continues until
all transaction records have been read and written to the PDS file.

VISION:Results Program

1 OPTION STRUCTURED

2 FILE TRANSIN FB 80 STATUS INSTAT
3 INREC 80 1
4 DISTCODE 3 1
5 DIST 25 5
6 FILM 35 36
7 GROSS 5 71 NU A
8 GUARANTY 5 76 NU A

9 FILE OUTPDS FB 80 PDS GENINFO MEMBER NEWDATA STATUS NEWSTAT
10 OUTPUT FROM OUTPDS
11 OUTREC 80

12 WORKAREA
13 SAVECODE 3

14 READ TRANSIN
15 DOWHILE INSTAT NE 'E'

Figure 22-14 Example 7 Add New Members to a PDS (Page 1 of 2)
22–20 VISION:Results Reference Guide

PDS Examples
SYSOUT

16 MOVE DISTCODE TO SAVECODE

17 DOUNTIL DISTCODE NE SAVECODE
18 MOVE INREC TO OUTREC
19 LIST DIST (DISTRIBUTOR) FILM GROSS GUARANTY (GUARANTEE)
20 WRITEMEM OUTPDS
21 IF NEWSTAT EQ 'N'
22 PRINT 'I/O ERROR'
23 STOP
24 ENDIF
25 READ TRANSIN
26 ENDDO

27 MOVE SAVECODE TO NEWDATA
28 WRITEDIR OUTPDS ADD
29 IF NEWSTAT EQ 'N'
30 LIST SAVECODE 'IS ALREADY ON FILE'
31 STOP
32 ENDIF
33 ENDDO
34 STOP

35 T1 'VISION:RESULTS PDS EXAMPLE 7' WITH 3 AFTER

Figure 22-14 Example 7 Add New Members to a PDS (Page 2 of 2)

VISION:RESULTS PDS EXAMPLE 7

DISTRIBUTOR FILM GROSS GUARANTEE

LION MOVIES INCORPORATED BRIDE OF FRANKENSTEIN 15,000 1,250
LION MOVIES INCORPORATED THE THING 23,000 2,000
OLD AND GREAT FILMS CASABLANCA 54,900 4,900
OLD AND GREAT FILMS 2001 A SPACE ODYSSEY 39,040 2,750
OLD AND GREAT FILMS GONE WITH THE WIND 19,800 550
ACME CINEMA PINOCCHIO 87,300 8,700
ACME CINEMA MARY POPPINS 48,800 3,870

Figure 22-15 Example 7 Output—Add New Members to a PDS
Using PDS and SSL Support 22–21

PDS Directory Format
PDS Directory Format
Note: Regarding the Relative address (TTR) of the first block, all addresses are
relative to the first block of the data set. TT = relative track from beginning of data
set. R = block number of that track.

LENGTH
BYTE (IN BYTES)

2 8 Member or alias name

10 3 Relative address (TTR) of first block
of member

13 1 Indicators
Bit 0 - If 1, name is an alias.
Bits 1=2 - Number of TTRs, bytes. 14-35
Bits 3=7 - Length of user data field in

half words.

14 3 TTR of first block of text.

17 1 Not used.

18 3 TTR of node list or scatter table for
modules in scatter load or overlay
structure only.

21 1 Number of entries in node list for
modules in overlay structure only.

22 2 Attributes of load module:
Byte 1
Bit 0=1 - Re-enterable.
Bit 1=1 - Reusable.
Bit 2=1 - Overlay structure.
Bit 3=1 - Testran.
Bit 4=1 - Loadable only.
Bit 5=1 - Scatter format.
Bit 6=1 - Executable.
Bit 7=1 - No relocation dictionary

- one block of text
Bit 7=0 - Multiple records in module

Byte 2
Bit 0=1 - F level linkage editor only
Bit 0=0 - All levels of linkage editor
Bit 1=1 - Origin of first block of text=0
Bit 1=0 - Origin of first block of text=0
Bit 2=1 - EPA is zero
Bit 3=1 - No relocation dictionary items
Bit 4=1 - Module cannot be processed by

linkage editor
Bit 5=1 - Module contains testran cards
Bit 6=1 - Module created by level F

linkage editor
Bit 7=1 - Refreshable

24 3 Contiguous memory requirements

27 2 Block length of first text block

29 3 EPA - entry point address

Figure 22-16 PDS Directory Format (Page 1 of 2)
22–22 VISION:Results Reference Guide

Source Statement Library Support
Source Statement Library Support
You can directly access books in VSE Source Statement libraries (SSL), reading
them as files. They can be selectively extracted, interrogated, and printed from any
automatically searched SSL. Updating books is not supported.

Input to VISION:Results
The SSL FILE statement has the same format as the VISION:Results FILE
statement, with the addition of the keywords SSL and BOOK. The complete format
of the SSL FILE statement is:

FILE filename
Required. The keyword FILE identifies this statement as a file definition. The
keyword SSL defines the file as a source statement library. The file name must be
a 1- to 7-character name used to refer to the file in procedure logic. This name bears

32 3 Linkage editor assigned origin of
first test block

If module has an alias name and is reusable or re-enterable

35 2 Entry point

38 8 Member name when bytes 2-9 contain an
alias name

If load module is in scatter format

35 2 Size of scatter list

37 2 Bytes in translation table

39 2 External symbol directory identification
of the CSECT to which first block of text
belongs

41 2 ESDID of CSECT containing entry point

Scatter format with re-enterable and reusable attributes

43 3 Entry point

46 8 Member name if name in bytes 2-9 is an
alias

LENGTH
BYTE (IN BYTES)

Figure 22-16 PDS Directory Format (Page 2 of 2)

FILE filename SSL

BOOK dataname STATUS dataname

[COUNT dataname]

Figure 22-17 SSL FILE Statement
Using PDS and SSL Support 22–23

Source Statement Library Support
no relationship to the file name used in the DLBL statement in your JCL. Standard
VSE system file names must be used to define system or private source statement
libraries.

BOOK dataname
Required. Dataname is a self-defining data name, 2 to 10 characters long, that
names a field used to hold up to a 10-character book name (includes the
sublibrary).

STATUS dataname
Required. Dataname is a self-defining data name, 2 to 10 characters long, that
contains one of the following values after a READBOOK command is executed:

COUNT dataname
Optional. Dataname is a self-defining data name, 2 to 10 characters long, that
contains a running total of the number of successful reads against the file. This is a
5-byte packed decimal field that you can reset at any time.

Defining the File
In the following example, you define a file (SRCELIB) and a record area
(BOOKREC):

A number of files can be defined in a single request. Two or more SSL files are
required if you need access to two or more books concurrently.

Reading a Book
Reading the first record of a book is accomplished by putting the name of the book
in the BOOK dataname and issuing a READBOOK command:

Y Successful read.

N Book was not found.

E End-of-book.

FILE SRCELIB SSL BOOK BOOKNAM STATUS LIBSTAT
COUNT INCNT

BOOKREC 80

Figure 22-18 Defining a File and a Record Area

MOVE 'C.MASTREC' TO BOOKNAM
READBOOK SRCELIB

Figure 22-19 Reading the First Record of a Book
22–24 VISION:Results Reference Guide

SSL Examples
The STATUS data name should be checked, following the READBOOK command,
to ensure that the book was found and a record read. The first book record is
returned to the 80-character record area (BOOKREC) that follows the FILE
statement.

Subsequent READBOOK commands obtain additional records from the book until
end-of-book is returned or you change the book name. Each time a new book name
is supplied, the source statement libraries are searched and the first record of that
book is returned, if found.

The book name must be in one of the following formats:

� sublib.bookname

� bookname

In the second case, VISION:Results adds the sublibrary prefix D. to the supplied
book name before searching.

SSL Examples
The following examples illustrate using the SSL function.

Example 1 List Specific Books

This program lists specific books whose names are supplied following the
program.

FILE SYSIPT CARD STATUS CARDSTAT
MEMNAME 10

FILE LIBFILE SSL BOOK BOOKNAME STATUS LIBSTAT
BOOKREC 80

CONTROL MEMNAME

IF CARDSTAT EQ 'E' STOP ENDIF ; END OF JOB
MOVE MEMNAME TO BOOKNAME
READ LIBFILE
IF LIBSTAT EQ 'N' REJECT ENDIF ; BOOK NOT FOUND
PRTBOOK:
LIST BOOKREC AT 1
READ LIBFILE
IF LIBSTAT EQ 'Y' GOTO PRTBOOK ENDIF

ON CHANGE IN MEMNAME
MOVE 66 TO DYLLINE ; FORCE NEW PAGE
MOVE 0 TO DYLPPAGE ; RESET PAGE NO.

T1 'BOOKNAME: ' FIXED WITH 3 AFTER
T1+12 MEMNAME
T1+39 DYLETIME
T1+51 DYLDATEPAG
FIN

(input statements)
/*

Figure 22-20 Example 1 List Specific Books
Using PDS and SSL Support 22–25

SSL Examples
Example 2 Use a Source Statement Library

This program uses a table of labor rates stored in a source statement library to
calculate billing amounts by job number within customer number, and then it
prints a report.

OPTION TSIZE 10K DATA 'D.TABLE01'

FILE TABLEFL SSL BOOK TBLNAME STATUS TBFLSTAT
TBFLREC 50

TABLE TDATA F 38 ENTRY TNTRY KEYLOC 1 KEYLEN 3 STATUS TSTAT
TLABGRADE 3
TLABDESC 30 (LABDESC)
TLABRATE 5 NU 3
TBREC 38 1

FILE WIPFILE ESDS F 75
WJOBNO 3 PD (JOBNO)
WCUSTNO 4 PD (CUSTNO)
WHOURS 3 40 PD 1 B (HOURS)
WLABGRADE 3 51 (LBG)

WORKAREA
BILLAMT 4 PD 2 A

T1 'INTERIM BILLING REPORT' WITH 2 AFTER
T1+90 DYLDATEPAG

CONTROL WJOBNO WCUSTNO

SORT WIPFILE USING WCUSTNO WJOBNO
ON ONE
MOVE DYLPARM TO TBLNAME ;SET TABLE NAME TO RETRIEVE
LOADTB: ;LOAD TABLE FILE INTO CORE
READ TABLEFL
IF TBFLSTAT EQ 'N'

PRINT 'BAD TABLE NAME'
MOVE 301 TO DYLRETURN
STOP ENDIF

IF TBFLSTAT EQ 'E'
GOTO ENDLOAD ENDIF

IF TSTAT NE 'Y'
PRINT 'NO MORE MEMORY'
MOVE 302 TO DYLRETURN
STOP ENDIF

GOTO LOADTB
ENDLOAD:

ENDONE

BINSEARCH TDATA WLABGRADE ;FIND RELATED TABLE ENTRY
IF TSTAT NE 'Y'
MOVE '** NOT IN TABLE **' TO TLABDESC
MOVE 0 TO TLABRATE
MOVE 303 TO DYLRETURN ENDIF
BILLAMT = WHOURS * TLABRATE ROUNDED ;CALCULATE BILLING AMT
LIST SUPPRESS (WCUSTNO WJOBNO)

TLABDESC WLABGRADE WHOURS BILLAMT

ON CHANGE IN WJOBNO
LIST SUM BILLAMT WITH 2 AFTER

ON CHANGE IN WCUSTNO
LIST SUM BILLAMT '**' WITH EJECT AFTER

ON FINAL
LIST 'FINAL TOTAL' AT WLABGRADE SUM BILLAMT

Figure 22-21 Example 2 Use a Source Statement Library
22–26 VISION:Results Reference Guide

Chapter
23 U
sing MATCH and MERGE
You can use special MATCH and MERGE statements with VISION:Results that
provide automatic file advancement, automatic processing of multiple keys on
multiple files, and easy access to file information. It makes it fast and convenient
for you to sequentially access multiple files simultaneously, processing the data as
you go.

A single file can be checked for duplicate records, or records from two or more files
can be matched and merged during processing. You can add VISION:Results logic
for additional processing and data selection.

The rules for file advancement and other aspects of the MATCH and MERGE
feature are explained in this chapter.

MATCH and MERGE consists of two modules: DY282MAT and DY282MER,
through which you use the MATCH and MERGE statements or functions. These
statements make it possible to accomplish almost any conceivable match or merge
task.

Using the MATCH and MERGE feature, it is easy to simultaneously process data
from multiple files. Two or more files can be processed sequentially using this
facility. As the files are matched (or merged), your program logic is free to process
the selected records.

The MATCH facility provides two generalized functions. The first (and most
common) is as a general facility for MASTER/TRANS updating. One or more
transaction files can be used to update a given master file. The second function
compares two or more files to see if they are identical. You can use the MATCH
facility to do any necessary file processing between two or more files based on
keys.

The MERGE facility provides for generalized MERGE logic between two or more
files based on keys. It provides for a MERGE function with logic capabilities.

Special conditional expressions are available in the MATCH and MERGE facilities
to help determine the exact relationship between files as they are being matched
and merged. The files are advanced according to the rules explained in Match
Conditions in the Procedure Logic on page 23-8 and Merge Conditions in the
Procedure Logic on page 23-25.
Using MATCH and MERGE 23–1

The MATCH and MERGE facility gives you a set of tools for automatic processing
of multiple input files using the supplied algorithms.

It is possible that you need your own custom MATCH or MERGE subroutine,
replacing the built-in DY282MAT and DY282MER modules.

You may not want to adhere to the rules or requirements set up by DY282MAT or
DY282MER. For this reason, Writing Your Own MATCH Subroutine on page 23-30
and Writing Your Own MERGE Subroutine on page 23-46 have been included.
Writing Your Own MATCH Subroutine on page 23-30 shows you how to handle
your own MATCH subroutines. Writing Your Own MERGE Subroutine on
page 23-46 shows you how to handle your own MERGE subroutines. If you are not
interested in writing your own custom MATCH or MERGE subroutine, see
MATCH and MERGE Features on page 23-4.

The custom subroutines you write to replace DY282MAT and DY282MER must be
written in Assembler, adhere to standard Assembler programming conventions,
and be assembled and linked using standard procedures such as those outlined in
Chapter 13, Using the CALL Command.

The subroutines must faithfully maintain the parameters, flags, and function codes
described in Writing Your Own MATCH Subroutine on page 23-30 and Writing
Your Own MERGE Subroutine on page 23-46. Your subroutine must use the same
parameters, flags, function and status codes as DY282MAT, and your subroutine
must set the ‘read ahead’ flag and status code as DY282MAT would. All
parameters, including flags and function and status codes passed to and from
DY282MAT and DY282MER, are explained in Parms Passed to DY282MAT on
page 23-38 and Parms Passed to DY282MER on page 23-49.

Writing Your Own MATCH Subroutine on page 23-30 and Writing Your Own
MERGE Subroutine on page 23-46 each present the process by which DY282MAT
and DY282MER accomplish their respective MATCH and MERGE function along
with an accompanying flowchart. Each parameter that you must pass, each flag
that you must set, and each function and status code that you must specify are
described in detail so that you know exactly what your Assembler subroutine
must do to replace VISION:Results’ corresponding modules. There is also an
example of a MATCH subroutine to replace DY282MAT (see Writing Your Own
MATCH Subroutine on page 23-30) and a MERGE subroutine to replace
DY282MER (see Writing Your Own MERGE Subroutine on page 23-46), each
written in Assembler.
23–2 VISION:Results Reference Guide

General Flow of Execution Diagram
General Flow of Execution Diagram
The following diagram illustrates the overall flow followed when the
VISION:Results MATCH and MERGE feature is used:

Block 1 This is your VISION:Results program using MATCH
and MERGE statements and any additional
VISION:Results code required by you. A first-cycle
call to DY282MAT is made at the initial startup of the
program to set the initial ‘Read Ahead’ flag(s) for the
first read from each file. See DY282MAT Invocation
on page 23-31 for further explanation of a first-cycle
call.

A record is read from the file(s) whose Read Ahead
flag contains a Y. This was set by DY282MAT during
the new-cycle call in the preceding cycle or the first
time only by the first-cycle call. All reads occur
between Blocks 1 and 2.

Block 2

VISION:Results code is generated from a single
required MATCH statement in your VISION:Results
program. This is the new-cycle call to DY282MAT. Its
main function is to set the Read Ahead flag(s) for the
next cycle. An ALL MATCHED flag is set if all keys
on all files match. Other internal flags to keep track of
DUPLICATEs are set also. See DY282MAT
Invocation on page 23-31 for further explanation of a
new-cycle call.

Block 3 This is the VISION:Results code that is generated
from the rest of your MATCH and MERGE
statements (for example, IF MATCHED ..., IF
FIRSTDUP ..., IF LASTDUP ..., and so on). This code
is referred to as the ‘additional USER CODE’ at the
bottom of an expanded detail flowchart. This
flowchart can be found in Generated from Your
Special MATCH Logic Statements on page 23-33.
DY282MAT can be called more than once by this
routine. The status code is set as a result of each of
these calls. See DY282MAT Invocation on page 23-31
for further explanation.

‘MATCH...’ ‘IF
MATCHED’

Generated
code from
the MATCH
statement

Generated code
from your
MATCH/MERGE
statements. For
example, ‘IF
MATCHED’
Using MATCH and MERGE 23–3

MATCH and MERGE Features
One cycle (of the automatic cycle) is complete. The above process continues until
all files are at end of file.

MATCH and MERGE Features
You can simultaneously process data from multiple files using the MATCH and
MERGE feature. Two or more files can be processed sequentially using this facility.
As the files are matched or merged, you can process the selected records in your
processing logic in the usual way.

Additionally, special conditional expressions are available in these operations to
help you determine the precise relationships between the files as they are being
matched or merged.

The files are advanced in MATCH and MERGE according to rules that are
explained in Match Conditions in the Procedure Logic on page 23-8 and Merge
Conditions in the Procedure Logic on page 23-25, respectively.

Using the MATCH operation, you can:

� MATCH two or more files sequentially processed using up to nine keys each.

� Use special IF statements to check for a match on all files, or a match on any two
files.

� Check for duplicates on any file, first duplicate and last duplicate on a file, and
for whether a file was last advanced during the automatic MATCH cycle.

� Use the special IF conditions in the usual way to form complex conditional
expressions.

� Process the records from the MATCH in the usual way in any request.

Block 4 This is DY282MAT, the routine that does all the
matching of record keys from all files. DY282MAT
determines which file is to be read next and sets a
Read Ahead flag accordingly. DY282MAT also sets a
status code flag according to the function code
received and the result of record key tests.

DY282MAT
23–4 VISION:Results Reference Guide

Syntax for the MATCH Operation
Using the MERGE operation, you can:

� MERGE (interleave) two or more files sequentially processed using up to nine
keys each.

� Use a special IF statement to check for replicas in the merged file area.

� Use the special IF statement with any other conditional expressions to form
complex conditional expressions in the usual way.

� Process the records from the MERGE in the usual way in any request.

The MATCH and MERGE operations give you a set of tools for automatically
processing multiple input files using either the supplied algorithms or your own.

Syntax for the MATCH Operation
This section describes the syntax required for the MATCH operation and the
recommendations for its proper use. All files referenced in the MATCH must be
defined using the usual FILE and field definitions in preceding statements. The
format of the MATCH statement is:

MATCH filename1 KEY1 dataname [KEY2 dataname KEY3 dataname...KEY9 dataname]
filename2 KEY1 dataname [KEY2 dataname KEY3 dataname...KEY9 dataname]
[filenamen KEY1 dataname {KEY2 dataname KEY3 dataname...KEY9 dataname}]
[SETREAD {MASTERUP|COMPAREN|ORIGINAL}]‘
[USING {DY282MAT|Subroutine}]

One or more special IF statements here

(IF [ADVANCED | FIRSTDUP | LASTDUP | MATCHED | DUPLICATE])

Figure 23-1 Format of the MATCH Statement

MATCH Required. It declares the application as a MATCH
operation.

filename1 Required. The file name is the name of the first file
designated for the MATCH operation. The file must be
defined in preceding statements.

KEY1 dataname Required. The data name is used as the first key field for the
MATCH operation. filename1 must be in ascending
sequence by this key.

KEY2 dataname,
KEY3 dataname,
through KEY9
dataname

Optional. These data names identify the other key fields to
be used for the MATCH operation. If specified, filename1
must be in ascending sequence by these keys.
Using MATCH and MERGE 23–5

Syntax for the MATCH Operation
filename2 Required. This file name is the name of the second file
designated for the MATCH operation. The file must be
defined in preceding statements.

KEY1 dataname Required. The data name is used as the first key field for the
MATCH operation. filename2 must be in ascending
sequence by this key.

KEY2 dataname,
KEY3 dataname,
through KEY9
dataname

Optional. These data names identify the other key fields for
the second file for the MATCH operation. If specified,
filename2 must be in ascending sequence by these keys.

filenamen Optional. These file names identify any number of
additional files to be included in the MATCH operation.

KEY1 dataname Required if a file name has been specified as filenamen. The
filenamen must be in ascending sequence by this key.

KEY2 dataname,
KEY3 dataname,
through KEY9
dataname

Optional. These data names identify the other key fields for
the file named in filenamen. If specified, the filenamen
must be in ascending sequence by these keys.
23–6 VISION:Results Reference Guide

Syntax for the MATCH Operation
SETREAD MASTERUP, COMPAREN, and ORIGINAL
SETREAD MASTERUP is the default. It indicates the type of file advancement to
use for this MATCH run.

MASTERUP is used for master/transaction file(s) type of updating. It advances as
many records as possible during each cycle. It locks the first of a set of duplicate
masters if a matching set of duplicate transactions is available to update.

SETREAD COMPAREN is used for comparing two or more files to see if they are
identical. It also advances as many records as possible during each cycle. No
locking is done.

SETREAD ORIGINAL is the original MATCH file advancement logic. It advances
one record during each cycle according to its tie-breaking logic. See Match
Conditions in the Procedure Logic on page 23-8 for information about how tie
breaking is accomplished. It can be used in place of either of the above two
functions, but its file advancement is more complex. Study it thoroughly before
you attempt to write a MATCH program using it.

USING DY282MAT
Optional. The default is USING DY282MAT. This indicates the type of MATCH
operation to use. DY282MAT allows all the special IF conditions during the match
to be used. You can also specify the name of your own subroutine to be used for
the matching.
Using MATCH and MERGE 23–7

Recommendations and Requirements for Matching
Recommendations and Requirements for Matching
Specify at least two files during a MATCH, with the following provisions:

� Each file in the MATCH must have at least one key specified.

� Every file in the MATCH must have the same number of keys specified.

� Each respective key in each file specified in the MATCH must be of the same
type and length and have the same number of decimal positions. For example,
KEY1 on file1 and KEY1 on file2 must be of the same type and length and have
the same number of decimal positions.

� Every file in the MATCH must be previously defined in a file definition.

� For all files in a MATCH, the record format and record length entries must be
specified in their respective file definitions.

� For all files in a MATCH, Computer Associates recommends that the files be in
ascending sequence by their respective keys. The files are not sequence
checked.

� SORT is not allowed during a request with a MATCH. However, the files can
be sorted in a prior request and passed to the current MATCH request.

� MATCH is not allowed with OPTION STRUCTURED.

� An output file cannot be OUTPUT FROM a file that is referenced in a MATCH
statement.

� The MATCH statement must be coded before any other processing statements.

� The ON END OF INPUT statement cannot be used in a MATCH request.

Match Conditions in the Procedure Logic
The key to understanding MATCH logic is to understand how each of the file
advancement techniques works. VISION:Results automatically reads the files to be
matched based on the keyword chosen with the SETREAD option (where
MASTERUP is the default). The records are then presented to your logic for your
processing. Special IF statements are available for you to check on the results of the
matches during the automatic cycle. These special IF statements are explained in
detail later in this section.

All file advancement techniques are based on the concept of current and next keys.
Current keys are on the current record in storage. The MATCH logic has access to
the next record in storage also (due to a look-ahead read). The actual file
positioning is transparent to you. See Examples 1, 3, and 4 in MATCH Examples
on page 23-18.
23–8 VISION:Results Reference Guide

Match Conditions in the Procedure Logic
SETREAD MASTERUP
With SETREAD MASTERUP (Master or Transaction updating), the files are
advanced as follows: The next keys are compared. The file or files with the next
lowest keys are read. The exception to this is if multiple duplicate masters exist and
multiple duplicate transactions for that master exist, the first master is locked in
place until all the duplicate transactions are read (allowing you to make updates
with the duplicate transaction against the first duplicate master), then the
remaining duplicate masters are read.

SETREAD COMPAREN
With SETREAD COMPAREN (two or more files compared to see if they are
identical), the files are advanced exactly as SETREAD MASTERUP, except no
locking occurs. This is because the reason for the comparison is to see if the given
files are identical. It is your responsibility to check for duplicates in unusual cases.

SETREAD ORIGINAL
With SETREAD ORIGINAL (the original VISION:Results MATCH file
advancement technique), the files are advanced one record at a time. First, the
current keys are compared. Then, the record with the lowest keys is read. If all the
current keys are equal, the next keys are compared. The record with the next
lowest keys is read next. If all the next keys are equal, the file with the highest
precedence is read (the first file specified in the MATCH statement/this is its
tie-breaking logic).

DY282MAT
In the following example, assume three files are being matched:

The keys on the three files are as follows (duplicate keys on a file are shown here
with an apostrophe ‘):

FILEA FILEB FILEC
2 1 2
2’ 2 2’
2’ 2’ 4
3 2’ 7

FILE FILEA FB 80
RECA 80
KEY1A 1 1

FILE FILEB FB 80
RECB 80
KEY1B 1 1

FILE FILEC FB 80
RECC 80
KEY1C 1 1

MATCH FILEA KEY1 KEY1A
FILEB KEY1 KEY1B
FILEC KEY1 KEY1C
SETREAD MASTERUP

Your procedure logic goes here

Figure 23-2 DY282MAT
Using MATCH and MERGE 23–9

Match Conditions in the Procedure Logic
5 3 7’
6 4 9
7 6
8 6’

The records input to the procedure logic at the beginning of each cycle are as
follows:

Note: The highlighted (bold) values indicate the next-record read from that file.

You can understand the logic by following the file advancement through some of
the cycles. The files are advanced by comparing the next lowest keys and
advancing the file(s) accordingly.

CYCLE FILEA FILEB FILEC
NUMBER KEY1 KEY1 KEY1
1 low-values 1 low-values
2 2 2 2
3 2 2’ 2’
4 2 2" 2’
5 2’ 2’ 2’
6 2" 2’ 2’
7 3 3 2’
8 3 4 4
9 5 4 4
10 6 6 4
11 6 6’ 4
12 7 6’ 7
13 7 6’ 7’
14 8 6’ 7’
15 8 6’ 9

FILEA ’locked’
FILEA ’locked’

Cycle 1 FILEB has the next lowest key of 1, so it is read first. FILEA and
FILEC initially have X’00’ in their current key buffer. If the keys
were numeric fields, they are numeric zero based on type.

Cycle 2 All three files MATCH, so they are all advanced.

Cycle 3 All three files MATCH, but there are duplicate transactions, so the
master (FILEA) is not advanced to allow updating against the first
duplicate master for your benefit. FILEA is locked until all
duplicates from FILEB and FILEC are read.

Cycle 4 FILEA and FILEB MATCH. Again, FILEA is locked.

Cycle 5 All duplicate transactions have been read, so a duplicate master
FILEA is read.

Cycle 6 The last duplicate master FILEA is read.

Cycle 7 FILEA and FILEB MATCH, so they are both read.

and so on
23–10 VISION:Results Reference Guide

Match Conditions in the Procedure Logic
The records available to your logic at the beginning of each cycle are as follows for
COMPAREN:

CYCLE FILEA FILEB FILEC
NUMBER KEY1 KEY1 KEY1
1 low-values 1 low-values
2 2 2 2
3 2’ 2’ 2’
4 2’ 2’ 2’
5 3 3 2’
6 3 4 4
7 5 4 4
8 6 6 4
9 6 6’ 4
10 7 6’ 7
11 7 6’ 7’
12 8 6’ 7’
13 8 6’ 9

The file advancement for COMPAREN is identical to MASTERUP, except it does
not lock the first duplicate master in the event of duplicate transactions. It is only
comparing to see if the files are identical.

The records available to your logic at the beginning of each cycle are as follows for
ORIGINAL (one record is read at a time):

CYCLE FILEA FILEB FILEC
NUMBER KEY1 KEY1 KEY1
1 low-values 1 low-values
2 2 1 low-values
3 2 1 2
4 2 2 2
5 2’ 2 2
6 2’ 2 2
7 2’ 2’ 2
8 2’ 2’ 2
9 2’ 2’ 2’
10 3 2’ 2’
11 3 3 2’
12 3 3 4
13 3 4 4
14 5 4 4
15 5 6 4
16 5 6 7
17 6 6 7
18 6 6’ 7
19 7 6’ 7
20 7 6’ 7’
21 8 6’ 7’
22 8 6’ 9

The file advancement for ORIGINAL uses its own tie-breaking logic for advancing
files as detailed previously. If you use this technique for master/transaction
updating, it is recommended to use two files only and disallow duplicate masters;
otherwise, use MASTERUP. If this technique is used for comparing, it is
recommended to use two files only; otherwise, use COMPAREN. It works for
more than two files as above, but the logical relationships between the files become
increasingly complex.
Using MATCH and MERGE 23–11

Match Conditions in the Procedure Logic
IF ADVANCED file1
The special IF ADVANCED file1 statement in your procedure logic allows you to
test a given file during the automatic MATCH cycle for whether a new record was
read from the specified file on this cycle (the current record is a new record from
the file). If so, the condition is true; if not, the condition is false.

The format of the IF ADVANCED file1 statement is:

For example, the following IF statements are valid:

IF ADVANCED FILEA
GOTO WRITOUT ENDIF

IF NOT ADVANCED FILEA
GOTO LABEL ENDIF

The IF ADVANCED file1 statement can be used with any other conditional
expressions using the AND and OR connectors in the usual way. This IF statement
is like any other IF statement in VISION:Results and can be negated by using an IF
NOT ADVANCED file1 statement. The IF ADVANCED file1 statement can be
used with any of the other special IF statements to test for combinations of
conditions.

The following example illustrates the points in the MATCH cycle when the IF
ADVANCED file1 statement is true. Suppose the following three files are used in
the MATCH operation:

FILEA FILEB FILEC
1 1 1
2 3 2
2’ 3’ 3
5 4 3’

The following example uses the MASTERUP file advancement technique. The
records output to the procedure logic are tested with an IF ADVANCED FILEA
statement for a true or false condition:

FILEA FILEB FILEC IF ADVANCED FILEA test
1 1 1 True
2 1 2 True
2’ 1 2 True
2’ 3 3 False
2’ 3’ 3’ False
2’ 4 3’ False
5 4 3’ True

The IF ADVANCED file1 condition is true only if the current record is a new
record from the specified file during the automatic MATCH cycle. In the above
example, the keys on FILEA 1, 2, 2’, and 5 represent the new records advanced
during the cycle at the points highlighted in bold type.

IF [NOT] ADVANCED filename [AND|OR condition . . .] imperative . . . ENDIF

Figure 23-3 Format of the IF ADVANCED file1 Statement
23–12 VISION:Results Reference Guide

Match Conditions in the Procedure Logic
IF MATCHED
The special IF MATCHED statement in your procedure logic allows you to test
whether all keys across all files are equal. If they are, the condition is true; if not,
the condition is false.

The format of the IF MATCHED statement is:

For example, the following IF statements are valid:

IF MATCHED AND KEY1A EQ 123
LIST RECA ENDIF

IF NOT MATCHED
GOTO LABEL ENDIF

The IF MATCHED statement can be used with any other conditional expressions
using the AND and OR connectors in the usual way. This IF statement is like any
other IF statement in VISION:Results. It can be negated by saying IF NOT
MATCHED. The IF MATCHED statement can be used with any of the other
special IF statements to test for combinations of conditions.

The following example illustrates the points in the MATCH cycle when the IF
MATCHED statement is true. Suppose the following three files are used in the
MATCH operation:

FILEA FILEB FILEC
1 1 1
2 3 2
2’ 3’ 3
5 4 3’

5 5

The following example uses the MASTERUP file advancement technique. The
records input to the procedure logic are tested with an IF MATCHED statement for
a true or false condition:

FILEA FILEB FILEC IF MATCHED test
1 1 1 True
2 1 2 False
2’ 1 2 False
2’ 3 3 False
2’ 3’ 3’ False
2’ 4 3’ False
5 5 5 True

The IF MATCHED condition is true only when all the keys match across all files.

IF MATCHED file1 file2
The special IF MATCHED file1 file2 statement in your procedure logic allows you
to test whether all keys across any two specified files are equal. If they are, the
condition is true; if not, the condition is false.

IF [NOT] MATCHED [AND|OR condition . . .] imperative . . . ENDIF

Figure 23-4 Format of the IF MATCHED Statement
Using MATCH and MERGE 23–13

Match Conditions in the Procedure Logic
The format of the IF MATCHED file1 file2 statement is:

For example, the following IF statements are valid:

IF MATCHED FILEA FILEB AND (KEY1A EQ 123 AND KEY2B EQ 123)
LIST RECA RECB ENDIF

IF NOT MATCHED FILEA FILEB
GOTO LABEL ENDIF

The IF MATCHED file1 file2 statement can be used with any other conditional
expressions using the AND and OR connectors in the usual way. This IF statement
is like any other IF statement in VISION:Results. It can be negated by saying IF
NOT MATCHED file1 file2. The IF MATCHED file1 file2 statement can be used
with any of the other special IF statements to test for combinations of conditions.

The following example illustrates the points in the MATCH cycle when the IF
MATCHED file1 file2 statement is true. Suppose the following three files are used
in the MATCH operation:

FILEA FILEB FILEC
1 1 1
2 1’ 2
2’ 3 2’
4 4 5
9 6

The following example uses the MASTERUP file advancement technique. The
records input to the procedure logic are tested with an IF MATCHED FILEA FILEB
and an IF MATCHED FILEA FILEC for a true or false condition:

IF MATCHED FILEA FILEB
FILEA FILEB FILEC IF MATCHED FILEA FILEC
1 1 1 True True
1 1’ 1 True True
2 1’ 2 False True
2 1’ 2’ False True
2’ 1’ 2’ False True
2’ 3 2’ False True
4 4 2’ True False
4 4 5 True False
4 4 6 True False
9 4 6 False False

The IF MATCHED file1 file2 condition is true only when all the keys for file1 and
file2 match. The IF MATCHED file1 file2 statement works with the IF
ADVANCED|NOT ADVANCED file2 statement with MASTERUP processing to
either update the master file with the transaction or reject the transaction as
invalid.

IF DUPLICATE file1
The special IF DUPLICATE file1 statement in your procedure logic allows you to
test a given file during the automatic MATCH cycle for whether the current key is
equal to the previous key or the current key is equal to the next key. If the keys are
equal, the condition is true; if not, the condition is false.

IF [NOT] MATCHED file1 file2 [AND|OR condition . . .] imperative . . . ENDIF

Figure 23-5 Format of the IF MATCHED file1 file2 Statement
23–14 VISION:Results Reference Guide

Match Conditions in the Procedure Logic
During the cycle, the current record is the one that is available to you during the
processing logic, the previous record is the one prior to the record being processed,
and the next record is a look-ahead record to become the next current record for
the file at the appropriate time according to the rules of the MATCH file
advancement technique you are using.

The format of the IF DUPLICATE file1 statement is:

For example, the following IF statements are valid:

IF DUPLICATE FILEA
LIST RECA ENDIF

IF NOT DUPLICATE FILEA
GOTO LABEL ENDIF

The IF DUPLICATE file1 statement can be used with any other conditional
expressions using the AND and OR connectors in the usual way. This IF statement
is like any other IF statement in VISION:Results. It can be negated by saying IF
NOT DUPLICATE file1. The IF DUPLICATE file1 statement can be used with any
other special IF statements to test for combinations of conditions.

The following example illustrates the points in the MATCH cycle when the IF
DUPLICATE file1 statement is true. Suppose the following three files are used in
the MATCH operation:

FILEA FILEB FILEC
1 1 1
2 3 2
2’ 3’ 3
5 4 3’

The following example uses the MASTERUP file advancement technique. The
records input to the procedure logic are tested with an IF DUPLICATE FILEA
statement for a true or false condition:

FILEA FILEB FILEC IF DUPLICATE FILEA
1 1 1 False
2 1 2 True
2’ 1 2 True
2’ 3 3 True
2’ 3’ 3’ True
2’ 4 3’ True
5 4 3’ False

In the above example, the keys 2 and 2’ are duplicates; therefore, the test IF
DUPLICATE FILEA is always true whenever those two keys are present in the
automatic cycle (either as the current and next keys or as the current and previous
keys).

IF [NOT] DUPLICATE file1 [AND|OR condition . . .] imperative . . . ENDIF

Figure 23-6 Format of the IF DUPLICATE file1 Statement
Using MATCH and MERGE 23–15

Match Conditions in the Procedure Logic
IF FIRSTDUP file1
The special IF FIRSTDUP file1 statement in your procedure logic allows you to test
a given file during the automatic MATCH cycle for whether the current key is not
equal to the previous key but is equal to the next key. If so, the condition is true; if
not, the condition is false. This is a test for the first duplicate of two or more
duplicates on a file.

The format of the IF FIRSTDUP file1 statement is:

For example, the following IF statements are valid:

IF FIRSTDUP FILEA
LIST RECA ENDIF

IF NOT FIRSTDUP FILEA
GOTO LABEL ENDIF

The IF FIRSTDUP file1 statement can be used with any other conditional
expressions using the AND and OR connectors in the usual way. This IF statement
is like any other IF statement in VISION:Results. It can be negated by saying IF
NOT FIRSTDUP file1. The IF FIRSTDUP file1 statement can be used with any other
special IF statements to test for combinations of conditions.

The following example illustrates the points in the MATCH cycle when the IF
FIRSTDUP file1 statement is true. The following three files are used in the MATCH
operation:

FILEA FILEB FILEC
1 1 1
2 3 2
2’ 3’ 3
5 4 3’

The following example uses the MASTERUP file advancement technique. The
records input to the procedure logic are tested with an IF FIRSTDUP FILEB
statement for a true or false condition:

FILEA FILEB FILEC IF FIRSTDUP FILEB
1 1 1 False
2 1 2 False
2’ 1 2 False
2’ 3 3 True
2’ 3’ 3’ False
2’ 4 3’ False
5 4 3’ False

The IF FIRSTDUP file1 condition is true only if the current key is not equal to the
previous key and the current key is equal to the next key during the automatic
MATCH cycle. In the above example, the keys 3 and 3’ are duplicates (of which 3
is the first duplicate), so that the test IF FIRSTDUP FILEB is always true whenever
the key 3 is present in the automatic cycle.

IF [NOT] FIRSTDUP file1 [AND|OR condition . . .] imperative . . . ENDIF

Figure 23-7 Format of the IF FIRSTDUP file1 Statement
23–16 VISION:Results Reference Guide

Match Conditions in the Procedure Logic
IF LASTDUP file1
The special IF LASTDUP file1 statement in your procedure logic allows you to test
a given file during the automatic MATCH cycle for whether the current key is
equal to the previous key and not equal to the next key. If so, the condition is true;
if not, the condition is false. This is a test for the last duplicate of two or more
duplicates on a file.

The format of the IF LASTDUP file1 statement is:

For example, the following IF statements are valid:

IF LASTDUP FILEA
LIST RECA ENDIF

IF NOT LASTDUP FILEA
GOTO LABEL ENDIF

The IF LASTDUP file1 statement can be used with any other conditional
expressions using the AND and OR connectors in the usual way. This IF statement
is like any other IF statement in VISION:Results. It can be negated by saying IF
NOT LASTDUP file1. The IF LASTDUP file1 statement can be used with any other
special IF statements to test for combinations of conditions.

The following example illustrates the points in the MATCH cycle when the IF
LASTDUP file1 statement is true. Suppose the following three files are used in the
MATCH operation:

FILEA FILEB FILEC
1 1 1
2 3 2
2’ 3’ 3
5 4 3’

The following example uses the MASTERUP file advancement technique. The
records input to the procedure logic are tested with an IF LASTDUP FILEC
statement for a true or false condition:

FILEA FILEB FILEC IF LASTDUP FILEC
1 1 1 False
2 1 2 False
2’ 1 2 False
2’ 3 3 False
2’ 3’ 3’ True
2’ 4 3’ True
5 4 3’ True

The IF LASTDUP file1 condition is true only if the current key is not equal to the
next key and the current key is equal to the previous key during the automatic
MATCH cycle. In the above example, the keys 3 and 3’ are duplicates (of which 3’
is the last duplicate), so the test IF LASTDUP FILEC is always true whenever the
key 3’ is present in the automatic cycle.

IF [NOT] LASTDUP file1 [AND|OR condition . . .] imperative . . . ENDIF

Figure 23-8 Format of the IF LASTDUP file1 Statement
Using MATCH and MERGE 23–17

MATCH Examples
MATCH Examples
Example 1 Simple Updating Using MATCH and File Advancement MASTERUP

No checking is done in Example 1 for duplicate masters or duplicate transactions.
If they exist, there are duplicates on the output file.

Any transaction records that MATCH master records are considered a complete
replacement for the master record, and any new transaction records are considered
to be complete new masters. Any time the transaction record is read (IF
ADVANCED INTRANS), it is moved to the output master record (this happens
regardless of an IF MATCHED or IF NOT MATCHED condition). In any other
case, the input master record is moved to the output master record (this happens
in an IF ADVANCED INMSTR AND NOT MATCHED condition).

End of file is handled automatically by the MATCH logic. All the records are
presented to you during the current cycles. At the beginning of the next cycle,
MATCH issues a STOP. If you want to do additional logic after end of file on all
files, the ON FINAL statement can be used (implies report writing of at least one
record even if all blank).

Example 2 Traditional Master or Transaction Updating (Default to SETREAD MASTERUP)

All duplicate masters are rejected. Any transactions associated with duplicate
masters are rejected.

Transactions can either be updates (if MATCHED) or adds (if NOT MATCHED).
Duplicate update transactions are allowed. Duplicate add transactions are
rejected.

OPTION XREFA PRINTERR
FILE INMSTR FB 80 STATUS MASTSTAT
MSTRREC 80
MSTRID 9 1
MSTRNAME 15 33
MSTRNUM 5 51 NU

FILE INTRANS FB 80 STATUS TRANSTAT
TRANREC 80
TRANID 9 1
TRANNAME 15 33
TRANNUM 5 51 NU

FILE OUTMSTR OUTPUT FB 80 FROM OUTMSTR
OMSTREC 80
OMSTID 9 1
OMSTNAME 15 33
OMSTNUM 5 51 NU

MATCH INMSTR KEY1 MSTRID KEY2 MSTRNUM KEY3 MSTRNAME
INTRANS KEY1 TRANID KEY2 TRANNUM KEY3 TRANNAME
SETREAD MASTERUP

IF ADVANCED INTRANS
MOVE TRANREC TO OMSTREC

ELSE
MOVE MSTRREC TO OMSTREC

ENDIF
WRITE OUTMSTR

Figure 23-9 Example 1 Simple Updating Using MATCH and File Advancement
MASTERUP
23–18 VISION:Results Reference Guide

MATCH Examples
Input masters that are NOT MATCHED with transaction(s) are written as is to the
output master.

A write flag controls the writing of the output master file. At end of file, ON FINAL
logic is used to write the last output master. The ON FINAL statement implies the
report writer, so a blank line is listed at end of file.

REPORT 80 WIDE ASA
OPTION XREFA PRINTERR
FILE INMSTR FB 80 STATUS MASTSTAT
MSTRREC 80
MSTRID 9 1
MSTRNAME 15 33
MSTRNUM 5 51 NU
MSTRFLD1 5 56
MSTRFLD2 5 61
MSTRFLD3 5 66

FILE INTRANS FB 80 STATUS TRANSTAT
TRANREC 80
TRANID 9 1
TRANNAME 15 33
TRANNUM 5 51 NU
TRANFLD1 5 56
TRANFLD2 5 61
TRANFLD3 5 66

FILE OUTMSTR OUTPUT FB 80 FROM OUTMSTR
OMSTREC 80
OMSTID 9 1
OMSTNAME 15 33
OMSTNUM 5 51 NU
OMSTFLD1 5 56
OMSTFLD2 5 61
OMSTFLD3 5 66

WORKAREA
WRITEFLG 1 1 VALUE ’N’

MATCH INMSTR KEY1 MSTRID KEY2 MSTRNUM KEY3 MSTRNAME
INTRANS KEY1 TRANID KEY2 TRANNUM KEY3 TRANNAME

* DUPLICATE MASTERS ARE AN ERROR (IF TRANS ADVANCED, ALSO
* AN ERROR).
IF ADVANCED INMSTR AND DUPLICATE INMSTR
MOVE ’MSTR ERROR’ TO DYLPRTCOMM
PRINT INMSTR
PERFORM CKTRAN TO CKTRANX
REJECT

ENDIF
* IF TRANS ONLY ADVANCED BUT MATCHES WITH DUPLICATE MASTER,
* ALSO ERROR.
IF ADVANCED INTRANS AND MATCHED AND DUPLICATE INMSTR
MOVE ’TRAN ERROR’ TO DYLPRTCOMM
PRINT INTRANS
REJECT

ENDIF
* IF MASTER READ, CHECK FOR WRITE AND MOVE TO OUTPUT FOR NEXT
* WRITE.
IF ADVANCED INMSTR
PERFORM CKWRT TO CKWRTX
MOVE ’Y’ TO WRITEFLG
MOVE MSTRREC TO OMSTREC

ENDIF
* IF MASTER READ AND MATCHED TRANS, UPDATE OUTPUT AREA WITH
* TRANS.
IF ADVANCED INTRANS AND MATCHED
PERFORM UPD TO UPDX

ENDIF
* IF TRANS READ AND NO MATCH, MUST BE A NEW ADD.

Figure 23-10 Example 2 Traditional Master or Transaction Updating
(Default to SETREAD MASTERUP) (Page 1 of 2)
Using MATCH and MERGE 23–19

MATCH Examples
IF ADVANCED INTRANS AND NOT MATCHED
PERFORM ADDIT TO ADDITX

ENDIF
ACCEPT
* IF MASTER READ AND DUPLICATE MASTER, CHECK FOR TRAN ERROR
* ALSO.
CKTRAN:
IF ADVANCED INTRANS
MOVE ’TRAN ERROR’ TO DYLPRTCOMM
PRINT INTRANS

ENDIF
CKTRANX:
* CHECK WRITE FLAG. IF ’ON’, WRITE OUTPUT MASTER.
CKWRT:
IF WRITEFLG EQ ’Y’
MOVE ’N’ TO WRITEFLG
WRITE OUTMSTR

ENDIF
CKWRTX:
* UPDATE TRANSACTION. UPDATE OUTPUT WITH TRANSACTION DATA.
UPD:
IF TRANFLD1 NE SPACES
MOVE TRANFLD1 TO OMSTFLD1

ENDIF
IF TRANFLD2 NE SPACES

MOVE TRANFLD2 TO OMSTFLD2
ENDIF
IF TRANFLD3 NE SPACES
MOVE TRANFLD3 TO OMSTFLD3

ENDIF
UPDX:
* ADD TRANSACTION. CHECK FOR WRITE AND MOVE TRANSACTION TO
* OUTPUT.
ADDIT:
IF NOT DUPLICATE INTRANS
PERFORM CKWRT TO CKWRTX
MOVE ’Y’ TO WRITEFLG
MOVE TRANREC TO OMSTREC

ELSE
MOVE ’TRAN DUPL ’ TO DYLPRTCOMM
PRINT INTRANS
REJECT

ENDIF
ADDITX:
* AT EOF ON BOTH FILES, CHECK FOR LAST WRITE OF OUTPUT
* MASTER.
ON FINAL
PERFORM CKWRT TO CKWRTX
LIST ’ ’

Figure 23-10 Example 2 Traditional Master or Transaction Updating
(Default to SETREAD MASTERUP) (Page 2 of 2)
23–20 VISION:Results Reference Guide

MATCH Examples
Example 3 Listing Unmatched Records Using File Advancement COMPAREN

If both files are ADVANCED (both must MATCH according to the rules of
COMPAREN), accept them as equal. Otherwise, list the unmatched file by
determining which one was ADVANCED.

Example 4 Simple Updating Using File Advancement ORIGINAL

No checking is done in the above example for duplicate masters. If they did exist,
there would be duplicates on the output file.

Any matched transaction records are used to update the corresponding master
record. Any unmatched transaction records are ignored.

A write flag controls the writing of the output master file. At end of file, ON FINAL
logic is writes the last output master. The ON FINAL statement implies the report
writer, so a blank line is listed at end of file.

Use SETREAD ORIGINAL only as a last resort because the method of file
advancement does not consistently advance files from one file or the other; rather,
it is done on a comparison of current keys, then next keys if necessary, and then
according to file precedence. This can lead to unnecessarily complex coding
solutions to account for all combinations of file advancement. Also, because it
advances only one record at a time from any given file, you cannot combine
MATCH keywords freely to test logic paths as with the other two methods. For
example, for SETREAD ORIGINAL, the test IF ADVANCED INTRANS AND

OPTION XREFA PRINTERR
FILE LIVEMSTR FB 80 STATUS LIVESTAT
LIVEREC 80
LIVEID 9 1 (EMPLOYEE’SSN)
LIVENAME 15 33 (EMPLOYEE’NAME)
LIVENUM 5 51 NU (EMPLOYEE’NUMBER)

FILE TESTMSTR FB 80 STATUS TESTSTAT
TESTREC 80
TESTID 9 1 (EMPLOYEE’SSN)
TESTNAME 15 33 (EMPLOYEE’NAME)
TESTNUM 5 51 NU (EMPLOYEE’NUMBER)

WORKAREA
WORKORIG 10 (FILE OF’ORIGIN)

MATCH LIVEMSTR KEY1 LIVEID KEY2 LIVENUM KEY3 LIVENAME
TESTMSTR KEY1 TESTID KEY2 TESTNUM KEY3 TESTNAME
SETREAD COMPAREN

IF ADVANCED LIVEMSTR AND ADVANCED TESTMSTR
ACCEPT

ENDIF
IF ADVANCED LIVEMSTR
MOVE ’LIVE MSTR ’ TO WORKORIG
LIST WORKORIG LIVEID LIVENAME LIVENUM

ELSE
MOVE ’TEST MSTR ’ TO WORKORIG
LIST WORKORIG TESTID TESTNAME TESTNUM

ENDIF
*
T1 ’UNMATCHED RECORDS FOR THE LIVE AND TEST FILES’

WITH 2 AFTER

Figure 23-11 Example 3 Listing Unmatched Records Using File Advancement
COMPAREN
Using MATCH and MERGE 23–21

MATCH Examples
NOT MATCHED would not always indicate a missing master, whereas these tests
are absolutely reliable with the other two techniques because of their file
advancement techniques.

REPORT 80 WIDE ASA
OPTION XREFA PRINTERR
FILE INMSTR FB 80 STATUS MASTSTAT
MSTRREC 80
MSTRID 9 1
MSTRNAME 15 33
MSTRNUM 5 51 NU
MSTRFLD1 5 56
MSTRFLD2 5 61
MSTRFLD3 5 66

FILE INTRANS FB 80 STATUS TRANSTAT
TRANREC 80
TRANID 9 1
TRANNAME 15 33
TRANNUM 5 51 NU
TRANFLD1 5 56
TRANFLD2 5 61
TRANFLD3 5 66

FILE OUTMSTR OUTPUT FB 80 FROM OUTMSTR
OMSTREC 80
OMSTID 9 1
OMSTNAME 15 33
OMSTNUM 5 51 NU
OMSTFLD1 5 56
OMSTFLD2 5 61
OMSTFLD3 5 66

WORKAREA
WRITEFLG 1 1 VALUE ’N’

MATCH INMSTR KEY1 MSTRID KEY2 MSTRNUM KEY3 MSTRNAME
INTRANS KEY1 TRANID KEY2 TRANNUM KEY3 TRANNAME
SETREAD ORIGINAL

IF ADVANCED INMSTR
PERFORM CKWRT TO CKWRTX
MOVE ’Y’ TO WRITEFLG
MOVE MSTRREC TO OMSTREC

ENDIF
IF MATCHED
PERFORM UPD TO UPDX

ENDIF
ACCEPT
*
CKWRT:
IF WRITEFLG EQ ’Y’
MOVE ’N’ TO WRITEFLG
WRITE OUTMSTR

ENDIF
CKWRTX:
UPD:
IF TRANFLD1 NE SPACES
MOVE TRANFLD1 TO OMSTFLD1

ENDIF
IF TRANFLD2 NE SPACES
MOVE TRANFLD2 TO OMSTFLD2

ENDIF
IF TRANFLD3 NE SPACES
MOVE TRANFLD3 TO OMSTFLD3

ENDIF
UPDX:
*
ON FINAL
PERFORM CKWRT TO CKWRTX
LIST ’ ’

Figure 23-12 Example 4 Simple Updating Using File Advancement ORIGINAL
23–22 VISION:Results Reference Guide

MERGE
MERGE
The MERGE operation allows you to interleave two or more files that are in
sequence using up to nine keys. The output records from the MERGE are available
to your request one at a time, in a common area, for further processing by you. You
can identify which file each record came from using the FROM clause and a
previously defined data name to hold the identity of that record. Additionally, a
special IF statement (IF REPLICA) can test whether the record is a duplicate of the
prior record or not.

Using a MERGE saves on the overhead that a SORT requires; the order in which
the files are named in the MERGE statement determines the order of duplicate
merged records. No work files or special memory requirements are necessary. The
files to be merged should be in ascending key sequence, however.

Syntax for the MERGE Operation
All files referenced in the MERGE must be defined using the usual FILE and field
definition statements in preceding statements. The format of the MERGE
statement is:

MERGE filename1 KEY1 dataname [KEY2 dataname KEY3 dataname...KEY9 dataname]
filename2 KEY1 dataname [KEY2 dataname KEY3 dataname...KEY9 dataname]
[filenamen KEY1 dataname {KEY2 dataname KEY3 dataname...KEY9 dataname}]

AREA dataname [FROM dataname] [LENGTH dataname]
[USING {DY282MER|subroutine}]

Special IF statements here

Figure 23-13 Format of the MERGE Statement

MERGE Required. Declares the application as a MERGE
operation.

filename1 Required. This file name is the name of the first file
designated for the MERGE operation. The file must
be defined in preceding statements.

KEY1 dataname Required. The data name is used as the first key field
for the MERGE operation. filename1 must be in
ascending sequence by this key.

KEY2 dataname, KEY3
dataname through KEY9
dataname

Optional. These data names identify the other key
fields to be used for the MERGE operation. If
specified, filename1 must be in ascending key
sequence by these keys.

filename2 Required. This file name is the name of the second file
designated for the MERGE operation. The file must
be defined in preceding statements.
Using MATCH and MERGE 23–23

Syntax for the MERGE Operation
filenamen Optional. This file name can identify any number of
additional files to be included in the MERGE
operation.

KEY1 dataname Required if a file name has been specified as
filenamen. If specified, filenamen must be in
ascending sequence by this key.

KEY2 dataname, KEY3
dataname through KEY9
dataname

Optional. These data names identify the other key
fields for the file named in filenamen. If specified,
filenamen must be in ascending key sequence by
these keys.

AREA dataname Required. Identifies the area in which the output
records from the MERGE are placed. This data name
can be any previously defined character field large
enough to hold the merged records, that is, it must be
at least as large as the largest record length of the files
being merged.

FROM dataname Optional. Identifies the file from which any given
merged record was obtained. VISION:Results
automatically places the name of the file from which
the merged record was obtained in this field. This
data name must be previously defined as an 8-byte
character field.

LENGTH dataname Optional. Identifies the length of the merged record.
The VISION:Results data name automatically places
the length of the merged record in this field. This data
name must be a previously defined field, with a type
of numeric, packed, or binary.

Using DY282MER Optional. The default is DY282MER. Identifies the
type of MERGE operation to use. You can also specify
the name of your own subroutine to be used for the
merging.
23–24 VISION:Results Reference Guide

Recommendations and Requirements for Merging
Recommendations and Requirements for Merging
Adhere to the following standards when merging:

� Specify at least two files during a MERGE.

� Each file in the MERGE must have at least one key specified.

� Every file in the MERGE must have the same number of keys specified.

� Each respective key in each file specified in the MERGE must be of the same
type and length. For example, KEY1 on file1 and KEY1 on file2 must be of the
same type and length and have the same number of decimal positions.

� Every file in the MERGE must be previously defined in a file definition.

� For all files in a MERGE, the record format and record length entries must be
specified in their respective file definitions.

� For all files in a MERGE, it is recommended that the files be in ascending
sequence by their respective keys.

� SORT is disallowed during a request with a MERGE. However, the files can be
sorted in a prior request and then passed to the current request.

� MERGE is not allowed with OPTION STRUCTURED.

� An output file cannot be OUTPUT FROM a file that is referenced in a MERGE
statement.

Merge Conditions in the Procedure Logic
VISION:Results automatically reads the files to be merged in a particular manner
depending upon the keyword you select in the USING clause of the MERGE
statement. The records are then presented to the procedure logic for further testing
or manipulation by you. A special IF statement (IF REPLICA) is available for you
to check on the condition of the MERGE during the automatic cycle. This special
IF statement is explained in detail later in this section.

There are two factors that govern the manner in which the files are read. The first
factor is the order in which the files to be merged are entered in the MERGE
statement. The first file in the MERGE has the highest precedence, and so on. The
second factor is the value of the keys at the beginning of each cycle.

The Rule for DY282MER
A record is read from every file once. The record with the lowest key value is
chosen to be output as the first merged record. If the keys are the same, the record
from the file with the highest precedence is chosen. Another record is then read
Using MATCH and MERGE 23–25

Merge Conditions in the Procedure Logic
from this file and the comparison for the lowest key is done again. The process
continues until end of file on all files. Unlike the MATCH operation, this operation
does no look aheads.

Example of Using DY282MER
Assume three files are being merged as follows:

The keys on the three files are as follows (duplicate keys on a file are shown here
with an apostrophe ‘):

TRAN1 TRAN2 TRAN3
2 1 2
3 2 4
5 2’ 5
8 4 8
9 8 9

11

The records output to the procedure logic at each point in the cycle are as follows:

AREA OUTREC SOURCEFL
1 TRAN2
2 TRAN1
2 TRAN2
2’ TRAN2
2 TRAN3
3 TRAN1
4 TRAN2
4 TRAN3
5 TRAN1
5 TRAN3
8 TRAN1
8 TRAN2
8 TRAN3
9 TRAN1
9 TRAN3
11 TRAN3

FILE TRAN1 VB 160
T1REC 160
T1KEY1 10 20

FILE TRAN2 VB 72
T2REC 72
T2KEY1 10 1

FILE TRAN3 VB 88
T3REC 88
T3KEY1 10 5

FILE OUTFILE VB 160 LENGTH OUTLEN OUTPUT FROM OUTFILE
OUTREC 160

WORKAREA
SOURCEFL 8

MERGE TRAN1 KEY1 T1KEY1
TRAN2 KEY1 T2KEY1
TRAN3 KEY1 T3KEY1
AREA OUTREC FROM SOURCEFL LENGTH OUTLEN

Your procedure logic goes here ...

Figure 23-14 Example of Using DY282MER
23–26 VISION:Results Reference Guide

Merge Conditions in the Procedure Logic
The logic can be understood by walking through some of the steps. A record is
read from all three files (2 1 2). Because TRAN2 has the next lowest key, its record
is moved to the OUTREC area and another record is read from TRAN2 (2). Because
the keys are all equal (2 2 2), the record moved is from the file with the highest
precedence TRAN1 (2) and a record is read from TRAN1 (3). Because the lowest
key value of (3 2 2) is 2 and TRAN2 and TRAN3 have the same key value, the next
record is moved from TRAN2 (2), another record is read from TRAN2, and so on.

IF REPLICA
The special IF REPLICA statement in your procedure logic allows you to test
whether the current merged record has the same key value as the previous record.
This is similar to testing for duplicate keys on the merged file, except that the first
key in a set of duplicate keys is not considered to be a duplicate. If the test is
successful, the condition is true; otherwise, the condition is false.

The format of the IF REPLICA statement is:

For example, the following IF statements are valid:

IF REPLICA REJECT ENDIF

IF NOT REPLICA AND T1KEY1 GT 5 ACCEPT ENDIF

The IF REPLICA statement can be used with any other conditional expressions
using the AND and OR connectors in the usual way. This IF statement is like any
other IF statement in VISION:Results. It can be negated by saying IF NOT
REPLICA. The IF REPLICA statement can be used with any of the other special IF
statements to test for combinations of conditions.

The following example illustrates the points in the MERGE cycle when the IF
REPLICA statement is true. Suppose the following three files are used in the
MERGE operation:

TRAN1 TRAN2 TRAN3
2 1 2
3 2 4
5 2’ 5
8 4 8
9 8 9

11

IF [NOT] REPLICA [AND|OR condition . . .] imperative . . . ENDIF

Figure 23-15 Format of the IF REPLICA Statement
Using MATCH and MERGE 23–27

Merge Example
The following merged records input to the procedure logic are tested with an IF
REPLICA statement for a true or false condition:

AREA OUTREC SOURCEFL IF REPLICA
1 TRAN2 False
2 TRAN1 False
2 TRAN2 True
2’ TRAN2 True
2 TRAN3 True
3 TRAN1 False
4 TRAN2 False
4 TRAN3 True
5 TRAN1 False
5 TRAN3 True
8 TRAN1 False
8 TRAN2 True
8 TRAN3 True
9 TRAN1 False
9 TRAN3 True
11 TRAN3 False

The first key in a set of keys that are equal in value is not considered to be a replica.
This is because the current record key value is compared to the previous record
key value for equality.

Merge Example
Two transaction files, one sorted and the other unsorted, are merged and the
resulting merged records listed.

The unsorted transaction file is sorted in the first request and passed to the second
request using the PICNSAVE and USE statements.

The second request, REPORT2, merges the two sorted files and lists the contents of
the merged file.

Merging a sorted and unsorted file:

FILE TRAN1 FB 80 STATUS T1STAT
TRAN1REC 80
TRAN1ID 9 1
TRAN1NAM 8
TRAN1SAL 5 NU

SORT TRAN1 USING TRAN1ID

PICNSAVE SAVE1 USING TRAN1ID TRAN1NAM TRAN1SAL BY 40

REPORT2

FILE TRAN2 FB 80 STATUS T2STAT
TRAN2REC 80
TRAN2ID 9 1
TRAN2ED 8
TRAN2EXP 5 NU

USE SAVE1 STATUS T1STAT

Figure 23-16 Merge Example (Page 1 of 2)
23–28 VISION:Results Reference Guide

Error Analysis During Match and Merge
Error Analysis During Match and Merge
Special error handling is provided for you during MATCH and MERGE. If you
encounter an execution time error (0C7 – data exception) during your run and are
interested in analyzing the record that caused the error during the match or merge,
follow the steps outlined here.

1. Go to page 2 of your listing and look at the error message shown. If you spot
the cause of the error right away, fix it and rerun the program. If you need
more information about the cause of the error, go to Step 2.

2. Rerun the program using the following OPTION statement as the first
statement in your program:

OPTION XREFA PRINTERR

This statement produces a cross-reference listing and a mini-dump in
addition to the standard file # key # field identification.

Go to page 2 of your listing and look at the error message. The example below
shows the message produced when bad data is encountered in a file.

WORKAREA
OUTREC 80

MERGE SAVE1 KEY1 TRAN1ID
TRAN2 KEY1 TRAN2ID
AREA OUTREC

IF T1STAT EQ ’E’ AND T2STAT EQ ’E’ STOP ENDIF
LIST OUTREC

T1 ’CONTENTS OF THE MERGED FILE’

Figure 23-16 Merge Example (Page 2 of 2)

COMPLETION CODE-0299 *** ERROR OCCURRED DURING THIS RUN ***

MATCH/MERGE FILE 01, KEY 1 (CURR) HAS CAUSED AN ERROR.
IT SHOULD BE A VALID PACKED FIELD BUT IT LOOKS LIKE THIS:

048508385
FFFFFFFFF
048508385

THE DATA MAY NOT BE DEFINED PROPERLY IN THE FIELD DEFINITION STATEMENT. CHECK TH
E DEFINITION AGAINST A FILE LAYOUT OR FILE PRINTOUT AND MAKE SURE THE FIELD IS T
HE CORRECT LENGTH, LOCATION AND DATA TYPE.

IF THE FIELD CONTAINS ALL HIGH-VALUES (FF), THE FILE MAY BE AT END OF FILE. CHEC
K THE PROGRAM STATEMENTS TO SEE IF DATA IS BEING ACCESSED IN THE INPUT AREA AFTE
R END OF FILE. ONE REASON MIGHT BE THAT YOU HAVE SPECIFIED IN A LIST STATEMENT T
O PRINT A FIELD FROM THE INPUT AREA AT ’GRAND TOTAL TIME’ (ON FINAL).

Figure 23-17 Error Analysis During Match and Merge (Page 1 of 2)
Using MATCH and MERGE 23–29

Writing Your Own MATCH Subroutine
The message indicates that FILE 01, KEY1 of the current record has caused the
error. The message could have indicated (NEXT) for the next record instead
of (CURR) as having caused the error. Note this information about the file and
the record.

3. Go to the cross-reference listing on the next page and find the location and
area of the key that represents KEY1 of FILE 01. Remember that FILE 01 is the
first file designated in the MATCH or MERGE statement.

In this example, FILE 01 is the file IMASTER and the current KEY1 field is
IMKEY (the first key on the MATCH statement).

If the error message indicated (NEXT) instead of (CURR), you look in the
cross-reference listing for DYLNF01K1 as the data name. This is
VISION:Results’ way of naming the key for the NEXT record for file 1.
Similarly, other NEXT keys might be named DYLNF01K2 for the second key
of the first file, and so on. The naming convention for the NEXT keys in the
cross-reference listing is as follows:

DYLNFnnKn

where:

Fnn is the number of the file in the MATCH or MERGE statement.
Kn is the number of the key in the MATCH or MERGE statement.

Note the area and location information. In this case, the location is 378 and the
area is R.

4. Go to the listing of the dump and find the R area or REFORMAT area. Count
off 378 bytes as the starting location of the record that caused the error. With
the information you now have, you can analyze what fields in the record
might have caused the error. In this case, it happened to be the first key field
of a file that was defined as packed but did not have packed data.

Writing Your Own MATCH Subroutine
As explained earlier, VISION:Results provides you with the additional capability
of writing your own MATCH and MERGE subroutines. There are three separate
methods of file advancement provided with the MATCH and MERGE facility. See
Match Conditions in the Procedure Logic on page 23-8. These techniques should
be sufficient to handle all your match needs. However, if they are not adequate, the

PROBABLE CAUSES:
1) DATA FIELD DOES NOT START IN THE POSITION INDICATED, OR THE

AREA CODE IS INCORRECT.
2) SIZE OF FIELD IS INCORRECT.
3) DATA TYPE GIVEN IN PARAMETER DOES NOT CORRESPOND TO THAT

CONTAINED IN THE RECORD. (CHECK PACKED FIELDS)
4) NUMERIC FIELD CONTAINS INVALID CHARACTERS.
5) DATA BEING PROCESSED FROM INPUT FILE THAT HAS REACHED EOF.

RECORD NOW CONTAINS HIGH VALUES.

Figure 23-17 Error Analysis During Match and Merge (Page 2 of 2)
23–30 VISION:Results Reference Guide

Writing Your Own MATCH Subroutine
information provided in this section instructs you about how to write your own
routine to replace DY282MAT. As an alternative, you can contact
Computer Associates Technical Support to request new file advancement
techniques.

DY282MAT Invocation
DY282MAT is invoked once for each special MATCH statement found in your
VISION:Results program (such as IF MATCHED...), with the exception of the IF
ADVANCED... flag, which is set depending on whether or not a read occurred for
a given file. It is also called once at program startup (first-cycle call) and once at the
beginning of each cycle (new-cycle call).

The DY282MAT MATCH Subroutine
A series of parameters is passed to DY282MAT (see Parms Passed to DY282MAT
on page 23-38); your MATCH subroutine receives these same parameters. You do
not have to be concerned with I/O because it is not done within the MATCH
subroutine itself. During the first-cycle, depending on the file advancement
technique (see Match Conditions in the Procedure Logic on page 23-8 for a further
explanation of the file advancement techniques), the read ahead (also known as
next read) flags are set to get a next and current set of keys for the first new-cycle
call.

Also, although it is not demonstrated in the sample program, the first-cycle call
establishes the method of file advancement. The new-cycle call occurs following
any file reads and prior to the MATCH keywords (see the flowchart in Generated
from Your Special MATCH Logic Statements on page 23-33 for an overview of the
MATCH logic flow). The new-cycle call sets the next read flags based on the file
advancement technique specified. It also sets an ALL MATCHED flag on if all keys
across all files match. It also updates an array that is used to keep track of
duplicates by file.

DY282MAT is called each time one of the special MATCH statements (for example,
IF MATCHED..., IF LASTDUP..., and so on) is referenced. Your custom
subroutines must perform all the current functions of DY282MAT and attend to all
of the details such as parameters, flags, and codes (see Parms Passed to
DY282MAT on page 23-38). DY282MAT uses them to determine whether to test for
matches, duplicates, and so on, but sets only the following:

� The read ahead flag on the first-/new-cycle calls

� The status code on your match keyword calls

The VISION:Results MATCH logic can be thought of as an extension of the
automatic cycle.

The following section shows the flowchart and corresponding pseudo code that
you can use as an example for your own subroutines.
Using MATCH and MERGE 23–31

Writing Your Own MATCH Subroutine
Generated from Your Special MATCH Logic Statements on page 23-33 contains a
flowchart that is an expanded detail illustration of code generated by the required
MATCH... statement in your program (see Syntax for the MATCH Operation on
page 23-5 for details of this MATCH statement).

This flowchart describes new-cycle logic (the new-cycle concept is described
below), executed at the beginning of every cycle.

The first-time logic at the top of the flowchart is executed only once, at the
beginning of program execution (the rest of the logic is executed once per
automatic cycle). The additional USER CODE at the bottom of the flowchart is
VISION:Results code generated by all other special MATCH and MERGE
statements, such as IF MATCHED..., IF DUPLICATE..., and so on.

FIRST-CYCLE A first-cycle call is a special call consisting of ON ONE code that
is executed only once (during the execution of a program) for
the purpose of correctly positioning the files for the first
new-cycle call. DY282MAT is called (with function code A) to
set the read ahead flags. These are set depending on the file
advancement technique used. See Match Conditions in the
Procedure Logic on page 23-8 for information about how files
are advanced differently depending on this option. See the
match logic flowchart in Generated from Your Special MATCH
Logic Statements on page 23-33.

NEW-CYCLE A new-cycle call is a special call issued during the beginning of
each cycle (following any FILE READs and prior to your match
logic) that sets the next read flags for the next automatic cycle.
These are set depending on the file advancement technique
used. See Match Conditions in the Procedure Logic on page 23-8
for information about how files are advanced differently
depending on this option. It also sets an array of duplicate flags
for each file used if the match keywords IF DUPLICATE, IF
FIRSTDUP, or IF LASTDUP are specified. It also sets a flag that
is used if you specify IF MATCHED. Our program
demonstrating a sample USERMAT routine for SETREAD
ORIGINAL does not perform these last two functions.
23–32 VISION:Results Reference Guide

Writing Your Own MATCH Subroutine
Generated from Your Special MATCH Logic Statements

Figure 23-18 MATCH Logic Flow Diagram (Page 1 of 2)

YesFirst
Time?

For Each File,
Do LOOK AHEAD

Read to Get
NEXT Record

After All Reads,
Issue

FIRST CYCLE
Call to DY282MAT

Yes
EOF?

NoNo

Stop

Move N to
READ AHEAD

Flag

Move N to
ADVANCED Flag

Do LOOK AHEAD
Read to Get

NEXT RECORD

Move
NEXT RECORD to

CURRENT RECORD

Yes

No

All
Files at
EOF?

Yes

No

EOF?

Move E
to EOF Flag

Move E
to EOF Flag

For
Each File,

READ AHEAD
Flag = Y?
Using MATCH and MERGE 23–33

Writing Your Own MATCH Subroutine
MATCH Logic (calls generated from user code)

Figure 23-18 MATCH Logic Flow Diagram (Page 2 of 2)

Move A to
Function Code

(For
NEW CYCLE

Call)

Call
DY282MAT

Additional
FIRSTDUP...
User Code

VISION:Results code

DY282MAT determines which file(s) to be read next based on the
file advancement technique specified. It sets the READ AHEAD
flag of those file(s) to a Y. It also sets internal flags to be used with
the IF MATCHED and IF DUPLICATE/FIRSTDUP/LASTDUP tests.

IF MATCHED..., IF DUPLICATE..., IF and so on. This code also makes
calls to DY282MAT.
23–34 VISION:Results Reference Guide

Writing Your Own MATCH Subroutine
All of these MATCH and MERGE statements (with the exception of IF
ADVANCED...) generate a call to DY282MAT.

In the first example, IF ADVANCED..., DY282MAT is NOT called. The
ADVANCED FLAG is set to an A if a file has been advanced, or a ‘ ‘ (blank) if it
has not been advanced.

Figure 23-19 MATCH/MERGE Statements

IF ADVANCED filea If ADVANCED flag is set to an A, do this logic.
PRINT ’filea advanced’

ELSE Otherwise, do this logic.
PRINT ’filea not read’

ENDIF

Do Not Call
DY282MAT

ADVANCED
FLAG = A

If
ADVANCED

If
MATCHED

Call
DY282MAT

Call
DY282MAT

If
DUPLICATE

File1

Call
DY282MAT

If
FIRSTDUP

File1

Call
DY282MAT

If
MATCHED
File1 File2

If
LASTDUP

File1

Call
DY282MAT

Process User
Logic Accordingly

Process User
Logic Accordingly

Process User
Logic Accordingly

Process User
Logic Accordingly

Process User
Logic Accordingly

X as Function Code

M as Function Code

D as Function Code

F as Function Code

L as Function Code

(Set STATUS CODE to Y if MATCHED or to N if not matched.)

(Set STATUS CODE to Y if MATCHED or to N if not matched.)

(Set STATUS CODE to Y if DUPLICATE or to N if not matched.)

(Set STATUS CODE to Y if FIRSTDUP or to N if not matched.)

(Set STATUS CODE to Y if LASTDUP or to N if not matched.)

Process User
Logic Accordingly
Using MATCH and MERGE 23–35

Writing Your Own MATCH Subroutine
The other MATCH statements generate calls to DY282MAT because they require
the setting of the status code. Function codes are passed to DY282MAT.
DY282MAT then performs an action corresponding to the function code and sets
the status code to a Y or an N.

Examples for each statement are shown at the beginning of Parms Passed to
DY282MAT on page 23-38.

ON ONE Logic
This is first-cycle logic that is executed only once during the execution of a
program, doing an initial read from each file so that you have next-record key(s)
for each file before the actual processing takes place. DY282MAT is called to
correctly position the current-record keys by setting the read ahead flags.

Initially, the read ahead flag is set as a result of the first-cycle call to DY282MAT.
An E in the next read flag indicates that end of file has been reached.

VISION:Results Cycle For MATCH Run Before Your Statements
Perform these steps:

1. Reset each Advanced Flag to a blank.

2. If all files are at end of file, a STOP is issued.

3. If the Read Ahead flag is set to a Y, do the following:

� Set the Read Ahead flag to an N.

� Set the Advanced Flag to an A.

� Move the next record to the current record.

� Read the next record – if at end of file, set Read Ahead flag to E.

4. Issue a call to DY282MAT using function code A for new-cycle logic (see
Writing Your Own MATCH Subroutine on page 23-30 for information about
a new-cycle call). DY282MAT compares file keys and sets the read ahead flag

IF MATCHED If status code is set to a Y, do this logic.
PRINT ’allfiles matche
d’

ELSE Otherwise, do this logic.
PRINT ’allfiles not matched’

ENDIF
23–36 VISION:Results Reference Guide

Writing Your Own MATCH Subroutine
of the next file(s) to a Y for the next cycle through. This read does not take
place until the next cycle.

5. To avoid the possibility of an endless loop, be sure your subroutine sets one
or more of the Read Flags to Y for read ahead so that another record is always
read in.

6. To avoid the possibility of an abend because of a read after end of file, be sure
that your subroutine leaves all Read Flags set to E alone (this indicates that
end of file is reached for those file(s)).

User Statements With Other Special MATCH Logic

IF ADVANCED File1
A True or False flag that indicates that a new record has been read from the
specified file on this cycle, checking the Advanced Flag for an A.

IF MATCHED
A True or False flag that indicates whether all keys across files are equal and tests
for matching across all files by generating a call to DY282MAT using function code
X. If all files match, the status code is set to a Y.

IF MATCHED File1 File2
A special True or False flag that indicates whether all keys across any two specified
files are equal. It tests for matching across the files by generating a call to
DY282MAT using function code M. If matching occurred between both files, the
status code is set to a Y.

IF DUPLICATE File1
A True or False flag that indicates whether the current key is equal to either the
previous key, the next key, or both. It tests for duplicates on a given file by
generating a call to DY282MAT using function code D. If the current keys are equal
to those of either the previous keys, next keys, or both, the status code is set to a Y.

IF FIRSTDUP File1
A True or False flag that is set to true if the current key is equal to the next key but
NOT the previous key. This command tests for first duplicate on two or more keys
in a given file by generating a call to DY282MAT using function code F. If the
current keys are equal to the next keys and not equal to the previous keys, the
status code is set to a Y.

IF LASTDUP File1
A True or False flag that is set to true if the current key is equal to the previous key
but NOT the next key. This command tests for last duplicate on two or more keys
in a given file by generating a call to DY282MAT using function code L. If the
current keys are equal to the previous keys and not equal to the next keys, the
status code is set to a Y.
Using MATCH and MERGE 23–37

Writing Your Own MATCH Subroutine
These command statements are described in more detail in Match Conditions in
the Procedure Logic on page 23-8. A complete description of all parameters,
including the flags, function codes, and status codes for DY282MAT, is provided
in Parms Passed to DY282MAT on page 23-38.

Parms Passed to DY282MAT

PARM1

1st byte Function Code (A, X, M, D, F, or L).

A= Generates a new-cycle call to DY282MAT.

X= Checks for a match across ALL files (sets Status Code).

M= Checks for a match between two files (sets Status
Code).

D= Checks for duplicates on a given file (sets Status Code).

F= Checks for first duplicate on two or more keys on a
given file (current and next keys) (sets Status Code).

L= Checks for last duplicate on two or more keys on a
given file (current and previous keys) (sets Status
Code).

2nd byte Status Code (set to Y or N by DY282MAT according to one of the
above actions).

3rd byte Number of files being matched (in binary).

4th byte Number of keys per file (in binary).

5th byte File number to be checked (in binary). Used with:

IF DUPLICATE File 1

IF MATCHED File 1 File 2

IF FIRSTDUP File 1

IF LASTDUP File 1 (where a binary 1 represents File 1)

6th byte File number to be checked (in binary). Used with:

IF MATCHED File 1 File 2 (where a binary 2 represents File 2)

7th byte Read Ahead flag for File 1 (set by DY282MAT, initially Y).

Y= Read ahead WILL take place on next cycle.

N= Read ahead will NOT take place on next cycle.

E= End of file has been reached.
23–38 VISION:Results Reference Guide

Writing Your Own MATCH Subroutine
PARM2:
The second parm passed consists of two or more 3-byte fields. Each field contains
the following key information:

8th byte Advanced flag for File 1.

A= Advance to another record has taken place on current
cycle.

BLANK= Advance to another record has NOT taken place.

Used with: IF ADVANCED for File 1

9th byte Read Ahead flag for File 2 (set by DY282MAT; the same rules as 7th
byte).

10th byte Advanced flag for File 2 (the same rules as 8th byte).

.

.

.
and so on.

All of these parameters are passed to DY282MAT. The status code and next read
flag(s) can be modified by DY282MAT and passed back to the program.

1st byte Type of key:

C Character.

B Binary numeric.

N Zoned-decimal numeric.

P Packed numeric.

2nd byte One byte actual length of the key in binary.

3rd byte Number of decimals (zoned-decimal); for character fields, leave
this field blank.
Using MATCH and MERGE 23–39

Writing Your Own MATCH Subroutine
There is one 3-byte field for each file key. For example, assuming two files (each
with two keys), there would be 12 bytes of storage (four keys) at Parm2. The layout
is as follows:

File 1 – Key 1

File 1 – Key 2

File 2 – Key 1

File 2 – Key 2

.

.

.
and so on.

PARM3 through PARM10
With two files and two keys per file (four keys), the layout of keys being passed to
the subroutine (starting with Parm3) is as follows:

The following listing of USERMAT is one example of a replacement subroutine for
the built-in match routine, DY282MAT. It works exactly as DY282MAT does
(including the rules of matching), with one exception: it processes only two input
files, each with two keys.

USERMAT is designed as a starting point from which you can write your own
specialized match processing subroutine according to rules different from those of
DY282MAT. The output using this subroutine is identical to that generated using
DY282MAT. The sample program demonstrates the SETREAD ORIGINAL file
advancement technique (see Match Conditions in the Procedure Logic on
page 23-8). It is your responsibility to add other file advancement techniques as
needed.

PARM 3: File 1 Current Key 1

PARM 4: File 1 Current Key 2

PARM 5: File 1 Next Key 1

PARM 6: File 1 Next Key 2

PARM 7: File 2 Current Key 1

PARM 8: File 2 Current Key 2

PARM 9: File 2 Next Key 1

PARM 10: File 2 Next Key 2
23–40 VISION:Results Reference Guide

Writing Your Own MATCH Subroutine
31
*********************** USERMAT STARTS HERE
*
* THIS IS A SIMPLIFIED EXAMPLE OF A SUBROUTINE TO REPLACE
* ’DY282MAT’ AS YOU WOULD WRITE IT.
*
* REGISTER CONVENTION :
* R3 -> 1ST PARM - FUNCTION CODE, STATUS
* CODE...
* R4 -> 2ND PARM - 12 BYTES OF KEY
* INFORMATION
* R0,R1,R2,R5 THRU R14,R15 - WORK REGISTERS
* R10 -> PARM ADDR
* R11 -> BASE REGISTER 2
* R12 -> BASE REGISTER 1
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT
USERMAT CSECT

STM R14,R12,12(R13) SAVE REGS 14 THRU 12
LR R12,R15 R12 AS BASE 1
USING USERMAT,R12,R11
LA R11,4095(R12) R11 AS BASE 2
LA R11,1(R11)
ST R13,SAVE+4 SAVE HSA/REG13
LR R15,R13
LA R13,SAVE OUR 13 NOW SAVE
ST R13,8(R15) SAVE LSA
LR R10,R1 SAVE REG 1
LM R3,R4,0(R10) LOAD PARM REGS
USING PARM1,R3 MAP REG 3 TO PARM 1
USING PARM2,R4 MAP REG 4 TO PARM 2
SPACE 1
MVI STATUS,C’N’ INITIALIZE STATUS FLAG
CLI FUNCTION,C’A’ COMPARE KEYS FOR READ AHEAD?
BE CKNEXTRD YES.
CLI FUNCTION,C’X’ IF MATCHED? (E.G. ALL MATCHED)
BE CKALLMAT YES.
CLI FUNCTION,C’M’ IF MATCHED FILE1 FILE2?
BE CKANYMAT YES.
CLI FUNCTION,C’D’ IF DUPLICATE FILEX?
BE CKDUPL YES.
CLI FUNCTION,C’F’ IF FIRSTDUP FILEX?
BE CK1STDUP YES.
CLI FUNCTION,C’L’ IF LASTDUP FILEX?
BE CKLSTDUP YES.

* DOES NOT COME HERE
DC H’0’ ABEND WITH ’0C1’.
EJECT

*
* FUNCTION CODE ’A’ :
* - ALWAYS 1ST CALL TO ’DY282MAT’ (OR USER SUBROUTINE)
* - SETS UP AREAS FOR PREVIOUS,CURRENT, AND NEXT KEYS FOR
* EACH FILE

Figure 23-20 USERMAT Example (Page 1 of 5)
Using MATCH and MERGE 23–41

Writing Your Own MATCH Subroutine
* - CONTROLS NEXT READ OF A FILE BY MOVING ’Y’ TO
* CORRESPONDING READ AHEAD FLAG (AND
* PREVENTS AN ENDLESS LOOP)
* * NOTE: DO NOT RESET THE READ FLAG IF IT’S ALREADY
* ’E’.
*
* NOTE: ’DY282MAT’ HANDLES A VARIABLE NUMBER OF KEYS ON A
* VARIABLE NUMBER OF FILES. THIS ROUTINE KNOWS IT
* HAS 2 FILES EACH WITH 2 KEYS.
*
MOVEIT MVC 0(0,R8),0(R9) VARIABLE LENGTH MOVE.
CKNEXTRD DS 0H

CLI ADVANCE1,C’A’ FILE 1 ADVANCED THIS CYCLE?
BNE CKNEXTR2 NO.
MVC FILE1PRV,FILE1CUR YES...SAVE PREVIOUS KEY OF FILE1

CKNEXTR2 DS 0H
CLI ADVANCE2,C’A’ FILE 2 ADVANCED THIS CYCLE?
BNE CKNEXTR3 NO.
MVC FILE2PRV,FILE2CUR YES...SAVE PREVIOUS KEY OF FILE2

CKNEXTR3 DS 0H
SR R7,R7 CLEAR REGISTER 7

* MOVE FILE1 CURRENT KEY1
ICM R7,B’0001’,KY1SIZE1 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
LA R8,FILE1CUR R8 -> CURRENT FILE1 KEY
L R9,8(R10) R9 -> 3RD PARM
EX R7,MOVEIT MOVE FILE1 CURRENT KEY1

* MOVE FILE1 CURRENT KEY2
AR R8,R7 R8 -> NEW CURRENT FILE1 KEY LOC
LA R8,1(R8)
ICM R7,B’0001’,KY1SIZE2 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
L R9,12(R10) R9 -> 4TH PARM
EX R7,MOVEIT MOVE FILE1 CURRENT KEY2
SR R7,R7 CLEAR REGISTER 7

* MOVE FILE1 NEXT KEY1
ICM R7,B’0001’,KY1SIZE1 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
LA R8,FILE1NXT R8 -> NEXT FILE1 KEY
L R9,16(R10) R9 -> 5TH PARM
EX R7,MOVEIT MOVE FILE1 NEXT KEY1

* MOVE FILE1 NEXT KEY2
AR R8,R7 R8 -> NEW NEXT FILE1 KEY LOC
LA R8,1(R8)
ICM R7,B’0001’,KY1SIZE2 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
L R9,20(R10) R9 -> 6TH PARM
EX R7,MOVEIT MOVE FILE1 NEXT KEY2
SR R7,R7 CLEAR REGISTER 7

* MOVE FILE2 CURRENT KEY1
ICM R7,B’0001’,KY2SIZE1 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
LA R8,FILE2CUR R8 -> CURRENT FILE2 KEY
L R9,24(R10) R9 -> 7TH PARM
EX R7,MOVEIT MOVE FILE2 CURRENT KEY1

* MOVE FILE2 CURRENT KEY2
AR R8,R7 R8 -> NEW CURRENT FILE2 KEY LOC
LA R8,1(R8)
ICM R7,B’0001’,KY2SIZE2 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
L R9,28(R10) R9 -> 8TH PARM
EX R7,MOVEIT MOVE FILE2 CURRENT KEY2
SR R7,R7 CLEAR REGISTER 7

* MOVE FILE2 NEXT KEY1
ICM R7,B’0001’,KY2SIZE1 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
LA R8,FILE2NXT R8 -> NEXT FILE2 KEY
L R9,32(R10) R9 -> 9TH PARM
EX R7,MOVEIT MOVE FILE2 NEXT KEY1

* MOVE FILE2 NEXT KEY2

Figure 23-20 USERMAT Example (Page 2 of 5)
23–42 VISION:Results Reference Guide

Writing Your Own MATCH Subroutine
AR R8,R7 R8 -> NEW NEXT FILE2 KEY LOC
LA R8,1(R8)
ICM R7,B’0001’,KY2SIZE2 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
L R9,36(R10) R9 -> 6TH PARM
EX R7,MOVEIT MOVE FILE2 NEXT KEY2
CLI RDAHEAD1,C’E’ FILE 1 AT EOF?
BE MOVE2RD YES...SET READ AHEAD FILE2.
CLI RDAHEAD2,C’E’ FILE 2 AT EOF?
BE MOVE1RD YES...SET READ AHEAD FILE1.
CLC FILE1CUR,FILE2CUR COMPARE FILE 1/FILE 2 CURR KEYS
BL MOVE1RD FILE1 LESS? SET READ AHEAD FILE1
BH MOVE2RD FILE2 LESS? SET READ AHEAD FILE2
CLC FILE1NXT,FILE2NXT COMPARE FILE 1/FILE 2 NEXT KEYS
BH MOVE2RD FILE2 LESS? SET READ AHEAD FILE2
B MOVE1RD FILE1 LESS? (OR DEFAULT)

MOVE1RD DS 0H
CLI RDAHEAD1,C’E’ EOF REACHED?
BE PGMEXIT YES...LEAVE IT ALONE.
MVI RDAHEAD1,C’Y’ SET FILE1 READ AHEAD TO ’Y’
B PGMEXIT

MOVE2RD DS 0H
CLI RDAHEAD2,C’E’ EOF REACHED?
BE PGMEXIT YES...LEAVE IT ALONE.
MVI RDAHEAD2,C’Y’ SET FILE2 READ AHEAD TO ’Y’
B PGMEXIT
EJECT

*
* FUNCTION CODE ’X’ :
* - ’IF MATCHED’ SPECIFIED.
* - SETS STATUS CODE TO ’Y’ IF ALL FILES MATCH.

*
* NOTE: ’DY282MAT’ HANDLES A VARIABLE NUMBER OF FILES. AS
* IT’S BUILDING THE KEYS, IT SETS A FLAG IF ’ALL
* MATCHED’.
* THIS ROUTINE IS JUST A SIMPLE CHECK BETWEEN THE
* CURRENT KEYS OF EACH FILE.
*
*
CKALLMAT DS 0H

CLC FILE1CUR,FILE2CUR FILES EQUAL?
BE PGMEXIT2 YES..SET STATUS CODE TO ’Y’
B PGMEXIT NO..JUST EXIT.
EJECT

*
* FUNCTION CODE ’M’ :
* - ’IF MATCHED FILE1 FILE2’ SPECIFIED.
* - SETS STATUS CODE TO ’Y’ IF BOTH FILES MATCH.

*
* NOTE: ’DY282MAT’ HANDLES ANY 2 FILES SPECIFIED. YOU CAN
* PICK UP WHICH 2 FILES ARE BEING COMPARED FROM
* PARM1 BYTES 5 AND 6.
* THIS ROUTINE IS JUST A SIMPLE CHECK BETWEEN THE
* CURRENT KEYS OF EACH FILE.
*
CKANYMAT DS 0H

CLC FILE1CUR,FILE2CUR FILES EQUAL?
BE PGMEXIT2 YES...SET STATUS CODE TO ’Y’
B PGMEXIT NO....JUST EXIT.
EJECT

*
* FUNCTION CODE ’D’ :
* - ’IF DUPLICATE FILEX’ SPECIFIED.
* - SETS STATUS CODE TO ’Y’ IF DUPLICATE ON FILE
* SPECIFIED.
*
* NOTE: ’DY282MAT’ HANDLES CHECKING ON ANY FILE SPECIFIED.
* THIS ROUTINE KNOWS IT’S EITHER FILE1 OR FILE2.

Figure 23-20 USERMAT Example (Page 3 of 5)
Using MATCH and MERGE 23–43

Writing Your Own MATCH Subroutine
*
CKDUPL DS 0H

TM MATCHFL1,X’01’ CK ON FILE1?
BO CKDUPL1 YES.
B CKDUPL2 NO.

CKDUPL1 DS 0H
CLC FILE1CUR,FILE1PRV CURRENT = PREVIOUS?
BE PGMEXIT2 YES...SET STATUS CODE TO ’Y’
CLC FILE1CUR,FILE1NXT CURRENT = NEXT?
BE PGMEXIT2 YES...SET STATUS CODE TO ’Y’
B PGMEXIT NO....JUST EXIT.

CKDUPL2 DS 0H
CLC FILE2CUR,FILE2PRV CURRENT = PREVIOUS?
BE PGMEXIT2 YES...SET STATUS CODE TO ’Y’
CLC FILE2CUR,FILE2NXT CURRENT = NEXT?
BE PGMEXIT2 YES...SET STATUS CODE TO ’Y’
B PGMEXIT NO....JUST EXIT.
EJECT

*
* FUNCTION CODE ’F’ :
* - ’IF FIRSTDUP FILEX’ SPECIFIED.
* - SETS STATUS CODE TO ’Y’ IF FIRST DUPLICATE ON FILE
* SPECIFIED.
*
* NOTE: ’DY282MAT’ HANDLES CHECKING ON ANY FILE SPECIFIED.
* THIS ROUTINE KNOWS IT’S EITHER FILE1 OR FILE2.
*
CK1STDUP DS 0H

TM MATCHFL1,X’01’ CK ON FILE1?
BO CK1STDU1 YES.
B CK1STDU2 NO.

CK1STDU1 DS 0H
CLC FILE1CUR,FILE1PRV CURRENT = PREVIOUS?
BE PGMEXIT YES...CAN’T BE FIRST DUPE
CLC FILE1CUR,FILE1NXT CURRENT = NEXT?
BE PGMEXIT2 YES...SET STATUS CODE TO ’Y’
B PGMEXIT NO....JUST EXIT.

CK1STDU2 DS 0H
CLC FILE2CUR,FILE2PRV CURRENT = PREVIOUS?
BE PGMEXIT YES...CAN’T BE FIRST DUPE
CLC FILE2CUR,FILE2NXT CURRENT = NEXT?
BE PGMEXIT2 YES...SET STATUS CODE TO ’Y’
B PGMEXIT NO....JUST EXIT.
EJECT

*
* FUNCTION CODE ’L’ :
* - ’IF LASTDUP FILEX’ SPECIFIED.
* - SETS STATUS CODE TO ’Y’ IF LAST DUPLICATE ON FILE
* SPECIFIED.
*
* NOTE: ’DY282MAT’ HANDLES CHECKING ON ANY FILE SPECIFIED.
* THIS ROUTINE KNOWS IT’S EITHER FILE1 OR FILE2.
*
CKLSTDUP DS 0H

TM MATCHFL1,X’01’ CK ON FILE1?
BO CKLSTDU1 YES.
B CKLSTDU2 NO.

CKLSTDU1 DS 0H
CLC FILE1CUR,FILE1NXT CURRENT = NEXT?
BE PGMEXIT YES...CAN’T BE LAST DUPE
CLC FILE1CUR,FILE1PRV CURRENT = PREVIOUS?
BE PGMEXIT2 YES...SET STATUS CODE TO ’Y’
B PGMEXIT NO....JUST EXIT.

CKLSTDU2 DS 0H
CLC FILE2CUR,FILE2NXT CURRENT = NEXT?
BE PGMEXIT YES...CAN’T BE LAST DUPE
CLC FILE2CUR,FILE2PRV CURRENT = PREVIOUS?
BE PGMEXIT2 YES...SET STATUS CODE TO ’Y’
B PGMEXIT NO....JUST EXIT.
EJECT

Figure 23-20 USERMAT Example (Page 4 of 5)
23–44 VISION:Results Reference Guide

Writing Your Own MATCH Subroutine
*
* RETURN WITH RETURN CODE ’0’
*
PGMEXIT2 DS 0H

MVI STATUS,C’Y’ SET STATUS FLAG TO ’Y’
PGMEXIT DS 0H

L R13,SAVE+4 RESTORE HSA/REG13
LM R14,R12,12(R13) RESTORE R14 THRU R12
LA R15,0 SET RETURN CODE TO 0
BR R14 RETURN
SPACE 3

* DATA AREAS
SAVE DS 18F SAVE AREA
* NOTE: ALTHOUGH WE ARE LIMITING TOTAL SIZE OF ANY
* COMBINATION OF KEYS TO 256 BYTES,
* NO SUCH LIMIT IN ’DY282MAT’|
FILE1PRV DC XL256’00’ FILE1 PREVIOUS KEYS
FILE1CUR DC XL256’00’ FILE1 CURRENT KEYS
FILE1NXT DC XL256’00’ FILE1 NEXT KEYS
FILE2PRV DC XL256’00’ FILE2 PREVIOUS KEYS
FILE2CUR DC XL256’00’ FILE2 CURRENT KEYS
FILE2NXT DC XL256’00’ FILE2 NEXT KEYS

EJECT
* DSECTS
PARM1 DSECT
FUNCTION DS CL1 FUNCTION CODE (A,X,M,D,F,L)
STATUS DS CL1 STATUS CODE (Y OR N)
FILES DS XL1 NO OF FILES BEING MATCHED
KEYS DS XL1 NO OF KEYS PER FILE
MATCHFL1 DS XL1 FILE 1 MATCH NUMBER
MATCHFL2 DS XL1 FILE 2 MATCH NUMBER
* NOTE: FROM THIS PT FORWARD WOULD BE VARIABLE NUMBER OF
* FLAGS DEPENDING ON NUMBER OF FILES.
RDAHEAD1 DS CL1 FILE 1 READ AHEAD FLAG
ADVANCE1 DS CL1 FILE 1 ADVANCE FLAG
RDAHEAD2 DS CL1 FILE 2 READ AHEAD FLAG
ADVANCE2 DS CL1 FILE 2 ADVANCE FLAG

SPACE 3
PARM2 DSECT
* NOTE: FROM THIS PT FORWARD WOULD BE VARIABLE NUMBER OF KEY
* ATTRIBUTES DEPENDING ON NUMBER OF FILES.
KY1ATTR1 DS 0CL3 FILE1 KEY1 -
ATTRIBUTES
KY1TYPE1 DS CL1 - TYPE (C,B,N,P)
KY1SIZE1 DS XL1 - ACTUAL LENGTH
KY1DEC1 DS CL1 - NO OF DECIMALS
KY1ATTR2 DS 0CL3 FILE1 KEY2 -
ATTRIBUTES
KY1TYPE2 DS CL1 - TYPE (C,B,N,P)
KY1SIZE2 DS XL1 - ACTUAL LENGTH
KY1DEC2 DS CL1 - NO OF DECIMALS
KY2ATTR1 DS 0CL3 FILE2 KEY1 - ATTRIBUTES
KY2TYPE1 DS CL1 - TYPE (C,B,N,P)
KY2SIZE1 DS XL1 - ACTUAL LENGTH
KY2DEC1 DS CL1 - NO OF DECIMALS
KY2ATTR2 DS 0CL3 FILE2 KEY2 -
ATTRIBUTES
KY2TYPE2 DS CL1 - TYPE (C,B,N,P)
KY2SIZE2 DS XL1 - ACTUAL LENGTH
KY2DEC2 DS CL1 - NO OF DECIMALS
USERMAT CSECT

LTORG
END USERMAT

*********************** USERMAT ENDS HERE

Figure 23-20 USERMAT Example (Page 5 of 5)
Using MATCH and MERGE 23–45

Writing Your Own MERGE Subroutine
Writing Your Own MERGE Subroutine
This section shows you how to merge according to rules different from the ones set
by DY282MER. You must be familiar with IBM host Assembler, Assembler
programming conventions, and the VISION:Results MATCH and MERGE feature.

The MERGE logic provided with VISION:Results should be satisfactory for most
of your requirements. It is able to handle multiple keys on multiple files
automatically. The MERGE logic is simpler than the MATCH logic because it does
not do any look aheads. You must provide a work area into which the input files
are merged. The MERGE logic then determines which key is lowest and selects the
record from that file next. You have control over the following items:

� Whether or not that record is written using access to the data area itself (for
example, AREA dataname).

� The file name from which the merge takes place (for example, FROM
dataname).

� The length of the data merged (for example, LENGTH dataname).

� Whether or not it is an exact duplicate of the previous record (for example, IF
REPLICA...).

Your custom MERGE subroutine must be capable of handling all necessary
MERGE logic. The reasons that you may require your own custom MERGE logic
are the same as those for MATCH subroutines. The rules for MERGE file
Advancement can be found in Merge Conditions in the Procedure Logic on
page 23-25.

The following section describes the process by which DY282MER merges files. The
parameters, flags, and function codes are explained in detail so you know exactly
what your MERGE subroutines must do to successfully replace DY282MER.

MERGE Subroutine
As with the MATCH subroutine, the MERGE subroutine is passed a series of
parameters (your MERGE subroutines require the same parameters). You do not
have to be concerned with I/O, as it is not done within the MERGE subroutine
itself. The first time through, the MERGE subroutine is passed all the keys of all the
files and updates one Read Flag per file, that indicates which file to read next. This
is the same type of new-cycle call made by the MATCH subroutine.

The subroutine is called again each time a MERGE statement is referenced (IF
REPLICA is the only statement currently available). Your custom subroutines
must perform all the current functions of DY282MER and attend to all of the
details such as parameters, flags, and codes. The next section shows a flowchart
and corresponding pseudo code from which you can create your own subroutines.
23–46 VISION:Results Reference Guide

Writing Your Own MERGE Subroutine
MERGE Logic (Automatic Cycle)

Figure 23-21 MERGE Logic Flow Diagram

YesFirst
Time?

No

Move N to
READ Flag,

Read Each File

Yes
EOF?

No

Move E to
READ Flag

Stop
Yes

No

All
Files at
EOF?

Yes

No

READ
Flag =

'Y'

Yes

No

EOF?
Move E

to READ Flag

Read File

Move N to
READ Flag

Move A to
Function Code (for
NEW CYCLE Call)

Call
DY282MER

This routine matches current keys of all
files and determines from which file to
merge. It sets the read flag of that file
to a Y. It also sets a 1-byte binary value
representing the file number merged.

No

Yes

If REPLICA

For
Each File, File
Merged From

Here?

Move Record
to

‘AREA’ Dataname

Move File Name
to User Name
(If Specified)

Move Length
to User Name
(If Specified)

Call
‘DY282MER’

Process
User Logic
Accordingly

User Code Follows...

MERGE Logic (Calls Generated from User Code)

R as Function Code

(Set STATUS CODE to Y if REPLICA, to N if not.)
Using MATCH and MERGE 23–47

Writing Your Own MERGE Subroutine
IF REPLICA is the only MERGE statement currently available. Logic using this
statement requires the setting of the status code. A function code of “(R)”, shown
in the diagram above, is passed to DY282MER, which then tests for replication of
record keys and sets the status code to a Y or an N.

IF REPLICA If the STATUS CODE is Y, do this logic.
PRINT ’identical to last’

ELSE Otherwise, do this logic.
PRINT ’not identical’

ENDIF

ON ONE Logic
� Set read flag.

VISION:Results Cycle for MERGE Run Before Your Statements
Use these steps:

1. If all files are at end of file, a STOP is issued.

2. If the Read Flag is set to a Y, do the following:

� Reset the Read Flag to an N.

� Read a record (when end of file is reached, set the Read Flag to an E).

3. Issue a new-cycle call to DY282MER using function code A. A new-cycle call
is explained in DY282MAT Invocation on page 23-31. DY282MER compares
file keys and returns a binary value indicating the file number from which to
merge. An X’01’ in the file number field indicates a merge from the first file,
an X’02’ indicates a merge from the second file, and so on.

Be careful writing your own subroutines. One of the following items MUST
be done to avoid creating an endless loop or abending after end of file:

� The subroutine must set one or more of the Read Flags to a Y for a read.

� The subroutine must leave all Read Flags set to E alone (this indicates that
end of file is reached for those file(s)).

4. When a file number is returned, move the appropriate data as follows:

� Move the input record to the specified output area.

� Move the input length to the specified output length name (optional).

� Move the input file name (eight characters) to the specified output file
name (optional).

User Statements with Other Special MERGE Logic

IF REPLICA
Tests for duplicates on a given file by generating a call to DY282MER using
function code R. If the current keys are equal to the previous keys on the records
being merged, the status code is set to a Y.
23–48 VISION:Results Reference Guide

Writing Your Own MERGE Subroutine
Parms Passed to DY282MER

PARM1:

1st byte Function Code (A or R).

A= Generates a new-cycle call to DY282MER.

R= Checks for IF REPLICA; if found, cycle repeats without
falling through to your code.

2nd byte Status Code (set to Y or N by DY282MER).

3rd byte Number of files being merged (in binary).

4th byte Number of keys per file (in binary).

5th byte Returned 1-byte binary value representing the file number merged
(where a binary 1 indicates File 1).

6th byte N/A.

7th byte Read flag for File 1 (set by DY282MER).

Y= Another record is read-in.

N= Another record is NOT to be read-in.

E= End of file has been reached.

8th byte N/A.

9th byte Read flag for File 2 (the same rule as 7th byte).

10th byte N/A.

.

.

.
and so on.
Using MATCH and MERGE 23–49

Writing Your Own MERGE Subroutine
PARM2
As with the earlier example, the second parm consists of one or more 3-byte fields.
See Parms Passed to DY282MAT on page 23-38. Each field contains the following
key information:

There is one 3-byte field for each file-key. For example, assuming two files (each
with two keys), there are 12 bytes of storage (four keys) at Parm2. The layout is as
follows:

File 1 – Key 1
File 1 – Key 2
File 2 – Key 1
File 2 – Key 2
and so on.

All of these parameters are passed to DY282MER. The read flag, status code, and
1-byte binary value (byte 5) can be modified by DY282MER and passed back to the
VISION:Results program.

Each of the four 3-byte fields belonging to the keys listed above correlates to a key
being passed to the subroutine, as shown below.

Although the number of parms used is only half the number used in the MATCH
example, this layout still represents four keys and the 12 corresponding bytes of
information because MERGE does not use read ahead logic.

1st byte Type of key: C Character.

 B Binary numeric.

 N Zoned decimal.

 P Packed decimal.

2nd byte One byte actual length of the key in binary.

3rd byte Number of decimals (zoned decimal); for character fields, leave this
byte blank.

PARM3 through PARM6:

PARM3: File 1 Current Key 1

PARM4: File 1 Current Key 2

PARM5: File 2 Current Key 1

PARM6: File 2 Current Key 2
23–50 VISION:Results Reference Guide

Writing Your Own MERGE Subroutine
USERMER is an example of a MERGE subroutine designed to replace DY282MER.
Like USERMAT, it conducts MERGE processing on only two files, each with two
keys. As with USERMAT, USERMER is the starting point from which you can
write your own specialized MERGE processing subroutine. The output using this
subroutine is identical to that generated using DY282MER.

*********************** USERMER STARTS HERE
*
* REGISTER CONVENTION :
* R3 -> 1ST PARM - FUNCTION CODE, STATUS
* CODE...
* R4 -> 2ND PARM - 12 BYTES OF KEY
* INFORMATION
* R0,R1,R2,R5 THRU R14,R15 - WORK REGISTERS
* R10 -> PARM ADDR
* R11 -> BASE REGISTER 2
* R12 -> BASE REGISTER 1
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

EJECT
USERMER CSECT

STM R14,R12,12(R13) SAVE REGS 14 THRU 12
LR R12,R15 R12 AS BASE 1
USING USERMER,R12,R11
LA R11,4095(R12) R11 AS BASE 2
LA R11,1(R11)
ST R13,SAVE+4 SAVE HSA/REG13
LR R15,R13
LA R13,SAVE OUR 13 NOW SAVE
ST R13,8(R15) SAVE LSA
LR R10,R1 SAVE REG 1
LM R3,R4,0(R10) LOAD PARM REGS
USING PARM1,R3 MAP REG 3 TO PARM 1
USING PARM2,R4 MAP REG 4 TO PARM 2
SPACE 1
MVI STATUS,C’N’ INITIALIZE STATUS FLAG
CLI FUNCTION,C’A’ COMPARE KEYS FOR NEXT READ?
BE CKNEXTRD YES.
CLI FUNCTION,C’R’ IF REPLICA?
BE CKREPL YES.

* DOES NOT COME HERE
DC H’0’ ABEND WITH ’0C1’.
EJECT

*
* FUNCTION CODE ’A’ :
* - ALWAYS 1ST CALL TO ’DY282MER’ (OR your SUBROUTINE)
* - SETS UP AREAS FOR CURRENT KEYS FOR EACH FILE
* - CONTROLS NEXT READ OF A FILE BY MOVING ’Y’ TO
* CORRESPONDING READ FLAG (AND PREVENTS AN
* ENDLESS LOOP)
* * NOTE: DO NOT RESET THE READ FLAG IF IT’S ALREADY
* ’E’.
* - MOVES A X’01’ OR X’02’ TO FLAG WHICH INDICATES FILE TO

Figure 23-22 USERMER Example (Page 1 of 4)
Using MATCH and MERGE 23–51

Writing Your Own MERGE Subroutine
* MERGE FROM (E.G. X’01’ = FILE1, X’02’ = FILE2 ...).
* - SETS A FLAG INDICATING WHETHER OR NOT CURRENT MERGED
* RECORD IS AN EXACT REPLICA OF PREVIOUS MERGED RECORD
* - MOVES CURRENT MERGED RECORD KEYS TO PREVIOUS
*
* NOTE: ’DY282MER’ HANDLES A VARIABLE NUMBER OF KEYS ON A
* VARIABLE NUMBER OF FILES. THIS ROUTINE KNOWS IT
* HAS 2 FILES EACH WITH 2 KEYS.
*
MOVEIT MVC 0(0,R8),0(R9)
CKNEXTRD DS 0H

MVI REPLFLAG,C’N’ INITIALIZE ’IF REPLICA’ FLAG
MVI MERGEFLX,X’FF’ INITIALIZE FILE X MERGE NUMBER
SR R7,R7 CLEAR REGISTER 7

* MOVE FILE1 CURRENT KEY1
ICM R7,B’0001’,KY1SIZE1 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
LA R8,FILE1CUR R8 -> CURRENT FILE1 KEY
L R9,8(R10) R9 -> 3RD PARM
EX R7,MOVEIT MOVE FILE1 CURRENT KEY1

* MOVE FILE1 CURRENT KEY2
AR R8,R7 R8 -> NEW CURRENT FILE1 KEY LOC
LA R8,1(R8)
ICM R7,B’0001’,KY1SIZE2 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
L R9,12(R10) R9 -> 4TH PARM
EX R7,MOVEIT MOVE FILE1 CURRENT KEY2
SR R7,R7 CLEAR REGISTER 7

* MOVE FILE2 CURRENT KEY1
ICM R7,B’0001’,KY2SIZE1 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
LA R8,FILE2CUR R8 -> CURRENT FILE2 KEY
L R9,16(R10) R9 -> 5TH PARM
EX R7,MOVEIT MOVE FILE2 CURRENT KEY1

* MOVE FILE2 CURRENT KEY2
AR R8,R7 R8 -> NEW CURRENT FILE2 KEY LOC
LA R8,1(R8)
ICM R7,B’0001’,KY2SIZE2 R7 = KEY LNG
BCTR R7,R0 SUBTRACT 1 TO GET MACHINE LNG
L R9,20(R10) R9 -> 6TH PARM
EX R7,MOVEIT MOVE FILE2 CURRENT KEY2
CLI RDNEXT1,C’E’ FILE 1 AT EOF?
BE MOVE2RD YES...SET READ NEXT FILE2.
CLI RDNEXT2,C’E’ FILE 2 AT EOF?
BE MOVE1RD YES...SET READ NEXT FILE1.
CLC FILE1CUR,FILE2CUR COMPARE FILE 1/FILE 2 CURR KEYS
BNH MOVE1RD FILE1 LESS OR EQUAL?

SET FILE1
B MOVE2RD FILE2 LESS?

SET FILE2
MOVE1RD DS 0H

CLI RDNEXT1,C’E’ EOF REACHED?
BE PGMEXIT YES...LEAVE IT ALONE.
MVI RDNEXT1,C’Y’ SET FILE1 READ NEXT TO ’Y’
MVI MERGEFLX,X’01’ SET TO MERGE FROM FILE 1
CLC FILEXPRV,FILE1CUR CURRENT KEY = SAVED?
BNE MOVE1RDX NO.
MVI REPLFLAG,C’Y’ YES...SET FOR ’IF REPLICA’.

MOVE1RDX MVC FILEXPRV,FILE1CUR MOVE CURRENT TO SAVED.
B PGMEXIT

MOVE2RD DS 0H
CLI RDNEXT2,C’E’ EOF REACHED?
BE PGMEXIT YES...LEAVE IT ALONE.
MVI RDNEXT2,C’Y’ SET FILE2 READ NEXT TO ’Y’
MVI MERGEFLX,X’02’ SET TO MERGE FROM FILE 2
CLC FILEXPRV,FILE2CUR CURRENT KEY = SAVED?
BNE MOVE2RDX NO.
MVI REPLFLAG,C’Y’ YES...SET FOR ’IF REPLICA’.

MOVE2RDX MVC FILEXPRV,FILE2CUR MOVE CURRENT TO SAVED.
B PGMEXIT

Figure 23-22 USERMER Example (Page 2 of 4)
23–52 VISION:Results Reference Guide

Writing Your Own MERGE Subroutine
EJECT
*
* FUNCTION CODE ’R’ :
* - ’IF REPLICA’ SPECIFIED.
* - SETS STATUS CODE TO ’Y’ IF CURRENT MERGED RECORD KEY
* WAS AN EXACT DUPLICATE OF PREVIOUS MERGED RECORD KEY.
*
CKREPL DS 0H

CLI REPLFLAG,C’Y’ REPLICA?
BE PGMEXIT2 YES...SET STATUS CODE TO ’Y’
B PGMEXIT NO....JUST EXIT.
EJECT

*
* RETURN WITH RETURN CODE ’0’
*
PGMEXIT2 DS 0H

MVI STATUS,C’Y’ SET STATUS FLAG TO ’Y’
PGMEXIT DS 0H

L R13,SAVE+4 RESTORE HSA/REG13
LM R14,R12,12(R13) RESTORE R14 THRU R12
LA R15,0 SET RETURN CODE TO 0
BR R14 RETURN
SPACE 3

* DATA AREAS
SAVE DS 18F SAVE AREA
REPLFLAG DC C’N’ REPLICA FLAG
* NOTE: ALTHOUGH WE ARE LIMITING TOTAL SIZE OF ANY
* COMBINATION OF KEYS TO 256 BYTES, NO
* SUCH LIMIT IN ’DY282MER’|
FILEXPRV DC XL256’00’ FILEX PREVIOUS KEYS
FILE1CUR DC XL256’00’ FILE1 CURRENT KEYS
FILE2CUR DC XL256’00’ FILE2 CURRENT KEYS

EJECT
* DSECTS
PARM1 DSECT
FUNCTION DS CL1 FUNCTION CODE (A,X,M,D,F,L)
STATUS DS CL1 STATUS CODE (Y OR N)
FILES DS XL1 NO OF FILES BEING MATCHED
KEYS DS XL1 NO OF KEYS PER FILE
MERGEFLX DS XL1 FILE X MERGE NUMBER
FILLER1 DS XL1
* NOTE: FROM THIS PT FORWARD WOULD BE VARIABLE NUMBER OF
* FLAGS DEPENDING ON NUMBER OF FILES.
RDNEXT1 DS CL1 FILE 1 READ NEXT FLAG
FILLER2 DS CL1
RDNEXT2 DS CL1 FILE 2 READ NEXT FLAG
FILLER3 DS CL1

SPACE 3
PARM2 DSECT
* NOTE: FROM THIS PT FORWARD WOULD BE VARIABLE NUMBER OF KEY
* ATTRIBUTES DEPENDING ON NUMBER OF FILES.
KY1ATTR1 DS 0CL3 FILE1 KEY1 - ATTRIBUTES
KY1TYPE1 DS CL1 - TYPE (C,B,N,P)
KY1SIZE1 DS XL1 - ACTUAL LENGTH
KY1DEC1 DS CL1 - NO OF DECIMALS
*
KY1ATTR2 DS 0CL3 FILE1 KEY2 - ATTRIBUTES
KY1TYPE2 DS CL1 - TYPE (C,B,N,P)
KY1SIZE2 DS XL1 - ACTUAL LENGTH
KY1DEC2 DS CL1 - NO OF DECIMALS
*
KY2ATTR1 DS 0CL3 FILE2 KEY1 - ATTRIBUTES
KY2TYPE1 DS CL1 - TYPE (C,B,N,P)
KY2SIZE1 DS XL1 - ACTUAL LENGTH
KY2DEC1 DS CL1 - NO OF DECIMALS
*
KY2ATTR2 DS 0CL3 FILE2 KEY2 - ATTRIBUTES

Figure 23-22 USERMER Example (Page 3 of 4)
Using MATCH and MERGE 23–53

Writing Your Own MERGE Subroutine
KY2TYPE2 DS CL1 - TYPE (C,B,N,P)
KY2SIZE2 DS XL1 - ACTUAL LENGTH
KY2DEC2 DS CL1 - NO OF DECIMALS
USERMER CSECT

LTORG
END USERMER

*********************** USERMER ENDS HERE

Figure 23-22 USERMER Example (Page 4 of 4)
23–54 VISION:Results Reference Guide

Chapter
24 U
sing Interval Selection
VISION:Results features an interval selection method capable of selecting every
nth record from any number of files and/or work areas. This is useful in
generating test data or in the creation of subfiles for testing purposes.

Defining Interval Selection
Use interval selection when you want to select every nth record from a given file's
population. Rather than scan the file's population for specific records, you can
select every nth record after a certain interval has been determined and a random
starting point has been chosen.

Your first step is to determine the interval size wanted. This is done by dividing
the population size by the sample size wanted.

The result interval wanted may or may not have a remainder. For example, if your
selection criteria is select 1,000 records from a population of 15,000, the interval is
15.

You select every fifteenth record from your population. This in no way implies that
selection should commence with the first record and then the sixteenth, thirty-first,
and so on. Select a starting point, which in this case is a random number from 1 to
15, inclusive. After selecting your random starting number, either through some
random method or random number tables, select every fifteenth record thereafter.

Assuming that our random starting number for the above example was 12, the first
five selected records are the twelfth, twenty-seventh, forty-second, fifty-seventh,
and seventy-second record in the file. VISION:Results automatically selects the nth
record.

Interval wanted =
Population size (exact or estimated)

Sample size wanted

Interval wanted =
15,000

 1,000
Using Interval Selection 24–1

Internal Selection Criteria
This discussion is based on a whole number being the result of the division. In the
following example, the result of the division contains a remainder:

In this case, the interval is 15.6. Always round down. If the resulting interval is
213.2, round down to 213 and select a random starting number from 1 to 213,
inclusive. If the resulting interval wanted is 15.8, round down to 15 and select a
random starting number from 1 to 15, inclusive

If you do not already have the following four file assignments, be sure to include
them in the JCL of all programs that use the interval selection facility.

See the VISION:Results Utilities Guide for a description of the VSE PARM statement
to override the above SYS numbers and device types.

Internal Selection Criteria
Your VISION:Results program FILE statements and field definition statements
must precede the statement defining your interval selection request. For further
information on these topics, see the VISION:Results Getting Started Guide and see
Defining Interval Selection on page 24-1.

Following are the formats to use when specifying the positional parameters for
interval selection.

SAMPLE
Required. Describes the application as selection. No abbreviations are allowed.

15.6 =
15,600

 1,000

OS/390 VSE

AUDPRINT SYS009

AUFCBF SYS008

AUDEPF SYS010

AUDWORK SYS011

SAMPLE nn INTERVAL interval size desired starting number

[maximum sample size]

Figure 24-1 Formats When Specifying the Positional Parameters for Interval
Selection
24–2 VISION:Results Reference Guide

IF SAMPLING Command
nn
Required. A unique application number must be assigned to each request. This
number must be an integer value from 1 to 99.

INTERVAL
Required. Describes the function as interval selection. No abbreviations are
allowed.

INTERVAL Size Desired
Required. The number you must supply to tell VISION:Results which nth record
you want selected, for example, every tenth record or every twentieth record, and
so on. This number must be an integer value from 1 to 999,999,999; the value
cannot be zero. Commas are acceptable. The value cannot exceed nine digits.

Starting Number
Required. The number with which selection is to commence, selected randomly as
described in Defining Interval Selection on page 24-1. A numeric value from 1 to
999,999,999. Commas are acceptable. The value cannot exceed nine digits.

Maximum Sample Size
Optional. The total number of records you want to select from the file. Commas are
acceptable; the value cannot be zero. If omitted, this value defaults to 999,999,999.

To invoke interval selection as defined in this chapter, specify the IF SAMPLING
command, described in IF SAMPLING Command on page 24-3, in your program
procedure logic. If the invoking command is omitted, selection is not performed.

IF SAMPLING Command
The IF SAMPLING command, followed by the application number, invokes
interval selection in your procedure logic. The unique application number ties this
command to the interval selection statement and uses the criteria specified in that
statement. For example:

VISION:Results FILE statement and
field definition statements
.
.
SAMPLE 01 INTERVAL 10 5 100
.
.
IF SAMPLING 01 NEXT ELSE REJECT ENDIF
.
.
.

Figure 24-2 IF SAMPLING Command
Using Interval Selection 24–3

IF SAMPLING Command Examples
If the IF SAMPLING statement is omitted, no selection is performed, even though
the criteria was defined in a SAMPLE statement.

In the preceding example, every tenth record on the file (beginning with the fifth
record), is selected, with a specified maximum sample size of 100. The IF
SAMPLING command tells VISION:Results to accept the record if it meets the
criteria specified in the selection statement. All other records are rejected.

IF SAMPLING Command Examples
Example 1 Randomly Select Every Fiftieth Record

Select every fiftieth record until 500 records have been selected or end of file is
reached, whichever comes first. Selection is to commence with the tenth record and
each selected record (every fiftieth record) from the input file is to be written to an
output tape.

Input to VISION:Results
The following shows the VISION:Results statements necessary to generate your
interval selection. The numbers at the left are for reference purposes only.

Statements 1 and 2 are the FILE statements defining the input and output files. The
FILE statement is described in Chapter 6, Using the FILE Command. The program
specifies that each record selected is written to an output file. The keyword
OUTPUT FROM ACCTREC in the FILE OUTREC statement tells VISION:Results
to use the ACCTREC file buffer (that contains the selected record) to create the
output file.

In Statement 3, interval selection is specified, with an interval size of 50. Selection
begins with the tenth record; thereafter, every fiftieth record is selected until the
sample size equals 500 records or until end of file is reached.

The procedure logic, Statement 4, invokes interval selection 01, defined in
Statement 3. Both the SAMPLE definition statement and IF SAMPLING command
must be present in your program for the selection to be performed.

VISION:Results reads and bypasses the first nine records. Beginning with the tenth
record, it selects every fiftieth record thereafter and accepts those records (writes
each to the output file). If the record read is not one of the first nine records read
or any fiftieth record thereafter, VISION:Results rejects it and reads another
record.

1 FILE ACCTREC FB 352 5280
2 FILE OUTREC OUTPUT FROM ACCTREC FB 352 5280

3 SAMPLE 01 INTERVAL 50 10 500

4 IF SAMPLING 01 ACCEPT ELSE REJECT ENDIF

Figure 24-3 Statements Necessary to Generate an Interval
24–4 VISION:Results Reference Guide

IF SAMPLING Command Examples
VISION:Results Output
A VISION:Results Non-Stratified Sampling Summary Report follows. This listing
is automatically generated for every valid selection statement submitted to
VISION:Results. The output contains all of the information submitted in the
interval selection statement: application number, interval wanted, starting
number, and maximum sample size (if specified). Finally, the summary lists the
actual population size (total number of records on the file) and actual size of the
sample selected.

In this particular example, the actual population size was smaller than expected.
This is apparent from the actual sample size selected from the input file. The
following is a hexadecimal/graphic dump of the four records selected.

The numbers at the right on this dump show that record numbers 10, 60, 110, and
160 were selected. Based on the criteria of problem 1, every fiftieth record is
selected after the initial starting number, 10, is chosen.

Example 2 Interval Selection with Three Random Starts

You have just completed a new program and want to test it on your personnel file.
You decide to use the interval selection feature to create a smaller, more
manageable version of the file, and then test your program against that subset of
records. You decide to have three random starts, 3, 8, and 15, in order to minimize
the possible bias inherent in interval selection. The size of the interval is 20 records.
To accomplish this, three samples are selected simultaneously.

1/15/99 VISION:RESULTS NON-STRATIFIED SAMPLING SUMMARY REPORT PAGE 1

APPLICATION 1 - SIMPLE INTERVAL SAMPLING
INTERVAL DESIRED 50
STARTING NUMBER 10
ACTUAL POPULATION SIZE 200
MAXIMUM SAMPLE SIZE 500
ACTUAL SAMPLE SIZE 4

Figure 24-4 Example 1 Output—Randomly Select Every Fiftieth Record

DATE 1/15/99 PAGE 2

4 5 6 7 8 9
012345678901234567890123456789012345678901234567890123456789

2677082677112277301097800000 9999970200 HILL,GARY E 10
FFFFFFFFFFFFFFFFEFFFFFFFFFFF44FFFFFFFFFF39070CCDD6CCCE4C44444
26770826771122772010978000000099999702005405C8933B71980500000
2877062877010278Z01227800000 9999970200 SIAS, EDWARDO 60
FFFFFFFFFFFFFFFFZFFFFFFFFFFF44FFFFFFFFFF07031ECCE64CCECDCD444
28770628770122789012778000000099999702000932C2912B05461946000
0977090977100677 00000000000 0001080200 %YEAGER,CLIFFORD 110
FFFFFFFFFFFFFFFF4FFFFFFFFFFF44FFFFFFFFFF78946ECCCCD6CDCCCDDC4
09770909771006770000000000000000010802000083C851759B339666940
1077031077092977 00000000000 9999970102 MYERS, EARL 160
FFFFFFFFFFFFFFFF4FFFFFFFFFFF44FFFFFFFFFF72019DECDE64CCDD44444
10770310770929770000000000000099999701020121C48502B0519300000

Figure 24-5 Hexadecimal/Graphic Dump of Four Records
Using Interval Selection 24–5

IF SAMPLING Command Examples
Input to VISION:Results
The following statements accomplish the task:

The numbers at the left are for reference purposes only.

Statements 3, 4, and 5 specify the criteria for your three selection applications. All
have a wanted interval size of 20. The starting numbers specified are 3, 8, and 15,
respectively. That is, the first application starts with the third record on the file and
selects every twentieth record after that, the second starts with the eighth record
and takes every twentieth after that, and the third starts with the fifteenth record
and takes every twentieth record thereafter. None of the applications has
designated a maximum sample size, so records are selected until the ARFILE
reaches end of file or until the default 999,999,999 sample size is reached.

The first IF statement (Statement 6) invokes the selection criteria defined in
SAMPLE 01. It specifies that if the record being read meets the criteria of Statement
3, write that record to the output file; otherwise, fall through to IF SAMPLING 02.
Statement 7 states that if the current record meets the criteria of the second
selection application (Statement 4), write that record to the output file; otherwise,
fall through to Statement 8. Finally, the third IF statement accepts all records that
match the criteria of the third selection application, Statement 5, and writes them
to the output file. All other records are rejected.

VISION:Results Output
Your selection program generated the following Non-Stratified Sampling
Summary Report. For each interval application, VISION:Results lists the interval
specified, starting number, actual population size (total number of records on the
file), maximum sample size (in this case, the default amount, because none was
specified), and actual sample size.

1 COPY DYAUDREC
2 FILE OUTFILE OUTPUT FROM ARFILE FB 352 5280

3 SAMPLE 01 INTERVAL 20 3
4 SAMPLE 02 INTERVAL 20 8
5 SAMPLE 03 INTERVAL 20 15

6 IF SAMPLING 01 WRITE OUTFILE ENDIF
7 IF SAMPLING 02 WRITE OUTFILE ENDIF
8 IF SAMPLING 03 WRITE OUTFILE
9 ELSE REJECT ENDIF

Figure 24-6 Example 2 Interval Selection with Three Random Starts

1/15/99 VISION:RESULTS NON-STRATIFIED SAMPLING SUMMARY REPORT PAGE 1

APPLICATION 1 - SIMPLE INTERVAL SAMPLING
INTERVAL DESIRED 20
STARTING NUMBER 3
ACTUAL POPULATION SIZE 200
MAXIMUM SAMPLE SIZE 999,999,999
ACTUAL SAMPLE SIZE 10

APPLICATION 2 - SIMPLE INTERVAL SAMPLING

Figure 24-7 Example 2 Output—Interval Selection with Three Random Starts
(Page 1 of 2)
24–6 VISION:Results Reference Guide

IF SAMPLING Command Examples
INTERVAL DESIRED 20
STARTING NUMBER 8
ACTUAL POPULATION SIZE 200
MAXIMUM SAMPLE SIZE 999,999,999
ACTUAL SAMPLE SIZE 10

APPLICATION 3 - SIMPLE INTERVAL SAMPLING
INTERVAL DESIRED 20
STARTING NUMBER 15
ACTUAL POPULATION SIZE 200
MAXIMUM SAMPLE SIZE 999,999,999
ACTUAL SAMPLE SIZE 10

Figure 24-7 Example 2 Output—Interval Selection with Three Random Starts
(Page 2 of 2)
Using Interval Selection 24–7

IF SAMPLING Command Examples
24–8 VISION:Results Reference Guide

Chapter
25 U
sing Random Selection
Use random selection when records in a file are to be selected completely at
random from the total number of records on the file (the population). This
provides assurance that each record in the population has an equal chance of being
selected.

Input to VISION:Results
There are two formats of random selection: Known Universe and Unknown
Universe.

Your VISION:Results program FILE and field definition statements must precede
the statement defining your random selection request. See the VISION:Results
Getting Started Guide and Chapter 6, Using the FILE Command for more information
on these subjects.

If you do not already have the following four file assignments, include them in the
JCL of all programs that use the random selection facility.

See the VISION:Results for VSE Utilities Guide for a description of the VSE PARM
statement to override the SYS numbers and device types.

OS/390 VSE

AUDPRINT SYS009

AUFCBF SYS008

AUDEPF SYS010

AUDWORK SYS011
Using Random Selection 25–1

Known Universe
Known Universe
When using the known universe format, you either know or can accurately
estimate the total number of records in the file (the population) and you want a
predetermined sample size.

SAMPLE
Required. Describes the application as selection. Abbreviations are not allowed.

nn
Required. A unique application number must be assigned to each sample request.
This number must be an integer value from 1 to 99.

RANDOM
Required. Describes the function as random selection. Abbreviations are not
allowed.

Population Size
Required. Indicates the exact or estimated population (file) size. This number must
be an integer value from 1 to 999,999,999. Commas are acceptable; decimal points
are not permitted. The value cannot be zero.

The size of the sample is solely dependent upon an accurately estimated
population size. If you do not have a fairly good idea of the actual population size,
you might need to make a separate VISION:Results run against your file(s) to
obtain this information, or use Unknown Universe. For more information about
using an unknown universe, see Unknown Universe on page 25-3.

You can estimate the population size, but be careful in doing so. If your estimate is
greater than the actual population size, you can get a sample that is smaller than
the calculated sample size. Conversely, if your estimate is less than the actual
population size, you can get a sample that is larger than the calculated sample size.

Sample Size
Required. Indicates the sample size to be randomly selected from the population.
An integer value from 1 to 999,999,999; cannot be larger than population size. The
value cannot be zero.

SEED Original Seed Number
Optional. If you decide to use a seed number, the keyword SEED preceding the
number is required. The seed number is used in initializing the algorithm used in
the random number generator.

SAMPLE nn RANDOM population size sample size

[SEED original seed number]

Figure 25-1 Random Selection with Universe Known
25–2 VISION:Results Reference Guide

Unknown Universe
By specifying the seed number from a previous run, the sequence of random
numbers generated is always identical; consequently, an interesting run can be
repeated. Therefore, specify the original seed number here if you want to exactly
duplicate a prior run. You can specify a seed number of your choice, but a seed of
zero is the same as not specifying a seed.

The maximum value is 9,999,999. When the seed number is omitted, a random
seed number is generated by consulting the computer time clock. The random seed
number is printed in the Sampling Summary Report.

To invoke random selection as defined in this section, you must specify the IF
SAMPLING command in your program procedure logic. If you omit this
command, selection is not performed.

Unknown Universe
When using the unknown universe format, you have no immediate way of
predetermining the size of your file, but you know that the population is immense
and you want a certain approximate percentage of that large population. When
using this format, supply one field of information: the approximate percentage
wanted of an infinite population or unknown universe.

SAMPLE
Required. Describes the application as selection. Abbreviations are not allowed.

nn
Required. A unique application number must be assigned to each sample request.
This number must be an integer value from 1 to 99.

RANDOM
Required. Describes the function as random selection. Abbreviations are not
allowed.

Percent (%) of Population
Required. The approximate percentage of the infinite population or unknown
universe. The percent sign is required. The decimal point is required when
fractional percentages are used (for example, 95.5%). If a whole number
percentage is wanted, do not use a decimal point in the leftmost position (for
example, code 25%, not .25%). The minimum percentage allowed is .00001; the
maximum allowed is 100%.

SAMPLE nn RANDOM percent of population %

[SEED original seed number]

Figure 25-2 Random Selection with Universe Unknown
Using Random Selection 25–3

Unknown Universe
SEED Original Seed Number
Optional. However, if you decide to use a seed number, the keyword SEED
preceding the number is required. The seed number is used to initialize the
algorithm used in the random number generator.

By specifying the seed number from a previous run, the sequence of random
numbers generated is always identical; consequently, an interesting run can be
repeated. Specify the original seed number here if you want to exactly duplicate a
prior run. You can specify a seed number of your choice. However, a seed of zero
is the same as not specifying a seed.

The maximum value is 9,999,999. When the seed number is omitted, a random
seed number is generated by consulting the computer time clock. The random seed
number is printed in the Sampling Summary Report.

To invoke random selection as defined in this chapter, you must specify the IF
SAMPLING command in your program procedure logic. If you omit this
command, selection is not performed.

When selecting the percentage of the population wanted, beware of the term
approximate. This implies that the sample size selected is approximately the
percent requested from the population encountered. The larger the population, the
closer the actual percent is to the requested percent. This is demonstrated in the
table that follows, where test runs were made that encountered populations of 200,
1000, and 10,000.

Percent Desired: 5.1 26.5 1.29 59.1 98.33333 100.00

Number Randomly
Selected 9 4 3 107 198 200
from 200 4.50% 27.00% 1.50% 53.50% 99.00% 100%

Number Randomly
Selected 52 225 13 579 976 1000
from 1000 5.20% 22.50% 1.30% 57.90% 97.60% 100%

Number Randomly
Selected 507 2676 147 5912 9830 10000
from 10,000 5.07% 26.76% 1.47% 59.12% 98.30% 100%

Figure 25-3 A Test Run That Encountered Populations of 200, 1000, and 10,000
25–4 VISION:Results Reference Guide

IF SAMPLING Command
IF SAMPLING Command
The IF SAMPLING command, followed by the application number, invokes
random selection in your procedure logic. The unique application number ties this
command to your selection statement and uses the criteria you specify in that
statement. For example:

If you omit the IF SAMPLING command, no selection is performed, even though
it has been defined in a SAMPLE statement.

In this example, you are randomly selecting 2% of the records in the file. The IF
SAMPLING command tells VISION:Results to accept the record if it meets the
criteria specified in the selection statement. All other records are rejected.

The population and sample size can be dynamically determined during the
execution of the program, providing it is done BEFORE the first execution of the
corresponding IF SAMPLING... command.

Random Selection Examples
Example 1 Randomly Select Records and Write to Tape

Refrigerated Polar Unit Corporation has a payroll file that contains 50,000 records
(this is the population, either exact or estimated). Your task is to randomly select
450 records from this file and write these randomly selected records to an output
tape.

Input to VISION:Results
The coded statements necessary to accomplish this task are shown below. Line
numbers are for reference purposes only.

The random selection definition statement, Statement 3, contains both the
estimated population size for the known universe and the sample size.

FILE statement and
field definition statements
.
.
SAMPLE 01 RANDOM 2%
.
.
IF SAMPLING 01 ACCEPT ENDIF

Figure 25-4 IF SAMPLING Command

1 FILE ACCTREC FB 320 960
2 FILE OUTREC FB 320 960 OUTPUT FROM ACCTREC

3 SAMPLE 01 RANDOM 50,000 450

4 IF SAMPLING 01 ACCEPT ELSE REJECT ENDIF

Figure 25-5 Example 1 Randomly Select Records and Write to Tape
Using Random Selection 25–5

Random Selection Examples
Two FILE statements, Statements 1 and 2, are required to accomplish this task. One
FILE statement defines the input file; the other FILE statement defines the output
file (identified by the keyword OUTPUT following the file name). You specified
that you wanted to use the ACCTREC file buffer (that contains the selected record)
to create the output file, OUTREC.

Statement 4, the program procedure logic, invokes random selection 01 as defined
in Statement 3. Both the SAMPLE definition statement and IF SAMPLING
command must be present in your program for the selection to be performed.
Utilizing VISION:Results' automatic functions for reading and end of file
processing, you need only one procedure statement to code the selection logic.

When a record is randomly selected (true condition), ACCEPT the record (write
the selected record to the output file). If the record is not randomly selected,
REJECT the record (false condition) and ignore it. The reading of the input file is
automatic and continues until the file is exhausted.

VISION:Results Output
The program in this example, in effect, tells VISION:Results to select 450 records
from the population of 50,000 using the random number selection facility. Then, if
the record read is selected, accept it and write the selected record to the output
tape. If the record is not selected, reject it and read another.

Figure 25-6 is the VISION:Results Non-Stratified Sampling Summary Report. This
listing is generated for every valid selection statement submitted to
VISION:Results. The output shown below contains all of the information
submitted on the selection statement.

The application number is application1 for random selection. The values
submitted for population size (50,000) and sample size (450) are listed. Finally, the
report lists the actual values for these parameters and the original seed number.
This is the number to use (in your selection statement in a subsequent run) to
duplicate this run.

1/15/99 VISION:RESULTS NON-STRATIFIED SAMPLING SUMMARY REPORT PAGE 1

APPLICATION 1 - SIMPLE RANDOM SAMPLING
ESTIMATED POPULATION SIZE 50,000
ACTUAL POPULATION SIZE 50,000
SAMPLE SIZE DESIRED 450
ACTUAL SAMPLE SIZE 450
ORIGINAL SEED NUMBER 11,337

Figure 25-6 Example 1 Output—Randomly Select Records and Write to Tape
25–6 VISION:Results Reference Guide

Random Selection Examples
VISION:Results Reserved Words
The following are definitions of the reserved words generated by VISION:Results
for this random selection application. The xx in the reserved word name is the
application number.

� DYLSPxxRNO — After the procedure logic statement, IF SAMPLING,
application 01 is executed, the field DYLSP01RNO contains the random
number used to determine whether the record is to be selected for inclusion in
the sample.

� DYLSPxxCNT — Starting with zero, each time the procedure logic statement,
IF SAMPLING, is executed for application 01, the field DYLSP01CNT is
incremented by one. Therefore, at the end of the run, the field DYLSP01CNT
contains the population size for application 01.

� DYLSPxxPOP — This is a 5-byte packed field that is automatically generated
whenever a random sampling application is defined; xx is the application
number. This field can be set by you to the population size before the first
execution of an IF SAMPLING xx command; thereafter, the contents of
DYLSPxxPOP are ignored. DYLSPxxPOP must be initialized to a non-zero
population size if the population size in the SAMPLE statement is zero.

� DYLSPxxSSZ — This is a 5-byte packed field that is automatically generated
whenever a random sampling application is defined; xx is the application
number. This field can be set by you to the sample size before the first execution
of an IF SAMPLING xx command; thereafter, the contents of DYLSPxxSSZ are
ignored. DYLSPxxSSZ must be initialized to a non-zero sample size if the
sample size in the SAMPLE statement is zero.

Example 2 Randomly Select Records from an Unknown Population

Harvest The Unknown Corporation (HTUC) has an accounts receivable file that
contains an unknown number of records, estimated to be from 50,000 to 100,000 in
number. You want to randomly select approximately 1% of the population from
this file and generate a control listing report of all records selected, as well as write
these randomly selected records to an output tape.

Input to VISION:Results
First, determine the values to specify in your selection statement. You have
decided to use application number 01.

SAMPLE 01 RANDOM 1%
Using Random Selection 25–7

Random Selection Examples
The keyword RANDOM specifies random selection, followed by 1%, the portion
of the population you want to select. Below are all the statements required to
perform the selection, write selected records to tape, and generate a report of the
selected records. Only nine statements are required.

Statements 1 and 5 define the input and output files, respectively. Statements 2
through 4 define the fields within the accounts receivable file that are to appear on
your report (control listing). Statement 7 contains the IF SAMPLING command.
The application number 01 directly ties this IF SAMPLING command to your
selection statement, Statement 6. Both the SAMPLE definition statement and IF
SAMPLING command must be present in your program for the selection to be
performed.

In the procedure logic, the random number generator is invoked and determines
whether the record is to be selected as part of the sample. If the record is to be
included, the TRUE (NEXT) branch is taken; the record is printed as well as written
to the output tape. If the record is not selected, the FALSE (REJECT) branch is taken
and the record is ignored (neither printed nor written to the output tape).

Statements 8 and 9 define the format of your report listing.

VISION:Results Output
The following shows the Non-Stratified Sampling Summary Report. In addition to
the information coded on the simple random statement, this report shows the
values for the actual population size, the actual sample size, and the original seed
number.

1 FILE ACCTREC FB 352 5280
2 BALANCE 5 170 PD 2 E
3 ACCOUNT 7 4 (ACCOUNT NUMBER)
4 NAME 25 85 (ACCOUNT NAME)

5 FILE OACCTREC FB 352 5280 OUTPUT FROM ACCTREC

6 SAMPLE 01 RANDOM 1%

7 ABC: IF SAMPLING 01 NEXT ELSE REJECT ENDIF

8 LIST ACCOUNT NAME BALANCE
9 T1 'SAMPLING LISTING OF INFINITE POPULATION—HTUC'

WITH 2 AFTER

Figure 25-7 Example 2 Randomly Select Records from an Unknown Population

1/15/99 VISION:RESULTS NON-STRATIFIED SAMPLING SUMMARY REPORT PAGE 1

APPLICATION 1 - SIMPLE RANDOM SAMPLING
ESTIMATED POPULATION SIZE 55,855
SAMPLE PERCENTAGE DESIRED 1.00000
ACTUAL SAMPLE SIZE 556
ORIGINAL SEED NUMBER 79,477

Figure 25-8 Example 2 Output—Randomly Select Records from an Unknown
Population
25–8 VISION:Results Reference Guide

Random Selection Examples
The following is a portion of the records selected in the sample. Each record is
printed in the report format, as requested.

SAMPLE LISTING OF INFINITE POPULATION—HTUC

ACCOUNT NUMBER ACCOUNT NAME BALANCE
6208657 CHO PYUNG,SUH 32.00
6080669 WILLIAMS,JAMES 24.24
6042325 CHAMBERLINE,FRANCES 34.24
7100035 BROWN, RICHARD 50.62
8033692 MARLETTE,YVETTE 14.95
6114113 NERY,GENEROSO 45.24
6215785 RODEN,HAROLD 170.91
7039085 BLACK, LENORE 50.40
2013568 CULLENDER,EVERRETT J 3,886.33
6058523 CALLEROS,MARCELINO 5.05
6060749 TAYLOR,FLORENCE D 20.00
6046819 YEAGER,CLIFFORD M 15.04
6099467 GOULDING,JOHN 3.00
6113583 BROWN,STUART A 26.20
6090753 BEAVER,OPAL L 15.00
6063977 WALTON,MARVIN L 3.00
6005489 HALL,JOHN H 60.00
7077289 HICKMAN, VERNON 36.95
8033684 WHITEHURST,CHARLES 25.00
6112498 BARRON,BONNIE 36.96

Figure 25-9 Example 2 Record Sample—Randomly Select Records from an
Unknown Population
Using Random Selection 25–9

Random Selection Examples
25–10 VISION:Results Reference Guide

Chapter
26 T
able and Array Handling
You can define up to 255 tables and arrays using a syntax similar to a file definition.
The space required for your tables and arrays is dynamically acquired from
available memory. You can design a table to hold a number of single entries
(one-dimensional), or an array having two to four dimensions.

After the table or array is defined, a few simple commands allow you to store data
in it, retrieve the data sequentially or randomly, update an entry, and much more.
Table processing is described below. See Syntax for Defining an Array on
page 26-16 for more information about array processing.

Allocating Memory
If you define one or more tables or arrays, VISION:Results automatically acquires
additional memory in which to store the tables. The TSIZE parameter in the
OPTION statement allows you to control the amount of storage reserved.

For example, if you need 2K for the entries in one table and 4K for another, code
the following to allocate enough space for both tables:

You can use the TABLE/ARRAY processor of VISION:Results to create and access
tables residing above the 16M line. Use this option to table and search large
amounts of data.

To cause VISION:Results to allocate storage above the line for tables, include an
OPTION TABAREA ABOVE statement in your program. You can make a global
default for your installation by setting the DYLINSTL parameter TABLEHI to Y.
The OPTION TABAREA BELOW statement in your program overrides the
DYLINSTL TABLHI=Y setting.

OPTION TSIZE 6K

Figure 26-1 2K is Needed for One Table and 4K for Another
Table and Array Handling 26–1

Working with Tables
The guidelines for deciding how much memory to allow are:

� Round the number of bytes of data you expect to store in a given table up to the
next multiple of 1024 (1K).

� Be generous in your estimate unless you know exactly how much data must be
tabled. Remember that many kinds of tables tend to grow.

� Variable-length tables require an additional 2 bytes per entry to hold the entry
length.

� Arrays always require the maximum space (the product of the element length
and all the dimensions).

If sufficient storage is not available to satisfy the memory requested, an 80A system
abend or a 602 completion code (VSE) results. If this happens, increase your region
or partition size, decrease your TSIZE, or allocate the table above the 16M line.

The minimum TSIZE allowed is 2K; the maximum is 63M or 63000K. If TSIZE is
not specified, the default of 20K is used.

Working with Tables
This section describes how to perform various tasks with tables.

Syntax for Defining a Table

TABLE tablename STATUS dataname

{F entrylen | V maxlen LENGTH dataname}

{ENTRY | OFFSET} dataname

[KEYLOC {dataname | n} KEYLEN {dataname | n}]

[FROM filename]

[{RETAIN | NORETAIN}]

Table entry field definition(s)

Figure 26-2 Syntax for Defining a Table
26–2 VISION:Results Reference Guide

Working with Tables
tablename Required. 1- to 8-character alphanumeric table name used in all
accesses to this table.

STATUS Required. Must be followed by a self-defining data name of your
choice. This data name is 1 byte in length and contains one of the
following values after any table handling command:

Y The requested operation completed successfully.

N The requested operation is unsuccessful.

L The requested operation is unsuccessful because the contents
of the LENGTH dataname were invalid. See the sections on
handling variable-length tables for more information.

F entrylen Required for fixed-length tables. Entrylen is the numeric length of
each entry and must be between 1 and 32767, inclusive.

V maxlen Required for variable-length tables. Maxlen is the numeric
maximum entry length and must be between 1 and 32765, inclusive.

LENGTH Required for variable-length tables. Must be followed by a
self-defining data name of your choice. This data name passes the
length of a given entry to or from VISION:Results.

ENTRY Required for fixed-length tables. Must be followed by a
self-defining data name of your choice. This data name passes an
entry number to or from VISION:Results.

OFFSET Required for variable-length tables. Must be followed by a
self-defining data name of your choice. This data name passes the
offset or relative byte address (relative to 0) of an entry to or from
VISION:Results.

KEYLOC Key location. Required if SEARCH, BINSEARCH, or TSORT is used
in procedure logic for this table. It must be followed by a
self-defining data name or a numeric literal. Allowable values are 1
to 32765, inclusive.

KEYLEN Key length. Required if SEARCH, BINSEARCH, or TSORT is used
in procedure logic for this table. It must be followed by a
self-defining data name or a numeric literal.

Allowable values are 1 to 256, inclusive. The key specified by
KEYLOC and KEYLEN must be fully contained within the shortest
table entry, or the results of your SEARCH, BINSEARCH, or TSORT
are unpredictable.

FROM
filename

This option causes the named file to be read in its entirety and
loaded into the table before control is passed to your procedure
logic. Be sure there is at least one other input file defined, or your
program could end as soon as the table is loaded.
Table and Array Handling 26–3

Working with Tables
The following rules govern automatic table loading:

� The source file must have the same record format (F or V) as the table, and the
FILE statement must include the record length.

� The file must be defined as sequential input and must not use the SKIP, IO,
EXIT, or MODIFY keywords.

� For fixed-length entry tables, if the file record length differs from the table entry
length, the record is truncated or padded to the right with blanks, as necessary,
as each table entry is built.

� For variable-length tables, the maximum file record length must not be greater
than the maximum table entry length.

RETAIN | NORETAIN
Optional. Specifies that this table and its contents are either passed to a subsequent
multiple-report request or deleted at the end of the current request. A retained
table requires neither JCL nor the use of an external medium.

Table Entry Field Definition(s)
Code one or more field definitions following the TABLE statement to assign a
name to the table entry and to any fields within it. The syntax of a table entry field
definition is the same as that of any other data name.

A data name having the same name as the table is automatically generated by
VISION:Results. It is a 1-byte character field whose location is the first byte of the
table entry definition.

Loading a Table

Fixed-Length Entries
Define your table as follows:

Code procedure logic to read records from a file, build a table entry, and store it:

TABLE DEPTTB F 33 ENTRY TBLENT STATUS TBSTAT
DEPTNUM 3 PD
DEPTNAME 30

Figure 26-3 Define Table for Fixed Length

TBLOAD:
READ DEPTMSTR
IF EOFFLAG EQ 'E' GOTO ENDLOAD ENDIF
MOVE MSTRNUM TO DEPTNUM
MOVE MSTRNAME TO DEPTNAME
STORE DEPTTB
IF TBSTAT NE 'Y' GOTO TBLFULL ENDIF
GOTO TBLOAD

ENDLOAD:

Figure 26-4 Code Procedure Logic for Fixed Length
26–4 VISION:Results Reference Guide

Working with Tables
Before the STORE, the ENTRY dataname contains the ordinal number of the last
entry stored. The STORE command causes the contents of the table entry area to
be added to the table as the next entry. The STATUS area data name (TBSTAT) is
checked after every STORE to ensure that there is enough room in the tabling area
to hold the new entry.

After the STORE, the ENTRY dataname contains the ordinal number of the entry
just stored.

If the first 33 bytes of each record on the DEPTMSTR file match the format of the
table entry and no record selection is required, you can request an automatic table
load instead. See FROM filename on page 26-3 for more information.

This form of STORE results in the end-of-table marker being reset.

Variable-Length Entries
Define your table as follows:

You can then load the table as follows:

Before the STORE, the OFFSET dataname contains the offset into the table at which
to store the data.

The STORE command causes ENTLEN bytes of data (in the example) to be moved
from the table entry area into the table at the supplied offset. The STATUS
dataname (TBSTAT) is checked after every STORE to ensure that there was enough
room in the tabling area to hold the new data.

After the STORE, the OFFSET dataname contains the next available offset.

If each table entry is to hold one complete input record and no record selection is
required, you can request an automatic table load instead. See FROM filename on
page 26-3 for more information.

This form of STORE results in the end-of-table marker being reset.

TABLE VARTBL V 209 LENGTH ENTLEN OFFSET RBA STATUS TBSTAT
TACCTNO 9
TBACKITEMS 200 ; UP TO 10 ITEMS @ 20 BYTES EACH

Figure 26-5 Define Table for Variable Length

TBLOAD:
READ ACCTFILE
IF EOFFLAG EQ 'E' GOTO ENDLOAD ENDIF
MOVE ACCTNO TO TACCTNO
LGTH = ITEMS * 20 ; CALC LENGTH OF BACKITEMS
IF LGTH GT 200 GOTO TOOMANY ENDIF
MOVE BACKITEMS TO TBACKITEMS LENGTH LGTH
ENTLEN = LGTH + 9 ; SET LENGTH TO STORE
STORE VARTBL
IF TBSTAT NE 'Y' GOTO TBLFULL ENDIF
GOTO TBLOAD

ENDLOAD:

Figure 26-6 Code Procedure Logic for Variable Length
Table and Array Handling 26–5

Working with Tables
Sequential Retrieval

Fixed-Length Entries
Once your table is loaded, reset the ENTRY dataname to 1 or any other starting
entry number. For example:

Then, issue a RETRIEVE and check that the entry was found:

The RETRIEVE command returns the requested entry to the area following your
TABLE statement and increments the ENTRY dataname by 1. The next RETRIEVE
obtains the next entry and so on, until the entries are exhausted.

When the ENTRY dataname contains a value higher than the number of entries in
the table, the table entry area remains unchanged after a RETRIEVE and the
STATUS dataname contains an N.

Variable-Length Entries
Once your table has been loaded, reset the OFFSET dataname to 0. For example:

Then, issue a RETRIEVE and check that the entry was obtained:

The RETRIEVE command returns the (first) entry to the area following your
TABLE statement, returns the length of the entry in the LENGTH dataname, and
increments the OFFSET dataname to point to the next table entry. Therefore, the
next RETRIEVE obtains the next entry and its length, and so on, until the entries
are exhausted.

When the OFFSET dataname contains a value higher than the end of the table, the
table entry area and the LENGTH dataname remain unchanged after a RETRIEVE
and the STATUS dataname contains an N.

To do a sequential retrieval of variable-length entries from some starting point
other than the beginning, you need to supply the OFFSET at which to start. This
offset must be saved by you from some prior table processing because it is not
generally possible to calculate it.

MOVE 1 TO ENTNUM

Figure 26-7 ENTRY dataname Reset

RETRIEVE tablename
IF TBSTAT EQ 'Y' GOTO ENTRYFOUND ENDIF

Figure 26-8 RETRIEVE Fixed Length

MOVE 0 TO RBA

Figure 26-9 Reset OFFSET dataname

RETRIEVE tablename
IF TBSTAT EQ 'Y' GOTO ENTRYFOUND ENDIF

Figure 26-10 RETRIEVE Variable Length
26–6 VISION:Results Reference Guide

Working with Tables
Sequential Search
The SEARCH operation scans the entries in a table, serially from a given starting
point, looking for an entry whose key matches the search argument. The TABLE
statement defining a table to be searched must include the KEYLOC and KEYLEN
parameters. See Syntax for Defining a Table on page 26-2 for more information.

Fixed-Length Entries
Before the table can be searched, you must move the entry number of the first entry
to be included in the search into the ENTRY dataname. In addition, if either the
KEYLOC or KEYLEN parameters in the TABLE statement are not coded using an
absolute value, the actual KEYLOC and/or KEYLEN value(s) must be set in the
related data name(s) at some point prior to the SEARCH.

To search the table, code:

Argument-name can be the data name of any field in your program that contains
the value for which you are searching. VISION:Results does a character
comparison of the argument with each entry, using the number of bytes defined
by the KEYLEN parameter, until a match is found or the end of the table is reached.

If a matching entry is found, the entry is moved to the area following your TABLE
statement, its entry number is returned in the ENTRY dataname, and a Y is
returned in the STATUS dataname.

If a matching entry is not found, the ENTRY dataname is unchanged and the
STATUS dataname contains an N. The contents of the table entry area are
unpredictable when no match is found.

To resume the search after a matching entry has been found, be sure to add 1 to the
ENTRY dataname before executing the SEARCH verb again. Failing to do this
results in a never-ending loop because the same entry is returned every time.

Variable-Length Entries
Before the table can be searched, you must move the offset (usually 0) of the first
entry to be included in the search into the OFFSET dataname. In addition, if either
the KEYLOC or KEYLEN parameters in the TABLE statement are not coded using
an absolute value, the actual KEYLOC and/or KEYLEN value(s) must be set in the
related data name(s) at some point prior to the SEARCH.

To search the table, code:

SEARCH tablename argument-name

Figure 26-11 Search the Fixed-Length Table

SEARCH tablename argument-name

Figure 26-12 Search the Variable-Length Table
Table and Array Handling 26–7

Working with Tables
The argument-name can be the data name of any field in your program that
contains the value for which you are searching. VISION:Results does a character
comparison of the argument with each entry, using the number of bytes defined
by the KEYLEN parameter, until a match is found or the end of the table is reached.

If a matching entry is found, the entry is moved to the area following your TABLE
statement, its length is returned in the LENGTH dataname, its offset is returned in
the OFFSET dataname, and a Y is returned in the STATUS dataname.

If a matching entry is not found, the LENGTH and OFFSET data names are
unchanged and the STATUS dataname contains an N. The contents of the table
entry area are unpredictable when no match is found.

To resume the search after a matching entry has been found, calculate the OFFSET
dataname as: the current OFFSET plus the length of the entry just found plus 2 for
the length attribute field.

Failing to do this results in a never-ending loop because the same entry is returned
every time.

Binary Search
For tables containing at least 20 entries, a binary search is substantially faster than
a sequential search at finding one unique entry. For very large tables, the speed is
especially evident. For example, a table of 1,000 entries requires a maximum of ten
comparisons to find a given entry, a table of 2,000 entries requires up to 11
compares, a table of 4,000 entries requires up to 12 compares, and so on.

You can use a binary search if your table meets the following conditions:

� The entries are fixed length.

� The entries are stored in ascending order by key.

Both the KEYLOC and the KEYLEN parameters must be coded in your TABLE
statement. See Syntax for Defining a Table on page 26-2 for more information. If
either the KEYLOC or KEYLEN parameters are not coded using an absolute value,
the actual KEYLOC or KEYLEN value(s) must be set in the related data name(s) at
some point prior to the SEARCH.

To request a binary search, code:

The argument-name is the data name of any field in your program that contains
the value for which you are searching. VISION:Results does a character
comparison of the argument with each entry, using the number of bytes defined
by the KEYLEN parameter, until a match is found or the end of the table is reached.

RBA = RBA + ENTLEN + 2

Figure 26-13 OFFSET dataname

BINSEARCH tablename argument-name

Figure 26-14 Request a Binary Search
26–8 VISION:Results Reference Guide

Working with Tables
If a matching entry is found, the entry is moved to the area following your TABLE
statement, its entry number is returned in the ENTRY dataname, and a Y is
returned in the STATUS dataname.

If a matching entry is not found, the ENTRY dataname is unchanged and the
STATUS dataname contains an N. The contents of the table entry area are
unpredictable when no match is found.

Sorting
VISION:Results provides a sort facility that can arrange table entries into
ascending or descending order by key. The following conditions must be met:

� The entries are fixed length.

� The entry length does not exceed 256 bytes.

This sort is recommended for relatively small tables. A noticeable increase in CPU
time usage occurs if a table containing more than about 700 entries is sorted. The
overall performance of the sort also depends on entry length and key length. As a
rule, the shorter the lengths, the faster the sort runs.

Both the KEYLOC and the KEYLEN parameters must be coded in your TABLE
statement. See the TABLE statement syntax for more information. If either the
KEYLOC or KEYLEN parameters are not coded using an absolute value, the actual
KEYLOC/KEYLEN value(s) must be set in the related data name(s) at some point
prior to the sort.

To request the sorting of a TABLE, code:

If no sequence option follows the table name, ASCENDING is assumed. There is
no limit to the number of TSORTs you can perform in a given program.

Random Retrieval

Fixed-Length Entries
You can randomly retrieve any entry in a table if you know its entry number. The
ENTRY dataname contains the number of the entry just stored or retrieved after a
successful STORE, SEARCH, or BINSEARCH operation. It is also possible that you
know the entry number because it bears a direct relationship to some other
variable (such as a table containing one entry for each month in the year). Move the
number of the entry you want to the ENTRY dataname; then code:

TSORT tablename [{ASCENDING | A | DESCENDING | D}]

Figure 26-15 Request the Sorting of a TABLE

RETRIEVE tablename RANDOM

Figure 26-16 Randomly Retrieve Entry in a Table
Table and Array Handling 26–9

Working with Tables
VISION:Results attempts to acquire the entry whose number is in the ENTRY
dataname. If successful, the entry is returned to the table entry area, following your
TABLE statement, and a Y is placed in the STATUS dataname. If unsuccessful, an
N is moved to the STATUS dataname and the table entry area remains unchanged.
The only reason for not finding an entry is that the table contains fewer entries than
the ordinal number requested.

Variable-Length Entries
You can randomly retrieve any entry in a table if you know its offset. The offset of
the first entry in the table is 0. After a successful SEARCH operation, the OFFSET
dataname contains the offset of the entry just retrieved.

Just before a STORE operation, the OFFSET dataname contains the offset of the
entry about to be stored. Move the offset of the entry you want to the OFFSET
dataname, then code:

RETRIEVE tablename RANDOM

Note: If the offset is within the table but does not point to an entry correctly, the
result of the RETRIEVE is unpredictable.

VISION:Results attempts to acquire the entry whose offset is in the OFFSET
dataname. If the requested offset is within the table, the entry is returned to the
table entry area (following your TABLE statement), its length is placed in the
LENGTH dataname, and a Y is returned in the STATUS dataname. If not, an N is
moved to the STATUS dataname, and the table entry area and the LENGTH
dataname remain unchanged.

Random Replacement

Fixed-Length Entries
Any entry in a table can be replaced (updated) randomly if you know its entry
number. The ENTRY dataname contains the following:

� The number of the entry about to be obtained before a RETRIEVE operation.

� The entry number found after a successful SEARCH or BINSEARCH.

It is also possible that you know the entry number because it bears a direct
relationship to some other variable, such as a table containing one entry for each
month in the year. Move the number of the entry to be updated to the ENTRY
dataname, then code:

STORE tablename RANDOM

VISION:Results replaces the entry whose number is in the ENTRY dataname with
the contents of the table entry area, following your TABLE statement, unless the
requested entry is outside of the table. If successful, a Y is returned in the STATUS
dataname; if not, an N is returned.
26–10 VISION:Results Reference Guide

Working with Tables
The end-of-table marker is not changed when the keyword RANDOM is specified.
Specify RANDOM; otherwise, the end-of-table marker is reset. For more
information, see Loading a Table on page 26-4.

Variable-Length Entries
Any entry in a table can be replaced (updated) randomly if the following
conditions are true:

� The last tabling function against this table is a RETRIEVE or SEARCH and
successfully obtained this entry.

� You have not modified the contents of the LENGTH dataname as returned by
the last RETRIEVE/SEARCH operation for this table.

If the random store is, in fact, at the same offset and for the same length as the last
entry obtained from this table, that entry is replaced with the contents of the table
entry area, following your TABLE statement, and a Y is returned in the STATUS
dataname.

If you attempt to replace an entry that is not the last one retrieved or you have
modified the contents of either the OFFSET or LENGTH data names replacement
does not occur, and an N is placed in the STATUS dataname.

The end-of-table marker is not changed when the keyword RANDOM is specified.
Specify RANDOM; otherwise, the end-of-table marker is reset. For more
information, see Loading a Table on page 26-4.

Deleting a Table
If you want to delete a table during processing, you can do it in either of the
following ways:

� Physical DELETE

� Logical Deletion

Each method has certain advantages and disadvantages. Select the one that best
suits a given situation.

Physical DELETE
DELETE tablename

All storage being held by the table is returned to free space, for use by other tables,
except for 32 bytes per 4K of table that is not recovered. The first subsequent
STORE to the same table name causes a new table, containing the one entry, to be
created.

STORE tablename RANDOM

Figure 26-17 Random Replacement in a Table with Variable Length
Table and Array Handling 26–11

Working with Tables
You can store additional entries in the table, issue other tabling commands against
it, then delete it again if you want, and so on. However, every DELETE of an
existing table results in the loss of at least 32 bytes. For example, if the table is being
used for the temporary storage of one batch of records and there are 1,000 batches,
the repeated deletion of a table would eventually use up the tabling area.

DELETE is best used when you are finished with a given table and want to reuse
the space for a different table.

Logical Deletion
In this method, you reset the end-of-table marker by deliberately storing an entry
on top of the existing first entry without using the RANDOM keyword. If you
want, additional entries can be stored in the normal way. The previous contents of
the table are ignored and the space currently allocated to the table is reused.

You can even expand the table beyond its original size; however, you cannot make
it smaller unless you issue a DELETE. The space can be reused over and over again
without impacting the total available tabling area.

For fixed-length entry tables, reset the ENTRY dataname to 0, move the wanted
values to the table entry area, and issue a STORE:

This technique stores the contents of the table entry area as entry #1 in an existing
table.

For variable-length entry tables, reset the OFFSET dataname to 0, move the desired
values to the table entry area, and issue a STORE:

This technique stores the contents of the table entry area, using the value in the
LENGTH dataname for the length, as the first entry in an existing table.

MOVE 0 TO ENTNUM
.
.MOVE values
.

STORE tablename

Figure 26-18 Logical Deletion of Fixed-Length Entry Tables

MOVE 0 TO RBAVAL
.
.MOVE values
.

STORE tablename

Figure 26-19 Logical Deletion of Variable-Length Entry Tables
26–12 VISION:Results Reference Guide

Working with Tables
USE Command
This command is coded in a secondary request to make the contents of a
previously defined and retained table available in this request. The syntax of the
USE command is:

The contents of the TABLE statement referred to, as well as all table field
definitions subordinate to it, become a part of this secondary request. New table
field definitions can be defined after the USE command, but they are not retained
for any subsequent requests. The contents of the table itself are the same as the last
time this table was referenced.

If NORETAIN is coded, the table is deleted at the end of this request; otherwise, it
is kept. When all RETAINed tables and arrays have been used with NORETAIN,
the tabling area is freed to the operating system. Subsequent use of a table causes
a new tabling area to be obtained.

Error Return Codes
Your VISION:Results program abends with a user return code, as follows, if the
table handler uses up all the available storage before completing certain automatic
functions:

Table Examples
Example 1 Binary Search

A table is loaded automatically with the first 31 bytes of each record on a customer
master file. A binary search of the table is performed to obtain the customer’s name
for a sales report line.

Note: Bold areas are required for VSE systems.

USE tablename [NORETAIN]

Figure 26-20 USE Command — Tables

User 600 Insufficient storage for the requested automatic table load function
(using the FROM keyword).

The allocated table area does not hold the entire input file. In this case,
the probable solution is to increase the value of the TSIZE parameter
on your OPTION statement. See Allocating Memory on page 26-1.
Another solution is to decrease the size of the entries being stored.

User 602 VSE only. Insufficient memory to satisfy the TSIZE requirement.

OPTION TSIZE 150K XREFA

FILE SALES TAPE SYS035 FB 128 1280
SALESMAN 3 3
CUSTNUM 6 26
PRODUCT 7 32
QUANTITY 3 54 PD Z
UNITPRICE 4 81 PD 2 E

Figure 26-21 Example 1 Binary Search (Page 1 of 2)
Table and Array Handling 26–13

Working with Tables
Example 2 Sort a Small Variable-Length Table Using TSORT

Variable-length table entries need to be accessed in a new sequence. As each table
entry is stored, the key value and offset of the entry are stored in a fixed-length
entry table.

This second table is sorted using TSORT. The sorted entries are then used to
randomly retrieve the variable-length entries in the required sequence.

FILE CUSMSTR DISK 3350 FB 140 2800
MCUSTNO 6 1
MCUSTNAM 25 7
FILLER 109

TABLE CUSTBL F 31 FROM CUSMSTR STATUS FOUND
ENTRY TBLENT KEYLOC 1 KEYLEN 6

CNUMBER 6
CNAME 25 (CUSTOMER NAME)

WORKAREA
TOT 7 PD 2 E
TALLY E 3

IF CUSTNUM EQ CNUMBER GOTO CONTINUE ENDIF
BINSEARCH CUSTBL CUSTNUM
IF FOUND NE 'Y'
MOVE '*** NOT ON FILE ***' TO CNAME

ENDIF
MOVE CUSTNUM TO CNUMBER

CONTINUE:
TOT = QUANTITY * UNITPRICE
LIST SUPPRESS (SALESMAN CNAME) PRODUCT
QUANTITY TOT

CONTROL SALESMAN
ON CHANGE IN SALESMAN
LIST 'TOTAL SALESMAN' AT CNAME TALLY SUM TOT
WITH 2 BEFORE AND EJECT AFTER

ON FINAL
LIST '** FINAL TOTAL **' AT PRODUCT SUM TOT

T1 'S A L E S B Y S A L E S M A N' WITH 2 AFTER
T1+100 DYLDATEPAG

Figure 26-21 Example 1 Binary Search (Page 2 of 2)

OPTION TSIZE 50K XREFA

FILE VARFILE ESDS V 50 LENGTH INLEN
RKEY 6 18
RCODE 1 41

TABLE VTABLE V 50 LENGTH VTBLEN STATUS VTBSTAT OFFSET VTBADDR
VTREC 50

TABLE TAGTABLE F 10 STATUS TTBSTAT ENTRY TTBENT
KEYLOC 5 KEYLEN 6
TTADDR 4 BI
TTKEY 6

IF RCODE EQ '1' '6' '7' 'X' 'P'
REJECT ENDIF

MOVE VARFILE TO VTREC LENGTH INLEN
MOVE INLEN TO VTBLEN

Figure 26-22 Example 2 Sort a Small Variable-Length Table Using TSORT (Page 1
of 2)
26–14 VISION:Results Reference Guide

Working with Tables
Example 3 Serial Search, Add New Entry If Not Found

For each input record, if the charge code is found in the table, a count field is
increased by 1 and the updated entry is replaced in the table.

If the charge code is not found, a new ’last’ entry is added to the table, and its entry
number is saved. When all input charge codes have been accounted for, the table
entries are sorted and a report is printed.

The DUMMY file keeps the job from ending automatically when the only (other)
input file reaches end of file.

Bold text is required for VSE systems.

MOVE RKEY TO TTKEY
MOVE VTBADDR TO TTADDR
STORE VTABLE
IF VTBSTAT NE 'Y'
PRINT 'OUT OF SPACE (T1)'
MOVE 101 TO DYLRETURN STOP ENDIF

STORE TAGTABLE
IF TTBSTAT NE 'Y'
PRINT 'OUT OF SPACE (T2)'
MOVE 101 TO DYLRETURN STOP ENDIF

ON END OF INPUT
TSORT TAGTABLE
MOVE 1 TO TTBENT

NXT_VREC:
RETRIEVE TAGTABLE
IF TTBSTAT NE 'Y'
PRINT 'DONE' STOP ENDIF

MOVE TTADDR TO VTBADDR
RETRIEVE VTABLE RANDOM
PRINT VTREC LENGTH VTBLEN
GOTO NXT_VREC

Figure 26-22 Example 2 Sort a Small Variable-Length Table Using TSORT (Page 2
of 2)

OPTION XREFA
FILE CHARGES FB 97 9700 TAPE SYS010 STATUS EOFCHG
CHGCODE 4 14

FILE XYZ DUMMY

TABLE CHGTABLE F 8 STATUS TBSTAT ENTRY ENTNUM
KEYLOC 1 KEYLEN 4
TBREC 8
TBCHGCD 4 1 (CHARGE CODE)
TBCHGCNT 4 PD (COUNT) RIGHT

WORKAREA
LASTENT 4 BI VALUE 0
EOT 1

REPORT 30 WIDE
ENTNUM=1
IF EOFCHG EQ 'E' GOTO SORT_PRT ENDIF
SEARCH CHGTABLE CHGCODE
IF TBSTAT EQ 'Y'
TBCHGCNT = TBCHGCNT + 1
STORE CHGTABLE RANDOM
REJECT ENDIF

MOVE CHGCODE TO TBCHGCD
MOVE DYLONE TO TBCHGCNT

Figure 26-23 Example 3 Serial Search, Add New Entry If Not Found (Page 1 of 2)
Table and Array Handling 26–15

Working with Arrays
Working with Arrays
This section describes how to perform various tasks with arrays.

Syntax for Defining an Array

MOVE LASTENT TO ENTNUM
STORE CHGTABLE
IF TBSTAT NE 'Y'
PRINT '**ERROR- TABLE FULL'
MOVE 301 TO DYLRETURN STOP ENDIF

MOVE ENTNUM TO LASTENT
REJECT

SORT_PRT:
RETRIEVE CHGTABLE
IF TBSTAT NE 'Y'
MOVE 'E' TO EOT GOTO SORTRN ENDIF

RELSORT
GOTO SORT_PRT

SORTRTN:
SORT TBREC USING TBCHGCD UNTIL EOT
LIST TBCHGCD TBCHGCNT

ON FINAL
LIST 'TOTAL CHARGES' AT TBCHGCD SUM TBCHGCNT

T1 ' '
T1+1 DYLDATE
T1+18 DYLPAGE

Figure 26-23 Example 3 Serial Search, Add New Entry If Not Found (Page 2 of 2)

ARRAY arrayname STATUS dataname

F element-length

{DIMENSION | DIM} (n1 n2 [n3] [n4])

[FILL fillchar]

[{RETAIN | NORETAIN}]

Array element field definition(s)

Figure 26-24 Syntax for Defining an Array

arrayname Required. The array name is a 1- to 8-character
alphanumeric name used in all accesses to this array.

STATUS Required. Must be followed by a self-defining data
name of your choice. This data name is 1 byte in length
and contains one of the following values after any array
handling command:

Y The requested operation completed successfully.

N The requested operation was unsuccessful.
26–16 VISION:Results Reference Guide

Working with Arrays
Loading an Array
For example, an array can be defined as follows:

The entire 120 elements are formatted prior to executing your first procedural
statement. Any element in the array can be replaced or updated, as follows:

MOVE INREC TO HISTREC
STORE HISTORY (INYEAR INMONTH)

where INYEAR is any numeric, packed, or binary field whose value is between 1
and 10, and INMONTH is a similar field with a value between 1 and 12.

F element-length Required. F because each element in an array must be
the same length. The element-length is the numeric
length of each element and must be between 1 and
32767, inclusive.

DIMENSION|DIM Required. Defines the size of each dimension in the
array. Must be followed by two to four numeric literals
enclosed in parentheses. The number of literals defines
the number of dimensions. Each dimension can be in
the range of 1 to 999999, inclusive. To use commas to
separate the literals, each comma must be followed by
at least one space (for example, 5, 12, 6).

FILL fillchar Optional. The fillchar is a 1-character alphanumeric or
hex literal that specifies the character to be replicated
throughout every element in the array during
initialization. If FILL x is not coded, the default fill
character is a blank.

RETAIN|NORETAIN Optional. Specifies that this array and its contents are to
be passed to a subsequent multiple report request, or
deleted at the end of the current request. A retained
array requires neither JCL nor the use of an external
medium.

Array Element Field
Definition(s)

One or more VISION:Results field definitions should be
coded, following the ARRAY statement, to assign a
name to the array element and to any fields within it.
The syntax of an array element field definition is the
same as that of any other data name.

A data name having the same name as the array is
automatically generated by VISION:Results. It is a
1-byte character field whose location is the first byte of
the array element definition.

ARRAY HISTORY F 30 STATUS HISTAT DIM(10, 12)
HISTREC 30

Figure 26-25 Loading an Array
Table and Array Handling 26–17

Working with Arrays
The number of coordinates in parentheses must be the same as the number of
dimensions defined in the ARRAY statement. The actual value of a given
coordinate, when the STORE is executed, must not be less than 1 or greater than its
related dimension size. However, no checking is performed by VISION:Results to
ensure that the value of a given coordinate is within its limits.

If the requested element is outside of the array, an N is returned in the STATUS
dataname.

Retrieving from an Array
All entries in an array are retrieved in the same way:

The coordinates stand for two to four data names, each of which has a data type of
NU, PD, or BI. You must supply one data name for each dimension defined in the
DIM parameter on the ARRAY statement. For example:

Each coordinate must contain a value between 1 and the related dimension size.
However, no checking is performed to ensure that the value of a given coordinate
is within its limits.

The RETRIEVE command returns the requested element into the area following
your ARRAY statement. If the requested element is outside of the array, an N is
returned in the STATUS dataname.

Deleting an Array
All of the storage allocated to an array can be returned to free space for use by other
tables by coding:

Once an array is deleted, it cannot be reinstated or reused.

USE Command
This command is coded in a secondary request to make the contents of a
previously defined and retained array available in this request. Its syntax is as
follows:

RETRIEVE arrayname (coordinates)

Figure 26-26 Retrieving from an Array

RETRIEVE HISTORY (YEAR MONTH)

Figure 26-27 Array Data Name

DELETE arrayname

Figure 26-28 Deleting an Array

USE arrayname [NORETAIN]

Figure 26-29 USE Command — Array
26–18 VISION:Results Reference Guide

Working with Arrays
The contents of the ARRAY statement referred to, as well as all array field
definitions subordinate to it, become a part of this secondary request. New array
field definitions can be defined after the USE command, but they are not retained
for any subsequent requests. The contents of the array itself are the same as they
were the last time this array was referenced.

If NORETAIN is coded, the array is deleted at the end of this request; otherwise, it
is kept. When all retained tables and arrays have been used with NORETAIN, the
tabling area is freed to the operating system. Subsequent use of an array causes a
new tabling area to be obtained.

Error Return Codes
Your VISION:Results program abends with a user return code, as follows, if the
table handler uses up all the available storage before completing certain automatic
functions:

Array Example
This program example tells VISION:Results to load an array by column and
retrieve it by row, as in a telephone directory.

An array is loaded by column, with employee name and extension information.
When the array is full, it is printed by row. When the input file reaches the end, the
unused portion of the array is cleared and the final page is printed.

User 601 Insufficient storage to hold your array.

The number of entries in an array is the product of all dimensions.
There is not enough room to hold that many entries.

In this case, increase the value of the TSIZE parameter on your
OPTION statement. See Allocating Memory on page 26-1. Another
solution is to decrease the size of the entries being stored, or to decrease
the size of the dimensions of your array.

User 602 VSE only. Insufficient memory to satisfy the TSIZE requirement.

OPTION TSIZE 5K XREFA

FILE EMPLMST FB 240 7200 DISK 3350
EMPLNAME 25 15
BILLED_AMT 4 91

ARRAY EMPLIST F 29 DIM (50 3) STATUS TBLSTAT
ANAME 25
AEXT 4

WORKAREA
ROW 2 PD VALUE 1
COLUMN 1 PD VALUE 1

WORKAREA
PRTLINE 101
NAME1 25 1
EXT1 4 28

Figure 26-30 Array Example (Page 1 of 2)
Table and Array Handling 26–19

Working with Arrays
REPORT 102 WIDE

MOVE EMPLNAME TO ANAME
MOVE BILLED_AMT TO AEXT
STORE EMPLIST (ROW COLUMN)
ROW = ROW + 1
IF ROW GT 50
ROW = 1
COLUMN = COLUMN + 1 ENDIF

IF COLUMN GT 3 GOTO PRT_PAGE ENDIF
REJECT

PRT_PAGE:
COLUMN = 1
INX = 0

BLD_LINE:
RETRIEVE EMPLIST (ROW COLUMN)
MOVE ANAME TO NAME1 (INX)
MOVE AEXT TO EXT1 (INX)
COLUMN = COLUMN + 1
IF COLUMN LE 3
INX = INX + 35
GOTO BLD_LINE ENDIF

PRT_LINE:
LIST PRTLINE
ROW = ROW + 1
IF ROW LE 50 GOTO PRT_PAGE ENDIF
ROW = 1
COLUMN = 1

PRT_EX:
LIST ' ' WITH EJECT AFTER
REJECT

ON END OF INPUT
IF ROW EQ 1 AND COLUMN EQ 1 STOP ENDIF
MOVE SPACE TO ANAME
MOVE SPACE TO AEXT

CLR_REST:
STORE EMPLIST (ROW COLUMN)
ROW = ROW + 1
IF ROW GT 50
ROW = 1
COLUMN = COLUMN + 1 ENDIF

IF COLUMN LE 3 GOTO CLR_REST ENDIF
PERFORM PRT_PAGE TO PRT_EX

T1 ' ' WITH 2 AFTER
T1+1 'NAME' T1+28 'EXT'
T1+36 'NAME' T1+63 'EXT'
T1+71 'NAME' T1+98 'EXT'

Figure 26-30 Array Example (Page 2 of 2)
26–20 VISION:Results Reference Guide

Chapter
27 U
sing Letter Writing
This chapter describes the VISION:Results letter writing capabilities for standard
impact and laser printers. Several examples using the letter writing function are
presented in actual use.

Using the Letter Writing Function
VISION:Results produces documents that can contain variable information such
as the names and addresses of the various recipients. Some of the items you can
generate include:

The letter writing function is useful with systems such as accounts payable,
accounts receivable, bank accounts, mortgages, securities, and contract
administration.

Some of the features include:

� Letters can be generated in two-up format.

� Letters that can be directed to specific letter files.

� Each letter’s print line can be routed through an exit subroutine.

� Letters can be up to 260 characters wide.

� ASA carriage control characters can be specified for additional print control.

� The first line of a paragraph can be indented.

� An entire paragraph can be indented.

� Form letters � Confirmation notices

� Inquiries � Contract and lease agreements

� Control lists � Summaries

� Memoranda � Two-up letters

� Address labels
Using Letter Writing 27–1

Implementing Letter Writing
Implementing Letter Writing
Figure 27-1 on page 27-2 shows a sample letter produced using VISION:Results,
and Figure 27-2 on page 27-2 shows the required program statements.

NOVEMBER 30, 1998

ERNESTO TORRES
23444 PARK LANE
LOS ANGELES, CA

DEAR ERNESTO TORRES:

YOUR INTEREST IN VISITING OUR STATE IS AS IMPORTANT TO US AS IT IS TO YOU.

OPPORTUNITIES FOR TRAVEL AND TOURISM TO AND WITHIN AMERICA'S SUNSHINE STATE ARE
GREAT BUT WE WANT THEM TO BE EVEN BETTER AND MORE AVAILABLE TO OUR VISITORS. IN
FORMATION ABOUT YOUR TRAVEL HELPS US TO PLAN AN EVEN MORE EXCITING STAY THE NEXT
TIME YOU VISIT OUR STATE.

VERY TRULY YOURS,

FLORIDA STATE DEPARTMENT OF TOURISM

ENCLOSURES: TRAVEL BROCHURES

Figure 27-1 Sample Letter

1 FILE ARFILE FB
2 LASTNAME 15 11
3 FIRSTNAME 10 26
4 ADD1 25 110
5 ADD2 25 135

6 LTH 10 75 WIDE

7 LTD @(ASIS)NOVEMBER 30, 1998
8 LTD @(SP3) @FIRSTNAME @LASTNAME
9 LTD @(ASIS) @ADD1
10 LTD @(ASIS)@ADD2
11 LTD @(SP3 NEWPARA) DEAR @FIRSTNAME @LASTNAME:
12 LTD @(SP2) YOUR INTEREST IN VISITING OUR
13 LTD STATE IS AS IMPORTANT TO US AS IT IS TO YOU.
14 LTD @(SP2 NEWPARA) OPPORTUNITIES FOR TRAVEL AND TOURISM TO
15 LTD AND WITHIN "AMERICA'S" SUNSHINE STATE ARE GREAT BUT
16 LTD WE WANT THEM TO BE EVEN BETTER AND MORE AVAILABLE
17 LTD TO OUR VISITORS. INFORMATION ABOUT YOUR TRAVEL HELPS
18 LTD US TO PLAN AN EVEN MORE EXCITING STAY THE NEXT TIME
19 LTD YOU VISIT OUR STATE.
20 LTD @(SP2) VERY TRULY YOURS,
21 LTD @(SP4) FLORIDA STATE DEPARTMENT OF TOURISM
22 LTD @(SP3) ENCLOSURES: TRAVEL BROCHURES

23 ENDLTD

24 LETTER 10

Figure 27-2 Sample Letter Input Statements
27–2 VISION:Results Reference Guide

Implementing Letter Writing

The line numbers help explain the VISION:Results statements.

The FILE and field definition statements must precede the statements defining
your letter. The LTH header (statement 6) is where you assign a unique application
number and define the letter width and length, among other options described in
detail in Input to VISION:Results on page 27-3. The letter body follows, each text
line preceded by the keyword LTD. The keyword ENDLTD (statement 23) must
immediately follow the last detail text line.

The command LETTER, followed by an application number that ties it to the LTH
statement, actually starts the printing of your letters (statement 24). Even though
you can define a letter and specify all its detail text in your program, no letters are
printed unless you include the LETTER command in your procedure logic.

The examples that follow show you how to generate various types of letters,
including inserting variable data, using the From-To option, producing address
labels, and using the laser option.

Input to VISION:Results
The following types of document definition statements are used:

Your FILE and field definition statements (defining all of the variable fields used
in the letter) must precede your letter definition statements.

LTH (header) Only one LTH header can be submitted per document.

LTD (detail) The actual text of the document is coded in the detail
statements. You also enter instruction codes to determine
line spacing of the document and other editing features
with this statement.

ENDLTH (end letter) This statement marks the end of a unique letter; it must
follow the last LTD detail statement and must precede the
LTH header defining another unique letter.
Using Letter Writing 27–3

LTH Statements and Keywords
LTH Statements and Keywords
Use the LTH header statement (Figure 27-3) to specify the general layout of your
letter.

LTH nn [nnn WIDE] [nn LONG]
[NOEJECT] [LASERnn]
[INDENT nnn] [DYLEXTxx nnnK [WRITEALL]]
[IDLENGTH nn] [DYLTRxx [BY yyy] {DISK xxxx|TAPE}SYSxxx]
[ASA] [TWOUP [xxx BETWEEN] [SWITCH] [LEFTSAVE nnnK]]
[OPTIMIZE | NOOPTIMIZE]

Figure 27-3 Syntax of LTH Statement

LTH Required. Describes the application as letter writing and
denotes this as a header statement. Always enter LTH as the
first parameter on the header statement. Must be preceded by
the FILE and field definition statements.

nn Required. A unique application number must be assigned to
each letter generated in the same program. This number must
be an integer with a value from 1 to 99.

nnn WIDE An integer value from 1 to 260. Specifies the number of
characters per line (line width) in the printed letter. If omitted,
this value defaults to 80. For any single application, the sum of
the WIDE, INDENT, and IDLENGTH values must not exceed
132 characters (131 if LASERnn is specified). If DYLEXTxx with
WRITEALL is not used, the maximum character length is 260.

If the integer value is greater than 132 (131 if LASERnn is
specified), DYLTRxx or DYLEXTxx must be specified. If
DYLEXTxx is specified but DYLTRxx is not specified and nnn
is greater than 132 (or 131), the WRITEALL option must be
specified.

nn LONG An integer value from 0 to 99. Specifies the number of lines per
page requested for each letter. If zero, no line counter is
maintained. 0 LONG plus the NOEJECT keyword are typically
coded on the LTH statement when you want to produce
address labels on continuous forms (gummed or Cheshire). If
omitted, this value defaults to 56.

NOEJECT Overrides automatic page ejection at the beginning of each
letter. This feature is useful when using preprinted forms with
pre-posted numbers.
27–4 VISION:Results Reference Guide

LTH Statements and Keywords
LASERnn Sets an indicator to determine the maximum number (n) of
character sets per letter. A maximum number of 4 can be
coded. If, for example, a value of 4 is specified, VISION:Results
allows you to use four separate or unique character sets within
your letter. If no value is specified, nn defaults to 4.

INDENT nnn Specifies the number of spaces to indent the letter. If, for
example, a value of 4 is specified following INDENT, every
line of the entire letter is indented four spaces before printing.
This option moves the letter to the right and better positions
your letter on the output page. A numeric value between 1 and
100.

DYLEXTxx The name of the subroutine that is loaded once and called each
time a line is written to the output letter file (AUDPRINT/
SYS009 or DYLTRxx), where xx is alphanumeric (AA-ZZ,
00-99).

When the subroutine is called, Register 1 contains the address
of a parameter list as follows:

� Parameter 1 has the address of the print record.

� Parameter 2 has the address of a work area defined as
follows:

– 1-byte flag (normally blank) — contains an E when this
is the last time the EXIT is called.

– 3-byte packed decimal field — contains the record
length of the print record.

� Parameter 3 has the address of DYLPARM, which is a
38-byte character field that can be manipulated from
VISION:Results.

nnnK Specifies the size of the subroutine in K, for
VSE only.

WRITEALL Specifies that the EXIT subroutine handles
the writing of all the print records. No
records are written to AUDPRINT/SYS009.
Using Letter Writing 27–5

LTH Statements and Keywords
IDLENGTH nn Contains the length of the identification field. If a value is
specified, VISION:Results automatically generates the
reserved word DYLCNxxID, where xx is the unique
application number specified following LTH. The length of
DYLCNxxID is dependent upon the length specified after
IDLENGTH. A value of your choice can be moved to this
reserved word to identify or sequence each letter. This value is
placed in the rightmost position of each record line. A 132-byte
fixed-length record is used. If an IDLENGTH of 5 were
specified, the identification field value (DYLCNxxID) is placed
at positions 128 to 132 of each line. This feature is useful when
you are generating many different letters or labels that can be
interspersed. A numeric value from 1 to 99.

DYLTRxx The ddname or DLBL name of the output letter file to which
each output line of the letter is written, where xx is
alphanumeric (AA-ZZ, 00-99). If this keyword is not specified,
each line of the letter is written to AUDPRINT/SYS009; in this
case, the length of the print line must not exceed 132 characters.

BY yyy This is the optional blocking factor for the
output letter file defined by DYLTRxx. If not
specified, a blocking factor of 10 is assumed.

DISK xxxx VSE only. Required if DYLTRxx is used and
the output letter file is to be written to disk.
It specifies the type of disk for the output
letter file. Valid entries for xxxx are 2311,
2314, 3330, 3340, 3350, 3375, 3380, FBA.

TAPE VSE only. Required if DYLTRxx is used and
the output letter file is to be written to tape.
Specifies that the output letter file is to be
written to tape.

SYSxxx VSE only. Required if DYLTRxx is used. The
SYS number for the output letter file. Valid
entries for xxx are 000 to 240.

ASA Specifies that ASA carriage control characters are to be used for
the output letter file instead of the default (machine coded
carriage control characters). This entry can only be used if the
DYLTRxx keyword is used or when DYLEXTxx is used with
the WRITEALL option. No ASA print records can be written to
AUDPRINT/SYS009.
27–6 VISION:Results Reference Guide

LTH Statements and Keywords
See Optimize and Nooptimize on page 27-22 for more information about
OPTIMIZE.

TWOUP Use this to specify two-up letters (letters that are printed two
to a page; the first letter on the left, the second on the right).

xxx BETWEEN If used, TWOUP must be specified. Specifies
the number of bytes to leave between the
left-side letter and the right-side letter. The
length of the print line is twice the width of
the letter, plus the number of bytes between
the letters, plus the length of the ID field,
plus the length of the indent field on the LTH
statement. xxx should be specified so that
the length of the print line does not exceed
260 (132 if AUDPRINT/SYS009 is used or
131 if LASERnn is specified using
AUDPRINT/SYS009). The default value for
xxx is 5.

SWITCH If used, TWOUP must be specified. Produces a 1-byte field
DYLCNxxSW, where xx is the application number. This field
can be set by you to control when (based on the logic for the
letter) and where (left side or right side of the page) the next
letter command is executed. If DYLCNxxSW is set to Y, the
next letter command starts executing with reference to the
other side (the left side if the current side was right or the right
side if the current side was left) of the page. DYLCNxxSW is
automatically reset to blank after each LETTER xx command is
executed. If SWITCH is not used, the next letter command
starts executing with reference to the other side of the letter,
automatically, whenever a page eject occurs.

LEFTSAVE
nnnK

If used, TWOUP must be specified. Specifies the amount of
memory in K for holding the letter on the left side of the page.
nnnK must be at least the width of the letter times the
maximum number of lines before switching to the letter on the
right side of the page. The default value for nnnK is 10K.

OPTIMIZE OPTIMIZE on the LTH statement causes VISION:Results to
attempt to write out as few lines as possible, yet achieve the
requested printed letter. OPTIMIZE also causes space zero
printing, @(SP0), to space zero lines and print the line.

NOOPTIMIZE NOOPTIMIZE causes VISION:Results not to try to optimize
the letter writing process. NOOPTIMIZE is the default.
Using Letter Writing 27–7

LTD Statements and Keywords
LTD Statements and Keywords
The actual text of your letter immediately follows your LTH header statement.
Each line of your text must begin with the LTD keyword (except when you are
continuing a fixed print position line, as shown in Figure 27-4) that demonstrates
the layout of the LTD text detail lines, edit commands, line spacing, and carriage
control features available to you. Figure 27-5 on page 27-8 demonstrates the syntax
of the LTD statement.

FILE PRODFILE FB 352 5280
NAME 25 85
ADD1 25 110
ADD2 25 135
ACCOUNT 7 4
EXPDATE 6 44
PRODTYPE 12 50

LTH 01 80 WIDE 50 LONG NOEJECT INDENT 4
LTD1 @30 GEORGE & CO.
LTD @26 17418 MAIN STREET
LTD @22 LOS ANGELES, CALIF. 91344
LTD @(SP3 ASIS)@NAME @53 @ACCOUNT(B)
LTD @(ASIS)@ADD1
LTD @(ASIS)@ADD2
LTD @(SP2 ASIS)DEAR CUSTOMER:
LTD2 @(SP2) THIS LETTER IS BEING SENT TO YOU TO ENABLE OUR CONTRACT
LTD ADMINISTRATION DEPT. TO CONFIRM THE CORRECTNESS OF OUR RECORDS.
LTD ON NOVEMBER 30, 1997 OUR RECORDS OF YOUR ACCOUNT #@ACCOUNT(Z)
LTD SHOWED YOU ARE CURRENTLY LEASING @PRODTYPE, AND THAT YOUR
LTD LEASE IS DUE TO EXPIRE ON @EXPDATE(D).
LTD3 @(SP2 NEWPARA) SINCE YOUR LEASE WILL EXPIRE BEFORE JULY 31, 1998,
LTD YOU MAY AVOID OUR ANTICIPATED 10% PRICE INCREASE FOR FISCAL YEAR
LTD 1998/99 BY RENEWING NOW FOR A TWO-YEAR PERIOD. TO EXTEND YOUR
LTD LEASE, SIMPLY SIGN BELOW AND RETURN THIS LETTER TO OUR OFFICES,
LTD4 @(SP2) @45 SINCERELY,
LTD @(SP4) @45 GEORGE & CO.
LTD @45 CONTRACT ADMINISTRATION
LTD @(SP6 ASIS)YES, PLEASE RENEW OUR LEASE FOR A TWO-YEAR PERIOD.
LTD @(SP4) @5 COMPANY NAME: _________________________________
LTD @(SP3) @5 BY: _________________________________

ENDLTD

LETTER 01
STOP

Figure 27-4 Letter Writing Application: Input Statements

LTDnn [@(NEWPARA [Lnn|Inn]) | @(ASIS)]
[@(SPn) | @(CHnn) | @(EJECT)]
[@nnn] [@(CSnn)]
[@dataname[(editcode[,printsize])]]

ENDLTD

Figure 27-5 Syntax of LTD Statement
27–8 VISION:Results Reference Guide

LTD Statements and Keywords
LTDnn Describes the application as letter writing and denotes this
as a detail text statement. Always enter LTD as the first
command on all text lines, except to continue a fixed print
position line. For example:

LTD @10 LEASE START DATE @30 LEASE PAYMENT
@70 PRODUCT TYPE @85 CUSTOMER NO.

@dataname All variable information to be inserted into your text must be
prefixed with an @ (at) sign, followed by any valid data
name.

To edit the numeric variable information you are inserting
(such as suppressing leading zeroes and inserting commas),
the data name must be immediately followed by an edit
code, as shown in Figure 27-4: @ACCOUNT(Z),
@EXPDATE(D). Edit codes are described later in this
section.

The default edit format is P; therefore, leading zeroes in
numeric data are not automatically suppressed.

A print length can be specified for edited data names. For
example, @ACCOUNT(Z,10) means that the data in the field
ACCOUNT is printed in Z format within 10 print positions
and is right-aligned in those 10 positions. If necessary,
high-order digits are truncated. The length option cannot be
used for non-numeric, non-edited fields. See Example 4 on
page 27-30 for more information about edited data names.

Do not use the print length specification in conjunction with
edit code G, J, K, or L because it can truncate the leading
minus sign and cause alignment problems.

You can also place a character in front of @dataname. For
example, #@ACCOUNT. The character placed in front of
@dataname immediately precedes your variable
information with no intervening spaces (for example,
#203345).
Using Letter Writing 27–9

LTD Statements and Keywords
@(SPn) The line spacing keyword, enclosed within parentheses,
must be preceded by the @ (at) sign. SP is followed by a
numeric value from 0 to 9; SP0 allows for zero line spacing
and is used for boldface printing on impact printers.
Specifies to space n number of lines, up to a maximum of
nine, before printing the line on which this keyword is
specified. In Figure 27-4, double-spacing occurs before the
line containing DEAR CUSTOMER: is printed.

If you want more line spacing than can be performed with
the nine maximum allowed, code as many @(SPn) lines as
necessary. For example:

LTD @(SP9)
LTD @(SP4)

The example above generates 13 blank lines. The (SPn)
keyword need not be followed by text.

Automatic editing is assumed for any text preceded by
@(SP1) unless @(SP1 ASIS) is coded. @(NEWPARA) is
assumed for any text preceded by @(SP2) through @(SP9),
inclusive.

Note: The (SPn), (CHnn), and (EJECT) keywords are
mutually exclusive: if you use more than one of them
together, the last one coded is the option performed.

@(CHnn) Specifies channel control spacing. CH1–CH12 handle
channels 1–12, respectively. @(CH1) ejects the page and is
identical to @(EJECT).

Use the COPY DYCHANEL statement when performing
channel skipping with two-up processing. See Channel
Skipping With Two-up Letter Processing on page 27-21 for
more information. If the COPY DYCHANEL statement is
missing, error message DYL-807E DATA NAME OF
DY01CHANEL NOT DEFINED may occur.

Note: The (SPn), (CHnn), and (EJECT) keywords are
mutually exclusive: if you use more than one of them
together, the last one coded is the option performed.

@(EJECT) Specifies page ejection to occur prior to printing the current
or next line. Identical to @(CH1).

Note: The (SPn), (CHnn), and (EJECT) keywords are
mutually exclusive: if you use more than one of them
together, the last one coded is the option performed.
27–10 VISION:Results Reference Guide

LTD Statements and Keywords
@(CSnn) Specifies the character set that is used for the text that
follows this keyword. This allows you to change character
sets within the same line of text. For example:

LTD @(CS1) DANGER @(CS2) @25 HIGH EXPLOSIVES @(CS1) DANGER

A number from 1 to 4 can be coded for n; it represents the
character sets defined in your JCL. See Laser JCL on
page 27-19.

If you use this command, you must use LASERnn in the LTH
statement. Do not exceed the LTH LASERnn limit.

@(ASIS) Specifies that no editing (removing unnecessary blanks) is
done to the text that follows this keyword (that is, the text is
to be left as is). This is useful if you want to print columns
across your letter page. You can precede the text with the
@(ASIS) keyword and leave spaces between the columnar
material, as shown in the example below:

LTD @(ASIS)1996 1997 1998

1996 starts in print position 1 because there are no spaces
preceding it. Eight spaces follow 1996. 1997 and 1998 print,
also separated by eight spaces. If the @(ASIS) were omitted
here (that is, no edit command was specified for this text
line), automatic text compression is assumed: 1996 starts in
print position 1, and 1997 and 1998 follow, each separated by
only one space.

@nnn The @ (at) sign must precede the numeric value you specify
when you want the text following it to be printed in that
assigned print location. In Figure 27-4, 17418 MAIN
STREET is printed starting at position 26. When an @nnn is
placed in any line, that line automatically becomes an ASIS
line. For example, you can specify the following:

LTD @5 1996 @15 1997 @25 1998

This example prints 1996 at position 5, 1997 at position 15,
and 1998 at position 25.

If @nnn is immediately followed by @dataname, the first
non-blank character in the data name prints at position nnn.

If you specify text to print at a location that exceeds your line
width value (characters per line WIDE), an error message is
generated.
Using Letter Writing 27–11

LTD Statements and Keywords
@(NEWPARA
[Lnn | Inn])

@(NEWPARA) specifies that a new paragraph is wanted, so
the preceding text line is left unfilled if it contains fewer
characters than the number WIDE specified in your header
statement. Double-spacing does not automatically occur
before printing the new paragraph; you must specify, for
example, @(SP2 NEWPARA) if you want a blank line before
the first line of the new paragraph. All text on the statement
line following @(NEWPARA) is compressed (that is,
automatic word wrap-around and removal of extraneous
blanks occurs).

The (SPn), (CHnn), and (EJECT) keywords are mutually
exclusive: if you use more than one of them together, the last
one coded is the option performed.

Lnn specifies that a paragraph starts with the first word of
the paragraph indented nn spaces. Inn specifies that all the
lines in the paragraph are indented nn spaces. nn cannot
exceed 20.

ENDLTD Enter ENDLTD as the final command after the last detail text
line (LTD statement). It must precede an LTH header
defining another unique letter. An error message is
generated if you do not include this statement.
27–12 VISION:Results Reference Guide

Additional LTD Statement Information
Additional LTD Statement Information
Use the following additional guidelines when entering LTD statements in
VISION:Results:

� If you do not specify @(SPn), @(CHnn), or @(EJECT) on a detail text line (LTD
statement), the default is single-spacing. If you do not specify @(ASIS) or @nnn
on a detail text line, the default is automatic text compression. All words are
separated by exactly one blank, and as many words as will fit into the
maximum line width (the WIDE value specified in your LTH statement) are
placed into the printed line.

� Never break or hyphenate words at the end of your LTD statements. If you do
so, each of the two word parts is treated as a full word and the two parts are
printed separated by a single space. VISION:Results does not support word
hyphenation.

� You can specify more than one text edit option keyword following your LTD
command. They can be in any order, but they must be coded together within
one set of parentheses (except @nnn, which cannot be enclosed in parentheses)
and separated by at least one space. For example:

Valid: @(SP2 NEWPARA)

Invalid: @(SP2) (NEWPARA)

� Unless you precede your text with an @nnn, all text begins at position 1 of the
print line.

� To enclose text in double quotation marks in your letter, you must enclose that
text in single quotation marks (in addition to the double quotation marks) on
the LTD statement.

For example, LTD '"Restaurants of Southern California"' prints as
"Restaurants of Southern California" in your letter.

Conversely, if you want text to be enclosed in single quotation marks in your
letter, you must enclose that text in double quotation marks (in addition to the
single quotation marks) on the LTD statement. For example: LTD
"'Restaurants of Southern California'" prints as
'Restaurants of Southern California' in your letters.
Using Letter Writing 27–13

Additional LTD Statement Information
� All edit, line spacing, and carriage control keywords must be specified at the
beginning of your text line, with the exception of the @nnn and variable
information (@ followed by a data name), both of which can be coded
anywhere.

� To use the @ sign or any character string that also is a command (LTH, LTD,
ENDLTD) or keyword within the letter body, enclose them within either single
or double quotation marks (for example, 'LTD' or “LTD”).

� Program FILE and field definition statements must be specified before letter
definition statements.

� In program procedure logic, the LETTER nn command invokes the printing of
letters. If you omit this invoking command, no letters print, even though one
may have been fully defined. See LETTER Command on page 27-18 for more
information.
27–14 VISION:Results Reference Guide

LTD Edit Codes
LTD Edit Codes
The valid edit codes and their values are described in the following table.

Edit
Code Description Examples

E Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the right
of the field. Blank if zero.

001234.56 prints as

000000.00 prints as

1,234.56

(blank)

Y Leading -. Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the left of
the number. Blank if zero.

-00123456 prints as

000000.00 prints as

-1,234.56

(blank)

F Leading $. Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the right
of the field. Blank if zero.
Float a currency sign to
the left of the field.

-00123456 prints as

000000.00 prints as

$1,234.56-

(blank)

G Leading -$. Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the left of
the field. Float a currency
sign to the direct left of the
field. Blank if zero.

00123456 prints as

000000.00 prints as

-$1,234.56

(blank)

K Leading $-. Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the direct
left of the field. Float a
currency sign to the left of
the negative sign. Blank if
zero.

00123456 prints as

00000000 prints as

$-1,234.56

(blank)
Using Letter Writing 27–15

LTD Edit Codes
A Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the right
of the field. Print decimal
point and zeros to the
right of decimal. If field
has no decimal positions
and has a zero value,
nothing prints.

001234.56 prints as

000000.00 prints as

00000000000 prints as

1,234.56

.00

(blank)

X Leading -. Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the left of
the field. Print decimal
point and zeros to the
right of decimal. If field
has no decimal positions
and has a zero value,
nothing prints.

001234.56 prints as

-001234.56 prints as

0000000.00 prints as

00000000000 prints as

1,234.56

-1,234.56

.00

(blank)

H Leading $. Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the right
of the field. Float a
currency sign (the default
is $) to the left of the most
significant digit. Blank if
zero.

001234.56 prints as

-001234.56 prints as

0000000.00 prints as

00000000000 prints as

$1,234.56

$1,234.56-

$.00

(blank)

J Leading -$. Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the left of
the field. Float a currency
sign to the direct left of the
field. Blank if zero.

001234.56 prints as

-001234.56 prints as

0000000.00 prints as

00000000000 prints as

$1,234.56

-$1,234.56

$.00

(blank)

L Leading $. Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the direct
left of the field. Float a
currency sign to the left of
the negative sign. Blank if
zero.

001234.56 prints as

-001234.56 prints as

0000000.00 prints as

00000000000 prints as

$1,234.56

$-1,234.56

$.00

(blank)

Edit
Code Description Examples
27–16 VISION:Results Reference Guide

LTD Edit Codes
Z Edit with zero
suppression, decimal
insertion, negative sign to
the right of the field, but
no commas. Blank if zero.

001234.56 prints as

000000.00 prints as

1234.56

(blank)

U Leading -. Edit with zero
suppression, decimal
insertion, negative sign to
the left of the field, but no
commas. Blank if zero.

00123456 prints as

-00123456 prints as

000000.00 prints as

1234.56

-1234.56

(blank)

B Edit with zero
suppression, commas,
decimal insertion, and
negative sign to the right
of the field. Blank if zero.
If zero value, print
decimal point and zeros to
the right of the decimal. If
field has no decimal
positions and has a zero
value, nothing prints.

001234.56 prints as

000000.00 prints as

1,234.56

(blank)

Q Leading -. Edit with zero
suppression, decimal
insertion, negative sign to
the left of the field, but no
commas. Blank if zero. If
zero value, print decimal
point and zeros to the
right of the decimal. If
field has no decimal
positions and has a zero
value, nothing prints.

001234.56 prints as

-001234.56 prints as

000000.00 prints as

000000000 prints as

1234.56

-1234.56

.00

(blank)

P Default edit code. Edit
with decimal insertion,
negative sign to the right
of the field, but no
commas. If the field has no
decimal positions and has
a zero value, zeros print. If
it has a zero value, zeros
print.

001234.56 prints as

000000000 prints as

001234.56

000000000

Edit
Code Description Examples
Using Letter Writing 27–17

LTD Edit Codes
See Edit Codes on page 14-21 for a list of all VISION:Results edit codes.

LETTER Command
The LETTER command, followed by the application number, starts the
VISION:Results letter writing function in your procedure logic. The unique
application number ties this command to your LTH header statement and uses the
criteria specified in that statement (such as page width and length) to format your
letter.

W Leading -. Edit with
decimal insertion,
negative sign to the left of
the field, but no commas.
If the field has no decimal
positions and has a zero
value, zeros print. If it has
a zero value, zeros print.

-001234.56 prints as

0000000.00 prints as

000000000 prints as

-001234.56

0000000.00

000000000

D Date edit of a 6-byte zoned
decimal or 4-byte packed
field.

011599 prints as 01/15/99

V Edit a date field
containing a 4-digit year.
The date field must be
either an 8-byte zoned
decimal or 5-byte packed
field.

01151999 prints as 01/15/1999

S Edit a social security
number from a 9-byte
numeric or 5-byte packed
field.

999999999 prints as 999-99-9999

Edit
Code Description Examples

VISION:Results FILE statement
and field definition statements
.
.
LTH 01 75 WIDE 66 LONG
LTD
. (Body of letter)
.
ENDLTD

LETTER 01

Figure 27-6 LETTER Command
27–18 VISION:Results Reference Guide

Laser JCL
This LTH statement specifies a letter length of 66 lines and width of 75 characters.
No IDLENGTH or INDENT has been specified; it defaults to a page eject before
each letter.

The LETTER command starts the printing of these letters. Without this invoking
command, no letters are printed, even though a letter has been fully defined in
your program.

The LETTER command and application number can be followed by From-To line
numbers to print a range of letter lines. See Example 5 on page 27-32 for a
description of this option.

Laser JCL
Note: This section only applies to OS/390.

When using the laser option, an additional JCL DD statement is required. An
example follows with an explanation of the DD parameters:

The ddname AUDPRINT is required and must be coded this way.

The DD parameters are:

//AUDPRINT DD SYSOUT=(1,,DYL1),FCB=DYL1,
// CHARS=(GP12,SB12),BURST=N,
// DCB=(BLKSIZE=80,RECFM=FA,OPTCD=J)

Figure 27-7 Laser JCL (OS/390) Example

SYSOUT=(class,program,form) The SYSOUT= parameter routes the
print to the system output device. This is
determined by installation standards.

Class – output class.

Program – name of the program in
SYS1.LINKLIB.

Form – request to the operator to mount
special forms.

FCB=image-id The FCB parameter specifies the forms
control image for printers and controls
the movement of forms on a printer.
Using Letter Writing 27–19

Letter Writing Considerations
Letter Writing Considerations
� If the letter is using a data name in the buffer area of a VSAM file and the letter

command is started after end of file, the job aborts with a system 731 abend
message. To avoid this, move either the field(s) or the entire record in the buffer
to a work area. The data names used are defined by your work area, not your
buffer area.

� No code should follow the keyword ENDLTD – this command must stand
alone on the statement line.

� If From and To are used with the LETTER invoking command and there are no
corresponding lines in the letter definition to match this range, no letter is
generated.

� If data within a variable extends beyond a line's width in an @(ASIS) line, the
variable data is continued on the next line of print, forcing an extra line into the
letter.

� Literals (including phrases enclosed within quotation marks) and data names
cannot be continued onto a second line.

� If any letter keywords or commands are included in the text of a letter, they
must be enclosed within single or double quotation marks.

� The @ sign cannot be used as a constant in the text of a letter. If @ is required in
your print line, it must be contained in a field and the data name of the field
must be referenced in your letter text.

CHARS=(table, ..., table) Specifies which character sets are
available in this run. When multiple
character sets are specified, the
OPTCD=J parameter must be coded.

BURST=Y or N This parameter specifies whether output
should be burst into separate sheets (Y)
or in continuous fanfold mode (N).

DCB=(..., OPTCD=J) When multiple character sets are
specified, this parameter specifies the
byte that selects the table used to print a
line.
27–20 VISION:Results Reference Guide

Channel Skipping With Two-up Letter Processing
� If an apostrophe is used in a string, that string must be in quotation marks. For
example:

� If a packed decimal field is printed without zero suppression and it is zero in
value, it is printed with the first position blank. This blank position is the
significant start character in the edit mask.

� If an LTD statement has a quotation-marked data string and there are commas
in the statement, place the comma inside the outer quotation marks. For
example:

THE FOUR BOOKS "'EXODUS'," "'MILA-18'," "'TRINITY'" AND "'QB-VII'."

not:

THE FOUR BOOKS "'EXODUS'", "'MILA-18'", "'TRINITY'" AND "'QB-VII'."

� If you are using @nnn to specify exact positioning of your text, any blanks
between the @nnn and the first non-blank character are ignored. In the
example:

LTD @10 1996 1997 @27 1998

1996 starts at position 10 and 1998 starts at position 27 — the spaces between
@10 and 1996, and @27 and 1998, are dropped. However, all other extraneous
blanks in the line (for example, between 1996 and 1997) are not removed.

� If you specify @(ASIS) on your LTD statement, blanks following @(ASIS) and
the first non-blank character are not removed. In the example:

LTD @(ASIS) 1996 1997

1996 and 1997 are preceded by five blanks.

� Letters cannot be copied into a VISION:Results program using the COPY,
COPYP, COPYL, or COPYC command.

Channel Skipping With Two-up Letter Processing
When channel skipping with two-up letter processing, you must specify to
VISION:Results where the channels are physically on the printed page. The COPY
member DYCHANEL is provided to help with the channel specification. You must
specify the application number and the line number, relative to the top of the page,

To produce the output: IS THIS MY BROTHER'S SHOE?

Specify: IS THIS MY “BROTHER'S” SHOE?

To produce the output: 'IS THIS MY BROTHER'S SHOE?'

Specify: “'IS THIS MY BROTHER'S SHOE?'”
Using Letter Writing 27–21

Optimize and Nooptimize
associated with each channel. The format of the COPY DYCHANEL statement is
as follows, where #N= is the application number of the associated letter (00 to 99)
and #1= through #C= are the line numbers for channels 1–12, respectively:

COPY DYCHANEL #N= #1= #2= #3= #4= #5= #6= #7=
#8= #9= #A= #B= #C=

Only used channels need to be specified. The line numbers must be progressively
larger as the channels increase. For example, the line number for channel 6 must
be greater than the line number for channel 5. If channel 1 is not specified, it
defaults to 1, the first line on the page.

The COPY DYCHANEL statement must be coded before the LTH statement for the
associated letter. For example, to use channel skips 2, 4, and 7 in a two-up letter
where channel 2 is line 5, channel 4 is line 15, and channel 7 is line 32 on the page,
you code:

COPY DYCHANEL #N=01 #2=5 #4=15 #7=32

LTH 1 TWOUP
LTD @(CH2) @1 THIS IS THE FIRST LINE.
LTD @(CH4) @1 THIS IS THE SECOND LINE.
LTD @(CH7) @1 THIS IS THE THIRD LINE.
ENDLTD

Optimize and Nooptimize
Placing the keyword OPTIMIZE on the LTH statement writes as few lines as
possible, yet achieves the requested printed letter. NOOPTIMIZE disables the
optimize feature during the letter writing process. NOOPTIMIZE is the default.

When channel skipping is performed with OPTIMIZE, the line numbers of the
channels to be used must be specified using the COPY DYCHANEL statement. See
Channel Skipping With Two-up Letter Processing on page 27-21 for a description
of this procedure. VISION:Results channel skips when this results in fewer lines
being generated. DYCHANEL is only activated if the letter detail contains at least
one @(CHnn) command.

OPTIMIZE also causes space zero printing to work differently. Normally, @(SP0)
means print the line and space zero lines, while @(SPn) (where n is greater than
zero) means space n lines and print the line. The OPTIMIZE keyword makes
@(SP0) consistent with @(SPn); the spacing operation becomes, in all cases, space
before and write the print line.

The following example demonstrates the difference between using OPTIMIZE and
not using OPTIMIZE.

COPY DYCHANEL #N=01 #1=1 #3=4 #4=10 #7=20 #8=40

LTH 1 ASA DYLTRAB
LTD @(EJECT) @1 THIS IS LINE 1 - CHANNEL 1.
LTD @(SP3) @1 THIS IS LINE 4 - CHANNEL 3.
LTD @(SP7) @1 THIS IS LINE 11.
LTD @(CH8) @1 THIS IS LINE 40 - CHANNEL 8.
ENDLTD
27–22 VISION:Results Reference Guide

Letter Writing Examples
The above code generates the following nine lines for each letter.

The first position of each line is the ASA carriage control character.

The following example demonstrates the effect of placing the keyword OPTIMIZE
on the LTH statement:

LTH 1 ASA DYLTRAB OPTIMIZE

The above code generates the following five lines for each letter.

Without specifying OPTIMIZE, nine lines per letter are generated; while, with
OPTIMIZE, only five lines per letter are generated. The printed letter is identical in
either case, assuming that channel 4 is line 10 of the page.

Letter Writing Examples
The following sections are examples to help you with the letter writing features.

Example 1 Specifying a Letter

George & Co., a wholesale distributor, wants to send a letter to each of its
customers announcing a price increase on merchandise. The company's input file,
stored on tape, contains numerous records, one for each account. The fields

Line number
1THIS IS LINE 1 - CHANNEL 1. 1

2

0THIS IS LINE 4 - CHANNEL 3. 3

4

- 5

-THIS IS LINE 11. 6

7

8THIS IS LINE 40 - CHANNEL 8. 8

9

Line number
1THIS IS LINE 1 - CHANNEL 1. 1

-THIS IS LINE 4 - CHANNEL 3. 2

4 3

THIS IS LINE 11. 4

8THIS IS LINE 40 - CHANNEL 8. 5
Using Letter Writing 27–23

Letter Writing Examples
defined in the following table illustrate some of the information stored concerning
each customer. The information on this tape provides the variable data needed for
insertion in each letter.

File characteristics: format = blocked, record size = 352, block size = 5280

Key: NU = numeric, CH = character, PD = packed decimal

Input to VISION:Results
Figure 27-8 shows the letter writing statements and VISION:Results program
required to generate the letter described above.

The numbers at the left of these statements are used to discuss the various features
of the letter and how they are invoked.

Field
Size

Field
Position Description

Data
Type Decimal

Data Name
Used

7 4 ACCOUNT NUMBER NU ACCTNO

6 44 BILLING DATE CH BILLNGDATE

25 85 ACCOUNT NAME CH NAME

25 110 STREET ADDRESS CH ADD1

25 135 CITY,STATE,ZIP CH ADD2

5 170 BALANCE AMOUNT PD 2 BALANCE

2 182 ACCOUNT CODE CH ACCTCODE

1 FILE ARFILE INPUT FB 352 5280
2 NAME 25 85
3 ADD1 25 110
4 ADD2 25 135
5 ACCTNO 7 4 NU
6 LTH 01 60 WIDE 30 LONG
7 LTD @20 GEORGE & CO.
8 LTD @20 16255 VENTURA BLVD.
9 LTD @20 ENCINO, CALIFORNIA
10 LTD @(SP2) @42 @DYLDATE
11 LTD @(SP2 ASIS)@NAME
12 LTD @(ASIS)@ADD1
13 LTD @(ASIS)@ADD2
14 LTD @(SP2 ASIS)DEAR CUSTOMER:
15 LTD @(SP2) ON DECEMBER 6, 1998, OUR PRICES MUST BE RAISED 15% ON
16 LTD STEREO EQUIPMENT, TAPE DECKS AND OTHER ITEMS. WE URGE YOU
17 LTD TO PLACE HOLIDAY SEASON ORDERS NOW TO AVOID THESE INCREASES.
18 LTD @(SP2) @42 YOURS TRULY,
19 LTD @(SP4) @42 SALES MANAGER.
20 ENDLTD
21 LETTER 01

Figure 27-8 Example 1 Letter Writing Input Statements
27–24 VISION:Results Reference Guide

Letter Writing Examples
Statement 1 is the FILE statement that defines the input file, ARFILE, containing
the variable information to insert in each letter.

Statements 2–5 are the field definition statements, where data names are assigned
to the fields that contain the variable information needed in the letters.

In statement 6 (the LTH header), a 60-character line width and 30-line page length
is specified. VISION:Results defaults to a page eject at the beginning of each letter.
No INDENT or IDLENGTH values have been specified.

LTD statements 7–9 specify that the company name, street address, city, and state
are to be printed starting at position 20. No line spacing has been specified, so these
three lines are single-spaced.

Following the company name and address, LTD statement 10 specifies that
double-spacing is to occur; the current date is printed at position 42. The prefix @
precedes the reserved word DYLDATE (the current date).

LTD statement 11 specifies that double-spacing is to occur after the current date,
and the variable information contained in the field NAME is printed starting in
line position 1. On the next two lines, the variable information in the fields ADD1
and ADD2 is printed, each beginning at position 1. @(ASIS) is specified on each of
the address lines so that text compression does not occur. If @(ASIS) were omitted
here, ADD2 would follow ADD1 on the same line.

After double-spacing, the letter salutation DEAR CUSTOMER: (LTD statement 14)
is printed. Statements 15–17 contain the body of the letter. Note that statements 16
and 17 contain no edit options; therefore, automatic text compression of the letter
body occurs. The text wraps around within the 60-character print line specified in
the header. The ENDLTD command terminates the letter statements.

Statement 21 is the procedure logic. The command LETTER 01 means that
processing of a letter is to take place on each record in the input file. After
processing, each letter is to be printed. The 01 application number that appears in
the header statement and the LETTER command links these statements together.
If two unique letters were coded in this program (the second defined by the
application number 02), the LETTER 01 command would invoke processing of
letter 01 only. If the LETTER command is not present, printing of letters is never
invoked.
Using Letter Writing 27–25

Letter Writing Examples
VISION:Results Output
One of the letters generated by this program is shown in Figure 27-9.

Example 2 Selecting Records and Generating Reports

George & Co.'s marketing department has prepared a catalog of special items that
they want to make available to their best customers. These customers all have an
account code of MO on the accounts receivable file. The marketing manager wants
a cover letter sent to all MO accounts, offering the catalog and a copy of the guide
Restaurants of Southern California to all who respond by August 15th.

This example differs from Specifying a Letter on page 27-23 in that record selection
is being performed using procedure logic, so that only MO accounts receive letters,
rather than all accounts on the file. In addition, a report is generated, listing
accounts eligible to receive the special catalog.

Input to VISION:Results
The required letter writing statements and VISION:Results program appear in
Figure 27-10.

GEORGE & CO.
16255 VENTURA BLVD.
ENCINO, CALIFORNIA

11/02/01

ANDREWS, CHARLES
1310 LOMA DR.
CAMBRIA PINES, CA

DEAR CUSTOMER:

ON DECEMBER 6, 1999, OUR PRICES MUST BE RAISED 15% ON STEREO
EQUIPMENT, TAPE DECKS, AND OTHER ITEMS. WE URGE YOU TO
PLACE HOLIDAY SEASON ORDERS NOW TO AVOID THESE INCREASES.

YOURS TRULY,

SALES MANAGER.

Figure 27-9 Example 1 Output—Letter Writing Generated Letter

1 COPY DYAUDREC
2 LTH 01 66 WIDE
3 LTD @23 GEORGE & CO.
4 LTD @23 16255 VENTURA BLVD.
5 LTD @23 ENCINO, CALIFORNIA
6 LTD @(SP2) @50 @DYLDATE
7 LTD @(SP2)@NAME @50 @ACCTNO
8 LTD @(ASIS)@ADD1
9 LTD @(ASIS)@ADD2
10 LTD @(SP2 ASIS)DEAR CUSTOMER:
11 LTD @(SP2) AS A VALUED CUSTOMER, YOU CAN RECEIVE OUR SPECIAL PURCHASE
12 LTD CATALOG IF YOU RESPOND BY AUGUST 15. JUST RETURN THE FORM BELOW
13 LTD AND THE CATALOG WILL BE ON ITS WAY, TOGETHER WITH A FREE COPY OF

Figure 27-10 Example 2 Letter Writing Input Statements (Page 1 of 2)
27–26 VISION:Results Reference Guide

Letter Writing Examples
The numbers at the left are for reference purposes only.

In statements 18–21, note the use of the edit options @(SP2 ASIS), indicating to
double-space between each of these lines and to omit automatic text compression.

The IF statement coded at lines 23–27 selects only those accounts with the MO code
to receive the letter. The printing of the letters is invoked by the LETTER 01
command, statement 24. The LIST statement (statement 25) generates a report of
all accounts receiving the letter.

14 LTD '"RESTAURANTS OF SOUTHERN CALIFORNIA."'
15 LTD @(SP2) @50 SINCERELY,
16 LTD @(SP4) @50 GEORGE & CO.
17 LTD @(SP2) @23 --------------------
18 LTD @(SP2 ASIS)PLEASE SEND MY CATALOG AND BONUS GIFT TO:
19 LTD @(SP2 ASIS)NAME: ___
20 LTD @(SP2 ASIS)ADDRESS: __
21 LTD @(SP2 ASIS)CITY: _______________________STATE:_______ZIP:_______
22 ENDLTD
23 IF ACCTCODE EQ 'MO'
24 LETTER 01
25 LIST ACCTNO (ACCOUNT'NUMBER) NAME ADD1 (STREET) ADD2 (CITY'STATE)
26 BALANCE
27 ELSE REJECT ENDIF
28 ON FINAL
29 LIST SUM BALANCE WITH 2 BEFORE
30 T1 'CUSTOMERS ELIGIBLE FOR SPECIAL CATALOG' WITH 2 AFTER

Figure 27-10 Example 2 Letter Writing Input Statements (Page 2 of 2)
Using Letter Writing 27–27

Letter Writing Examples
VISION:Results Output
Figure 27-11 shows one of the letters generated, and Figure 27-12 shows the report
of customers eligible for the special catalog.

Example 3 Generating Address Labels

George & Co.'s sales department has some special literature on upcoming
merchandise. They want address labels generated for all records on the accounts
receivable file and plan to use these labels for their mailing.

GEORGE & CO.
16255 VENTURA BLVD.
ENCINO, CALIFORNIA

08/01/01

MORENO, ELIZABETH 6039804
208 1/2 INEZ ST
NORWALK CA 90605

DEAR CUSTOMER:

AS A VALUED CUSTOMER, YOU CAN RECEIVE OUR SPECIAL PURCHASE CATALOG
IF YOU RESPOND BY AUGUST 15. JUST RETURN THE FORM BELOW AND THE
CATALOG WILL BE ON ITS WAY, TOGETHER WITH A FREE COPY OF
"RESTAURANTS OF SOUTHERN CALIFORNIA."

SINCERELY,

GEORGE & CO.

PLEASE SEND MY CATALOG AND BONUS GIFT TO:

NAME:__

ADDRESS:___

CITY:______________________ STATE:___________ ZIP:___________

Figure 27-11 Example 2 Letter Writing Generated Letter

CUSTOMERS ELIGIBLE FOR SPECIAL CATALOG

ACCOUNT NAME STREET CITY BALANCE
NUMBER STATE

6039804 MORENO,ELIZABETH 208 1/2 INEZ ST NORWALK CA 90605 .00
6007724 HARRINGTON,RUTH 222 MAPLE AVEL LOS ANGELES 37.60
6017479 BERSON,ANNA 4159 FANCHO AVE SP9 LOS ANGELES CA 3.00
6012132 ZENZOLA,MICHAEL 9729 MOTOR AVE BELLFLOWER CA 90706 30.20
2002922 FLOWERS,ETHEL 4420 ARKANSAS LOS ANGELES CA 90048 2,541.70
6204384 FREDRICK,EMERY 573 VAN HORNE AVE LOS ANGELES CA 15.00
6001327 CARLON,MR MARIANO 3417 CEDAR LOS ANGELES CA 118.00
8002053 JENNINGS,WILL 9560 N HAYWORTH 210 LOS ANGELES CA 56.35

2,801.84

Figure 27-12 Example 2 Letter Writing Report of Customers Eligible
27–28 VISION:Results Reference Guide

Letter Writing Examples
Input to VISION:Results
Figure 27-13 is the letter writing and VISION:Results program statements needed
to generate the address labels.

The numbers at the left are for reference purposes only.

Statement 1 is the FILE statement that identifies the input file to be used and
defines its attributes.

Statements 2 and 3 are field definitions (data names) of the name and address
fields in the input file.

Statements 4–8 are field definitions of WORKAREAs used by the program during
processing.

Statements 9–14 are the letter writing statements required to generate three-up
labels for all records on the accounts receivable file. In the LTH statement, the lines
per page has been set to zero and the NOEJECT keyword is coded so that the
default page eject at 56 lines is not taken. (Continuous forms such as labels
generally use 0 LONG.)

Statements 15–32 make up the procedure logic. Statements 15–27 read three
records and move the address information for each record to the WORKAREA
(NAMEADDR1, NAMEADDR2, NAMEADDR3). When invoked, the LETTER 01
command (statement 26) generates three-up labels, each consisting of three lines

1 FILE ARFILE INPUT FB 352 5280
2 NAME 25 85 CH ADD1 25 110 CH
3 ADD2 25 135 CH NAMEADDR 75 85
4 WORKAREA
5 NAMEADDR1 75 VALUE ' ' REINIT NAME1 25 1 ADD1A 25 26 ADD1B 25 51
6 NAMEADDR2 75 VALUE ' ' REINIT NAME2 25 76 ADD2A 25 101 ADD2B 25 126
7 NAMEADDR3 75 VALUE ' ' REINIT NAME3 25 151 ADD3A 25 176 ADD3B 25 201
8 FLAG 1
9 LTH 01 100 WIDE 0 LONG NOEJECT
10 LTD @1 @NAME1 @29 @NAME2 @57 @NAME3
11 LTD @1 @ADD1A @29 @ADD2A @57 @ADD3A
12 LTD @1 @ADD1B @29 @ADD2B @57 @ADD3B
13 LTD @(SP1)
14 ENDLTD
15 RD1:
16 READ ARFILE
17 FLAG = 1
18 MOVE NAMEADDR TO NAMEADDR1
19 RD2:
20 READ ARFILE
21 MOVE NAMEADDR TO NAMEADDR2
22 RD3:
23 READ ARFILE
24 FLAG = 0
25 MOVE NAMEADDR TO NAMEADDR3
26 LETTER 01
27 ACCEPT
28 ON END OF INPUT
29 IF FLAG NE 0
30 LETTER 01
31 ENDIF
32 STOP

Figure 27-13 Example 3 Address Label Statements
Using Letter Writing 27–29

Letter Writing Examples
(the name and two address lines). A flag is set to 1 when the information to be
printed in the leftmost label is read; a flag is set to 0 when the information to be
printed in the rightmost label is read.

ON END OF INPUT logic is coded in statements 28–32. The LETTER 01 command
is invoked if the FLAG does not equal 0. This ensures that every record on the file
has an address label printed for it. Without this logic, printing of the last one or two
labels would be skipped if the total number of records on the file was not divisible
by three. Program processing is terminated.

VISION:Results Output
Figure 27-14 shows three of the address labels produced by this letter writing
program.

Example 4 Specifying a Print Length for Edited Data Names

Previously in this chapter, there were demonstrations about how to specify a print
length for edited data names, such as @AMOUNT(E,10), where the contents of the
field AMOUNT are printed in E format, right-aligned, within 10 print positions.
The print size is especially useful when printing numeric data in columns. For
example, the program shown in Figure 27-15 demonstrates the printing of
different size numeric fields in a column. Note that in statements 25–29, each
numeric field is to begin printing at position 45. By specifying the same print
length (statement 14) for each data name, the decimals align when the five fields
are printed. Figure 27-16 shows the results of this program.

TORRES,ERNESTO CHO PYUNG,SUH S.F.MEM.HOSP.
23444 PARK LANE 33333 PALL MALL 6789 OLD MAN RD
LOS ANGELES CA GLENDALE CA 91206 L.A. CA 90023

Figure 27-14 Example 3 Letter Writing Address Labels

1 FILE ARFILE INPUT FB 352 5280
2 ACCTNO 7 4 ; ACCOUNT NUMBER
3 NAME 25 85
4 ADD1 25 110 ; STREET
5 ADD2 25 135 ; STATE ZIP
6 INSTLBAL 6 191 PD 2 A ; INSTALLMENT BALANCE
7 INSTPAY 5 197 PD 2 A ; INSTALLMENT PAYMENT
8 BALPART 4 202 PD 2 A ; BALANCE PARTIAL PAYMENT
9 INTPART 3 206 PD 2 A ; INTEREST PARTIAL PAYMENT
10 NUMPY 2 209 PD A ; NUMBER PAYMENT
11 LTH 01 66 WIDE
12 LTD @(SP2)
13 LTD @23 GEORGE & CO.
14 LTD @23 16255 VENTURA BLVD.
15 LTD @23 ENCINO, CALIFORNIA
16 LTD @(SP2) @50 @DYLDATE
17 LTD @(SP2)@NAME @50 @ACCTNO
18 LTD @(ASIS)@ADD1
19 LTD @(ASIS)@ADD2
20 LTD @(SP2 ASIS)DEAR CUSTOMER:
21 LTD @(SP2) YOU NOW HAVE THE OPTION OF PAYING YOUR BALANCE IN EASY

Figure 27-15 Example 4 Print Length for Edited Data Names (Page 1 of 2)
27–30 VISION:Results Reference Guide

Letter Writing Examples
22 LTD MONTHLY INSTALLMENTS BY USING OUR REVOLVING CREDIT PLAN. IF
23 LTD YOU WISH TO DO SO PLEASE SIGN BELOW AND RETURN IN THE ENCLOSED
24 LTD ENVELOPE.
25 LTD @(SP2) @11 BALANCE @45 @INSTLBAL(A,14)
26 LTD @11 NO. OF MONTHLY INSTALLMENTS @45 @NUMPY(A,14)
27 LTD @11 MONTHLY PAYMENT @45 @INSTPAY(A,14)
28 LTD @11 PORTION APPLIED TO BALANCE @45 @BALPART(A,14)
29 LTD @11 INTEREST @45 @INTPART(A,14)
30 LTD @(SP2) @50 SINCERELY,
31 LTD @(SP4) @50 GEORGE & CO.
32 LTD @(SP4) @25 --------------------
33 LTD @(SP3 ASIS)YES, I WOULD LIKE TO USE YOUR REVOLVING CREDIT PLAN.
34 LTD @(SP3 ASIS)YOUR SIGNATURE _____________________ DATE _____________
35 ENDLTD
36 ;
37 IF NUMPY LE 0 REJECT ENDIF
38 LETTER 1
39 ACCEPT

GEORGE & CO.
16255 VENTURA BLVD.
ENCINO, CALIFORNIA

11/18/01

SANTA FE HOSP ASSN 60002587
1212 WISCONSIN DRIVE
LOS ANGELES CA 90023

DEAR CUSTOMER:

YOU NOW HAVE THE OPTION OF PAYING YOUR BALANCE IN EASY MONTHLY
INSTALLMENTS BY USING OUR REVOLVING CREDIT PLAN. IF YOU WISH TO
DO SO PLEASE SIGN BELOW AND RETURN IN THE ENCLOSED ENVELOPE.

BALANCE 2,230.17
NO. OF MONTHLY INSTALLMENTS 24
MONTHLY PAYMENT 103.40
PORTION APPLIED TO BALANCE 92.92
INTEREST 9.48

SINCERELY,

GEORGE & CO.

YES, I WOULD LIKE TO USE YOUR REVOLVING CREDIT PLAN.

YOUR SIGNATURE ________________________ DATE _____________

Figure 27-16 Example 4 Letter Writing Generated Letter

Figure 27-15 Example 4 Print Length for Edited Data Names (Page 2 of 2)
Using Letter Writing 27–31

Letter Writing Examples
Example 5 Printing a Range of Letter Lines

The LTD command can be followed by a number to associate a letter text statement
with a specific line number (see LTD Statements and Keywords on page 27-8 for
more information). A line number can range from 1 to 99 in value. The same line
number can be placed on multiple letter detail lines (LTDs) that are not necessarily
consecutive. When a line number is placed on a letter detail line, that line number
is propagated to all letter detail lines below it until the next letter detail line that
contains a line number.

The range of letter lines to be printed is determined by placing a range of lines on
the invoking LETTER statement. The format of that statement is:

LETTER nn [{FROM ff TO tt | FROM ff}]

where:

An example of this format is shown below:

LETTER 1 FROM 2 TO 5

The statement in this example invokes LETTER 1 and prints all detail lines that
have a line number of 2, 3, 4, or 5 following the LTD keyword.

If all text lines to be invoked have the same line number associated with the LTD
command, the statement would be:

LETTER 1 FROM 2 TO 2

This LETTER command format invokes the text (one or more lines) associated with
line number 2 only.

When printing a range of pages, page ejection occurs automatically when the first
physical line of the letter is printed. The automatic page ejection can be eliminated
by specifying NOEJECT in the header (LTH) statement.

VISION:Results generates and can dynamically alter a special reserved word field
(DYLCNxxLNC), which is the letter writing function's line counter for letter
writing application xx. When DYLCNxxLNC becomes larger than the maximum
lines per page, VISION:Results forces page ejection. Consequently, if the program
dynamically changes DYLCNxxLNC to a value that is greater than the maximum
lines per page, page ejection occurs when LETTER xx is next invoked.

The From-To Line Range technique makes the printing of repetitive information
formats easy to handle. The program shown in Figure 27-17 demonstrates how
repetitive billing information can be printed using the letter writing function.

Line number 1 encompasses letter statements 24–35. Line number 2 is letter
statement 36, and line number 3 encompasses letter statements 37 and 38. For each
letter, line number 1 is started once using program statement 41; line number 2 is

nn is the application number
ff is the From range line number
tt is the To range line number
27–32 VISION:Results Reference Guide

Letter Writing Examples
invoked multiple times using statement 49; and line number 3 is invoked once
using statement 55. One of the letters generated by this program is shown in
Figure 27-18.

1 FILE SMGFILE VB 1000 6000
2 OSMASTER41 1000 1 ; A/R OBLIGATION SUMMARY
3 OSNAME 29 1 ; NAME
4 OSADR1 22 30 ; ADDRESS 1.
5 OSADR2 22 96 ; CITY, STATE AND ZIP
6 OSBALANCE 6 118 PD 2
7 OSMASTER 818 124
8 OSACCT_NO 13 124 ; ACCOUNT NUMBER
9 OSNO_TRLS 2 200 PD E ; NUMBER OF TRAILERS
10 OSTRANAREA 740 202 ; OCCURS 20 TIMES
11 REDEFINE AT OSTRANAREA ; TRAILER LENGTH = 37 BYTES
12 OSOBLGAMT 5 213 PD 2 E ; OBLIGATION AMOUNT
13 OSDUE_DATE 4 228 PD D ; DUE DATE
14 ;
15 WORKAREA
16 CNT 2 PD
17 WK_AMT 5 PD 2
18 WK_DUE_DT 7 21
19 WK_DUE_DT2 6 22
20 WK_YY_MM 4 22
21 WK_DD 2 26
22 ;
23 LTH 01 66 WIDE
24 LTD1 @23 GEORGE & CO.
25 LTD @23 17418 CHATSWORTH ST.
26 LTD @23 GRANADA HILLS, CALIFORNIA 91344
27 LTD @(SP2) @50 @DYLDATE
28 LTD @(SP2)@OSNAME @47 @OSACCT_NO(B)
29 LTD @(ASIS)@OSADR1
30 LTD @(ASIS)@OSADR2
31 LTD @(SP2 ASIS)DEAR CUSTOMER:
32 LTD @(SP2) THE BALANCE OF YOUR ACCOUNT IS DUE. PLEASE REMIT
33 LTD $@OSBALANCE(A) BEFORE DECEMBER 20, 1999.
34 LTD @(SP2) @8 DUE DATE @55 AMOUNT
35 LTD @(SP2)
36 LTD2 @9 @WK_DUE_DT2(D) @49 @WK_AMT(A)
37 LTD3 @(SP2) @50 SINCERELY,
38 LTD @(SP4) @50 GEORGE & CO.
39 ENDLTD 40 MAIN:
41 LETTER 1 FROM 1 TO 1
42 MOVE OSNO_TRLS TO CNT
43 MOVE 0 TO INW
44 ;
45 LOOP1:
46 IF CNT LE 0 GOTO LOOP9 ENDIF
47 MOVE OSDUE_DATE(INW) TO WK_DUE_DT
48 MOVE OSOBLGAMT(INW) TO WK_AMT
49 LETTER 1 FROM 2 TO 2
50 INW = INW + 37
51 CNT = CNT - 1
52 GOTO LOOP1
53 ;
54 LOOP9:
55 LETTER 1 FROM 3 TO 3
56 ACCEPT

Figure 27-17 Example 5 Letter Writing Input Statements
Using Letter Writing 27–33

Letter Writing Examples
Example 6 Printing Using the Laser Option

George & Co.'s marketing department has prepared a catalog of special items that
they want to make available to their best customers. These customers all have an
account code of MO on the accounts receivable file. The marketing manager wants
a cover letter sent to all MO accounts, offering the catalog and a copy of the guide
Restaurants of Southern California to all who respond by September 16th.

This example differs from Selecting Records and Generating Reports on page 27-26
in that character sets are changed within the letter and the output is laser printed.

GEORGE & CO.
17418 CHATSWORTH ST.
GRANADA HILL, CALIFORNIA 91344

11/18/01

MARY ANNE BLACK 1013454541
BOX 404 MOUNTAIN RD
GREENWICH NY 12834

DEAR CUSTOMER:

THE BALANCE OF YOUR ACCOUNT IS DUE. PLEASE REMIT $89.09 BEFORE
DECEMBER 20, 1998.

DUE DATE AMOUNT

05/04/01 21.09
04/28/01 18.00
03/31/01 27.96
02/27/01 22.04

SINCERELY,

GEORGE & CO.

Figure 27-18 Example 5 Letter Writing Generated Letter

1 COPY DYAUDREC
2 LTH 01 66 WIDE LASER
3 LTD @23 GEORGE & CO.
4 LTD @23 16255 VENTURA BLVD.
5 LTD @23 ENCINO, CALIFORNIA
6 LTD @(SP2) @50 @DYLDATE
7 LTD @(SP2)@NAME @50 @ACCTNO
8 LTD @(ASIS)@ADD1
9 LTD @(ASIS)@ADD2
10 LTD @(SP2 ASIS)DEAR CUSTOMER:
11 LTD @(SP2 ASIS) @25 @(CS2) FREE OFFER
12 LTD LTD @(SP2 CS1)AS A VALUED CUSTOMER, YOU CAN RECEIVE OUR SPECIAL
13 LTD PURCHASE CATALOG IF YOU RESPOND BY SEPTEMBER 16. JUST
14 LTD RETURN THE FORM BELOW AND THE CATALOG WILL BE ON ITS WAY.
15 LTD TOGETHER WITH A FREE COPY OF
16 LTD @(CS2) '"RESTAURANTS OF SOUTHERN CALIFORNIA."'
17 LTD @(SP2 CS1) @50 SINCERELY,

Figure 27-19 Example 6 Letter Writing Input Statements (Page 1 of 2)
27–34 VISION:Results Reference Guide

Letter Writing Examples
As part of the LTH header in statement 2, the laser option has been specified that
sets an indicator to determine the maximum number (nn) of character sets per
letter. Because there is no (nn) coded, the default is four separate/unique character
sets within one letter.

The (CSnn) keywords on LTD statements 11, 12, 16, and 17 are used to specify
which character set is to be printed. The LTD statements 11 and 16 use the (CS2)
keyword, which specifies that the second character set specified in the JCL is to be
used. The (CS1) keyword on the LTD statements 12 and 17 resets the character set
to its original position.

18 LTD @(SP4) @50 GEORGE & CO.
19 LTD @(SP2) @23 -------------------------
20 LTD @(SP2 ASIS)PLEASE SEND MY CATALOG AND BONUS GIFT TO:
21 LTD @(SP2 ASIS)NAME: __
22 LTD @(SP2 ASIS)ADDRESS: ___
23 LTD @(SP2 ASIS)CITY: _____________________STATE:_________ZIP:__________
24 ENDLTH
25 IF ACCTCODE EQ 'MO'
26 LETTER 01
27 ELSE REJECT
28 ENDIF

GEORGE & CO.
16255 VENTURA BLVD.
ENCINO, CALIFORNIA

07/07/01

MORENO, ELIZABETH 6039804
208 1/2 INEZ ST
NORWALK CA 90605

DEAR CUSTOMER:

FREE OFFER

AS A VALUED CUSTOMER, YOU CAN RECEIVE OUR SPECIAL PURCHASE CATALOG
IF YOU RESPOND BY SEPTEMBER 16. JUST RETURN THE FORM BELOW AND
THE CATALOG WILL BE ON ITS WAY, TOGETHER WITH A FREE COPY OF
"RESTAURANTS OF SOUTHERN CALIFORNIA."

SINCERELY,

GEORGE & CO.

PLEASE SEND MY CATALOG AND BONUS GIFT TO:

NAME:__

ADDRESS:___

CITY:______________________ STATE:___________ ZIP:___________

Figure 27-20 Example 6 Letter Writing Generated Letter

Figure 27-19 Example 6 Letter Writing Input Statements (Page 2 of 2)
Using Letter Writing 27–35

Letter Writing Examples
Example 7 Generating Two-Up Letters Using the Defaults

This example shows how to produce two-up letters using some of the default
values. The phrase two-up means that two letters are produced side-by-side on a
page (one on the left, one on the right).

To produce two-up letters, the keyword TWOUP is used in the LTH statement.
The keyword BETWEEN (for spaces between letters) is not used, so the default is
5. This means that there are five blank spaces between the left-side letter and the
right-side letter on the page. The keyword LEFTSAVE (for the amount of space to
hold the left-side letter) is not used, so the default is 10K.

The width of each letter is specified as 60 using the keyword WIDE. The number
of lines per page has been specified as 56 using the keyword LONG. The
NEWPARA I5 parameter in the LTD statement after DEAR CUSTOMER: causes
the entire paragraph to be indented five spaces. The NEWPARA L3 parameter in
the LTD statement for the second paragraph causes the first line of the paragraph
to be indented three spaces.

The generated letters are shown following the source statements.

COPY DYAUDREC
LTH 1 60 WIDE 56 LONG TWOUP
LTD @(SP2) @25 GEORGE & CO.
LTD @25 16255 VENTURA BLVD.
LTD @25 ENCINO, CALIFORNIA
LTD @(SP2) @50 @DYLDATE
LTD @(SP2) @1 @NAME @50 @ACCTNO(Z)
LTD @1 @ADD1
LTD @1 @ADD2
LTD @(SP2) @1 DEAR CUSTOMER:
LTD @(SP2 NEWPARA I5) THIS
LTD FORM IS BEING SENT TO YOU SO THAT OUR INDEPENDENT AUDITORS
LTD CAN CONFIRM THE CORRECTNESS OF OUR RECORDS. THIS IS NOT A
LTD REQUEST FOR PAYMENT. OUR RECORDS ON @TRANDATE(D), SHOWED
LTD A BALANCE OF $@BALANCE(A).
LTD @(SP2 NEWPARA L3) PLEASE
LTD CONFIRM WHETHER THIS AGREES WITH YOUR RECORDS ON THAT DATE
LTD BY SIGNING AND RETURNING THIS FORM DIRECT TO OUR AUDITORS, RYAN,
LTD RYAN AND COMPANY, 201 SOUTH HOPE STREET, LOS ANGELES,
LTD CALIFORNIA 90071. AN ADDRESSED ENVELOPE IS ENCLOSED FOR THIS
LTD PURPOSE. IF YOU FIND ANY DIFFERENCE, PLEASE REPORT THEM TO
LTD THE AUDITORS.
LTD @(SP2) @40 VERY TRULY YOURS,
LTD @(SP3) @40 CONTROLLER
LTD @40 GEORGE & CO.
LTD @(SP5) @25 C O N F I R M A T I O N
LTD @25 - - - - - - - - - - - -
LTD @(SP2) @1 RYAN, RYAN AND COMPANY
LTD @1 201 SOUTH HOPE STREET
LTD @1 LOS ANGELES, CA 90071
LTD @(SP2) @1 THE ABOVE INFORMATION IS CORRECT EXCEPT AS NOTED BELOW:
LTD @(SP2) @1 --
LTD @(SP2) @1 --
LTD @(SP2) @1 BY: -------------------------- DATE: ---------------------
ENDLTD

LETTER 1

Figure 27-21 Example 7 Letter Writing Input Statements
27–36 VISION:Results Reference Guide

Letter Writing Examples
Example 8 Generating Two-Up Letters Using DYLCNxxSW

This example uses a two-page letter. By using the switching field DYLCNxxSW,
the first page of the letter for a record and the first page of the letter for the next
record are printed side-by-side on a single page; the second page of the letter for
the first record and the second page for the next record are printed side-by-side on
the following page, as shown in Figure 27-25. Without using the switch, the two
pages of the letter would be printed side-by-side for each record, as shown in
Figure 27-23.

In the program shown in Figure 27-24, the keyword TWOUP specifies two-up
letters. The keyword SWITCH specifies page switching. The @EJECT parameter in
the first LTD statement of the second letter specifies a page eject. The logic
statements specify using only the first 10 records of the file (for this example). The
other logic statements specify page switching by moving a Y into DYLCNxxSW
before the next letter is executed. In other words, left-to-right page switching
occurs only after the next record (for a pair) is read. The letter records for this next

GEORGE & CO. GEORGE & CO.
16255 VENTURA BLVD. 16255 VENTURA BLVD.
ENCINO, CA ENCINO, CA

3/24/01 3/24/01

8006547 6208657

TORRES, ERNESTO CHO PYUNG, SUM
23444 PARK LANE 33333 PALL MALL
LOS ANGELES CA GLENDALE CA

DEAR CUSTOMER: DEAR CUSTOMER:

THIS FORM IS BEING SENT TO YOU SO THAT OUR INDEPENDENT THIS FORM IS BEING SENT TO YOU SO THAT OUR INDEPENDENT
AUDITORS CAN CONFIRM THE CORRECTNESS OF OUR RECORDS. AUDITORS CAN CONFIRM THE CORRECTNESS OF OUR RECORDS.
THIS IS NOT A REQUEST FOR PAYMENT. OUR RECORDS ON THIS IS NOT A REQUEST FOR PAYMENT. OUR RECORDS ON
3/15/01, SHOWED A BALANCE OF $44.99. 3/17/01, SHOWED A BALANCE OF $32.00.

PLEASE CONFIRM WHETHER THIS AGREES WITH YOUR RECORDS ON PLEASE CONFIRM WHETHER THIS AGREES WITH YOUR RECORDS ON
THAT DATE BY SIGNING AND RETURNING THIS FORM TO OUR AUDITORS, THAT DATE BY SIGNING AND RETURNING THIS FORM TO OUR AUDITORS,
RYAN, RYAN AND COMPANY, 201 SOUTH HOPE STREET, LOS ANGELES, RYAN, RYAN AND COMPANY, 201 SOUTH HOPE STREET, LOS ANGELES,
CALIFORNIA 90071. AN ADDRESSED ENVELOPE IS ENCLOSED FOR THIS CALIFORNIA 90071. AN ADDRESSED ENVELOPE IS ENCLOSED FOR THIS
PURPOSE. IF YOU FIND ANY DIFFERENCE, PLASE REPORT THEM TO PURPOSE. IF YOU FIND ANY DIFFERENCE, PLASE REPORT THEM TO
THE AUDITORS. THE AUDITORS.

VERY TRULY YOURS, VERY TRULY YOURS,

CONTROLLER CONTROLLER
GEORGE & CO. GEORGE & CO.

C O N F I R M A T I O N C O N F I R M A T I O N
- -

RYAN, RYAN AND COMPANY RYAN, RYAN AND COMPANY
201 SOUTH HOPE 201 SOUTH HOPE
LOS ANGELES, CA 90071 LOS ANGELES, CA 90071

THE ABOVE INFORMATION IS CORRECT EXCEPT AS NOTED BELOW: THE ABOVE INFORMATION IS CORRECT EXCEPT AS NOTED BELOW:

__ __

__ __

BY: ______________________________ DATE: _____________________ BY: ______________________________ DATE: _____________________

Figure 27-22 Example 7 Letter Writing Generated Letter
Using Letter Writing 27–37

Letter Writing Examples
record are printed on the right side of the page. This example uses the default
value of 10K to hold the letter records of the left side of the page. You can specify
your own value for this parameter by using the keyword LEFTSAVE.

GEORGE & CO. PAGE 2
16255 VENTURA BLVD. GEORGE & CO.
ENCINO, CA

3/24/01 3/24/01

8006547 8006547

TORRES, ERNESTO TORRES, ERNESTO
23444 PARK LANE 23444 PARK LANE
LOS ANGELES CA LOS ANGELES CA

DEAR CUSTOMER: IF YOUR RECORDS DO NOT AGREE WITH OURS, PLEASE NOTE THE
DISCREPANCIES, SIGN AND RETURN THE FORM BELOW.

THIS FORM IS BEING SENT TO YOU SO THAT OUR INDEPENDENT
AUDITORS CAN CONFIRM THE CORRECTNESS OF OUR RECORDS. THIS VERY TRULY YOURS,
IS NOT A REQUEST FOR PAYMENT. OUR RECORDS ON 3/15/01,
SHOWED A BALANCE OF $44.99.

CONTROLLER
PLEASE CONFIRM WHETHER THIS AGREES WITH YOUR RECORDS ON GEORGE & CO.

THAT DATE BY SIGNING AND RETURNING THIS FORM TO OUR
AUDITORS, RYAN, RYAN AND COMPANY, 201 SOUTH HOPE STREET, LOS
ANGELES, CALIFORNIA 90071. AN ADDRESSED ENVELOPE IS
ENCLOSED FOR THIS PURPOSE. IF YOU FIND ANY DIFFERENCE,
PLASE REPORT THEM TO THE AUDITORS. D I S C R E P A N C I E S

- - - - - - - - - - - - -

RYAN, RYAN AND COMPANY
201 SOUTH HOPE

C O N F I R M A T I O N LOS ANGELES, CA 90071
- - - - - - - - - - - -

THE ABOVE INFORMATION IS INACCURATE AS NOTED BELOW:
RYAN, RYAN AND COMPANY
201 SOUTH HOPE __
LOS ANGELES, CA 90071

__
THE ABOVE INFORMATION IS CORRECT EXCEPT AS NOTED BELOW:

BY: ______________________________ DATE: _____________________
__

__

BY: ______________________________ DATE: _____________________

Figure 27-23 Example 8 Letter Writing Generated Letter Printing
27–38 VISION:Results Reference Guide

Letter Writing Examples
COPY DYAUDREC
LTH 1 60 WIDE 56 LONG TWOUP

4 BETWEEN SWITCH
LTD @1 PAGE 1
LTD @30 GEORGE & CO.
LTD @30 16255 VENTURA BLVD.
LTD @30 ENCINO, CALIFORNIA
LTD @(SP2) @50 @DYLDATE
LTD @(SP2) @1 @NAME @ACCTNO(Z)
LTD @1 @ADD1
LTD @1 @ADD2
LTD @(SP2) @1 DEAR CUSTOMER:
LTD @(SP2 NEWPARA L3) THIS
LTD FORM IS BEING SENT TO YOU SO THAT OUR INDEPENDENT AUDITORS
LTD CAN CONFIRM THE CORRECTNESS OF OUR RECORDS. THIS IS NOT A
LTD REQUEST FOR PAYMENT. OUR RECORDS ON @TRANDATE(D), SHOWED
LTD A BALANCE OF $@BALANCE(A).
LTD @(SP2 NEWPARA L3) PLEASE
LTD CONFIRM WHETHER THIS AGREES WITH YOUR RECORDS ON THAT
LTD DATE BY SIGNING AND RETURNING THIS FORM DIRECT TO OUR AUDITORS
LTD RYAN, RYAN AND COMPANY, 201 SOUTH HOPE STREET, LOS ANGELES,
LTD CALIFORNIA 90071. AN ADDRESSED ENVELOPE IS ENCLOSED FOR THIS
LTD PURPOSE. IF YOU FIND ANY DIFFERENCE, PLEASE REPORT THEM TO
LTD THE AUDITORS.
LTD @(SP5) @25 C O N F I R M A T I O N
LTD @25 - - - - - - - - - - - -
LTD @(SP2) @1 RYAN, RYAN AND COMPANY
LTD @1 201 SOUTH HOPE STREET
LTD @1 LOS ANGELES, CA 90071
LTD @(SP2) @1 THE ABOVE INFORMATION IS CORRECT EXCEPT AS NOTED BELOW:
LTD @(SP2) @1 ---
LTD @(SP2) @1 ---
LTD @(SP2) @1 ------------------------- DATE: ---------------------
LTD @(EJECT)
LTD @1 PAGE 2
LTD @30 GEORGE & CO.
LTD @(SP2) @50 @DYLDATE
LTD @(SP2) @1 @NAME @50 @ACCTNO(Z)
LTD @1 @ADD1
LTD @1 @ADD2
LTD @(SP2 NEWPARA I5) IF
LTD YOUR RECORDS DO NOT AGREE WITH OURS, PLEASE NOTE THE
LTD DISCREPANCIES, SIGN AND RETURN THE FORM BELOW.
LTD @(SP2) @40 VERY TRULY YOURS,
LTD @(SP3) @40 CONTROLLER
LTD @40 GEORGE & CO.
LTD @(SP5) @25 D I S C R E P A N C I E S
LTD @25 - - - - - - - - - - - - -
LTD @(SP2) @1 RYAN, RYAN AND COMPANY
LTD @1 201 SOUTH HOPE STREET
LTD @1 LOS ANGELES, CA 90071
LTD @(SP2) @1 THE ABOVE INFORMATION IS INACCURATE AS NOTED BELOW:
LTD @(SP2) @1 --
LTD @(SP2) @1 --
LTD @(SP2) @1 ------------------------- DATE: ----------------------
ENDLTD
DYLCOUNT1 = DYLCOUNT1 + 1

IF DYLCOUNT1 LE 10
MOVE 'Y' TO DYLCN01SW
LETTER 01

ENDIF

Figure 27-24 Example 8 Letter Writing Input Statements
Using Letter Writing 27–39

Letter Writing Examples
GEORGE & CO. GEORGE & CO.
16255 VENTURA BLVD. 16255 VENTURA BLVD.
ENCINO, CA ENCINO, CA

3/24/01 3/24/01

8006547 6208657

TORRES, ERNESTO CHO PYUNG, SUM
23444 PARK LANE 33333 PALL MALL
LOS ANGELES CA GLENDALE CA

DEAR CUSTOMER: DEAR CUSTOMER:

THIS FORM IS BEING SENT TO YOU SO THAT OUR INDEPENDENT THIS FORM IS BEING SENT TO YOU SO THAT OUR INDEPENDENT
AUDITORS CAN CONFIRM THE CORRECTNESS OF OUR RECORDS. THIS AUDITORS CAN CONFIRM THE CORRECTNESS OF OUR RECORDS. THIS
THIS IS NOT A REQUEST FOR PAYMENT. OUR RECORDS ON 3/15/01, IS NOT A REQUEST FOR PAYMENT. OUR RECORDS ON 3/17/01,
SHOWED A BALANCE OF $44.99. SHOWED A BALANCE OF $32.00.

PLEASE CONFIRM WHETHER THIS AGREES WITH YOUR RECORDS ON PLEASE CONFIRM WHETHER THIS AGREES WITH YOUR RECORDS ON
THAT DATE BY SIGNING AND RETURNING THIS FORM TO OUR AUDITORS, THAT DATE BY SIGNING AND RETURNING THIS FORM TO OUR AUDITORS,
RYAN, RYAN AND COMPANY, 201 SOUTH HOPE STREET, LOS RYAN, RYAN AND COMPANY, 201 SOUTH HOPE STREET, LOS
ANGELES, CALIFORNIA 90071. AN ADDRESSED ENVELOPE ANGELES, CALIFORNIA 90071. AN ADDRESSED ENVELOPE
IS ENCLOSED FOR THIS PURPOSE. IF YOU FIND ANY DIFFERENCE, IS ENCLOSED FOR THIS PURPOSE. IF YOU FIND ANY DIFFERENCE,
PLASE REPORT THEM TO THE AUDITORS. PLEASE REPORT THEM TO THE AUDITORS.

VERY TRULY YOURS, VERY TRULY YOURS,

CONTROLLER CONTROLLER
GEORGE & CO. GEORGE & CO.

C O N F I R M A T I O N C O N F I R M A T I O N
- -

RYAN, RYAN AND COMPANY RYAN, RYAN AND COMPANY
201 SOUTH HOPE 201 SOUTH HOPE
LOS ANGELES, CA 90071 LOS ANGELES, CA 90071

THE ABOVE INFORMATION IS CORRECT EXCEPT AS NOTED BELOW: THE ABOVE INFORMATION IS CORRECT EXCEPT AS NOTED BELOW:

__ ___

__ ___

BY: ______________________________ DATE: _____________________ BY: _____________________________ DATE: _____________________

PAGE 2 PAGE 2
GEORGE & CO. GEORGE & CO.

3/24/01 3/24/01

8006547 6208657

TORRES, ERNESTO CHO PYUNG, SUM
23444 PARK LANE 33333 PALL MALL
LOS ANGELES CA GLENDALE CA

IF YOUR RECORDS DO NOT AGREE WITH OURS, PLEASE NOTE THE IF YOUR RECORDS DO NOT AGREE WITH OURS, PLEASE NOTE THE
DISCREPANCIES, SIGN AND RETURN THE FORM BELOW. DISCREPANCIES, SIGN AND RETURN THE FORM BELOW.

VERY TRULY YOURS, VERY TRULY YOURS,

CONTROLLER CONTROLLER
GEORGE & CO. GEORGE & CO.

Figure 27-25 Example 8 Letter Writing Generated Letter Printing Side-by-Side with
Switch (Page 1 of 2)
27–40 VISION:Results Reference Guide

Letter Writing Examples
Example 9 Writing Letters to an Output File

Letter records (lines of a letter) can be written to an output file of your own
choosing. If no output file is specified, the default file is AUDPRINT/SYS009.
There are several reasons for using your own output file. Some of these are:

� If your letters are longer than 131 characters, you cannot use
AUDPRINT/SYS009.

� If your letters require using ASA carriage control characters (rather than
machine code), you cannot use AUDPRINT/SYS009.

� To manipulate the letter records independently of other records for audit
functions such as linear regression, make the letter records independent from
AUDPRINT/SYS009.

In this example, the first two items listed above are the reason for writing letter
records to an output file. The letter is 200 characters wide and requires ASA
carriage control. The number of lines per page is 56. The output letter records are
written to the file with the DD/DLBL name of DYLTRAB. The default blocking
factor for the output file is 10. The keyword ASA specifies ASA carriage control
characters for the output letter records.

D I S C R E P A N C I E S D I S C R E P A N C I E S
- -

RYAN, RYAN AND COMPANY RYAN, RYAN AND COMPANY
201 SOUTH HOPE 201 SOUTH HOPE
LOS ANGELES, CA 90071 LOS ANGELES, CA 90071

THE ABOVE INFORMATION IS INACCURATE AS NOTED BELOW: THE ABOVE INFORMATION IS INACCURATE AS NOTED BELOW:

__ __
__ __

BY: ______________________________ DATE: _____________________ BY: ______________________________ DATE: ___________________

Figure 27-25 Example 8 Letter Writing Generated Letter Printing Side-by-Side with
Switch (Page 2 of 2)
Using Letter Writing 27–41

Letter Writing Examples
COPY DYAUDREC
LTH 1 200 WIDE 56 LONG DYLTRAB ASA
LTD @(SP2) @25 GEORGE & CO.
LTD @25 16255 VENTURA BLVD.
LTD @25 ENCINO, CALIFORNIA
LTD @(SP2) @50 @DYLDATE

LTD @(SP2) @1 @NAME @50 @ACCTNO(Z)

LTD @1 @ADD1
LTD @1 @ADD2
LTD @(SP2) @1 DEAR CUSTOMER:
LTD @(SP2 NEWPARA L3) THIS
LTD FORM IS BEING SENT TO YOU SO THAT OUR INDEPENDENT AUDITORS
LTD CAN CONFIRM THE CORRECTNESS OF OUR RECORDS. THIS IS NOT A
LTD REQUEST FOR PAYMENT. OUR RECORDS ON @TRANDATE(D), SHOWED
LTD A BALANCE OF $@BALANCE(A).
LTD @(SP2 NEWPARA L3) PLEASE
LTD CONFIRM WHETHER THIS AGREES WITH YOUR RECORDS ON THAT DATE
LTD BY SIGNING AND RETURNING THIS FORM DIRECT TO OUR AUDITORS, RYAN,
LTD RYAN AND COMPANY, 201 SOUTH HOPE STREET, LOS ANGELES,
LTD CALIFORNIA 90071. AN ADDRESSED ENVELOPE IS ENCLOSED FOR THIS
LTD PURPOSE. IF YOU FIND ANY DIFFERENCE, PLEASE REPORT THEM TO
LTD THE AUDITORS.
LTD @(SP2) @40 VERY TRULY YOURS,
LTD @40 CONTROLLER
LTD @40 GEORGE & CO.
LTD @(SP5) @25 C O N F I R M A T I O N
LTD @25 - - - - - - - - - - - -
LTD @(SP2) @1 RYAN, RYAN AND COMPANY
LTD @1 201 SOUTH HOPE STREET
LTD @1 LOS ANGELES, CA 90071
LTD @(SP2) @1 THE ABOVE INFORMATION IS CORRECT EXCEPT AS NOTED BELOW:
LTD @(SP2) @1 --
LTD @(SP2) @1 --
LTD @(SP2) @1 BY: -------------------------- DATE: ---------------------
ENDLTD

LETTER 1

Figure 27-26 Example 9 Letter Writing Input Statements
27–42 VISION:Results Reference Guide

Chapter
28 U
sing Diagrams and Analyses
This chapter describes scatter diagrams, linear regression analyses, and trend line
analyses, including an example and implementation.

Defining Scatter Diagrams, Linear Regression Analyses, and
Trend Line Analyses

Scatter diagrams, linear regression analyses, and trend line analyses are methods
for studying and measuring the relationship between two variables when data
concerning the two variables are compiled empirically.

� Use scatter diagrams to graphically show the relationship between the two
variables.

� Use linear regression analyses to define a theoretical straight line that ties the
dependent variable to the independent variable.

� Trend line analyses are a subset of linear regression analyses in which the
independent variable is time-dependent.

Scatter Diagram
A scatter diagram is the plotting of a dependent variable against an independent
variable in a graphic representation. Each set of X,Y values defines a point on the
graph. For example, Figure 28-1 on page 28-2 shows the following variable
information plotted in a scatter diagram.

Variable Values

X 1 4 5 7 9 10 12 15 18

Y 5 11 13 15 21 25 30 35 40
Using Diagrams and Analyses 28–1

Defining Scatter Diagrams, Linear Regression Analyses, and Trend Line Analyses
Linear Regression Analyses
Use linear regression analyses to define the equation of a straight line by which the
dependent variable can be estimated from the independent variable. A straight
line is defined by the following equation:

Y = a + bX

where:

Using the method of least squares, a and b above are calculated so that the straight
line that is defined represents the line that fits best through the actual points. For
example, for the information shown above and illustrated in Figure 28-1, the linear
regression analysis line is:

Y = 2.2938 + 2.1525X

11/30/01 VISION:RESULTS SCATTERGRAPH
FOR APPLICATION 1

INDEPENDENT (X) VARIABLE - XVAR
DEPENDENT (Y) VARIABLE - YVAR

|
70 +

|
65 +

|
60 +

|
55 +

|
50 +

|
45 +

|
40 + X

|
35 + X

|
30 + X

|
25 + X

|
20 + X

|
15 + X

| X
10 + X

|
5 +X
.+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+----+--
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 28-1 Scatter Diagram

Y is the dependent variable.

a is the Y intercept (the point at which the line intersects the Y-axis).

b is the slope of the line.

X is the independent variable.
28–2 VISION:Results Reference Guide

Defining Scatter Diagrams, Linear Regression Analyses, and Trend Line Analyses
Figure 28-2 on page 28-3 shows the straight line in the scatter diagram. The
dependent value Y can now be estimated by the independent value X using the
above equation. Therefore, if X=2, then Y=6.5988.

Because the straight line approximates the positioning of the actual data, the
prediction of the dependent variable as a function of the independent variable is
subject to a degree of inaccuracy. The amount of that inaccuracy can be estimated
within confidence limits determined by the numerical value of the standard error
of the estimate.

The standard error of the estimate has the same relationship to the regression line
as the standard deviation does to the arithmetic mean. The normal curve Z values
are used in much the same way. That is, 68.26% of the deviations are within one
standard error of the estimate from the regression line; 95.44% of the deviations are
within two standard errors of the regression line.

For example, the standard error of the estimate in the above data is 1.1789. The
predicted dependent value for the independent value 4 is 10.9038. With a 95.44%
confidence, you can be certain that the actual dependent value is in the range
10.9038 ±2.3578, or between 8.5460 and 13.2626.

11/30/01
VISION:RESULTS SCATTERGRAPH

FOR APPLICATION 1

INDEPENDENT (X) VARIABLE - XVAR
DEPENDENT (Y) VARIABLE - YVAR

70 +
|

65 +
|

60 +
|

55 +
|

50 +
|

45 +
|

40 + X
|

35 + X
|

30 + X
|

25 + X
|

20 + X
|

15 + X
| X

10 + X
|

5 +X
|

0 +
.+----+
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 28-2 Linear Regression Analysis Line
Using Diagrams and Analyses 28–3

Input into VISION:Results
Correlation Coefficient
The Correlation Coefficient is a numerical measure of the amount of relationship
between the two variables. The value of the correlation coefficient ranges from -1
to +1. A value of 0 indicates that there is no linear relationship between the two
variables. When the value is positive, the Y values increase as the X values increase
(the regression line slopes upward from left to right). When the value is negative,
the Y values decrease as the X values increase (the regression line slopes
downward from left to right).

Coefficient of Determination
The Coefficient of Determination indicates how well the regression line
approximates the distribution of points. Its value may range from 0 to 1. The closer
it is to 0, the less likely the two variables are linearly related. The closer it is to 1,
the closer the distribution of points is to the regression line.

Coefficient of Non-Determination
The Coefficient of Non-Determination is 1 minus the coefficient of determination.
The closer it is to 1, the less likely the two variables are linearly related. The closer
it is to 0, the closer the distribution of points is to the regression line.

VISION:Results automatically calculates the slope and Y intercept of the
regression line, the standard error of the estimate, the correlation coefficient, the
coefficient of determination, and the coefficient of non-determination.

Trend Line Analyses
Trend line analyses as implemented in VISION:Results are a subfunction of linear
regression analyses in which the dependent variable is time-oriented (for example,
months or years).

Further Sources of Information
This chapter is a brief overview of statistical analyses. For more information, refer
to an elementary statistics textbook.

The sections that follow describe the formats to use when requesting scatter
diagrams, linear regression analyses, and/or trend line analyses plotting the
dependent variable against the independent variable for a graphical
representation of the relationship between the two.

Input into VISION:Results
The VISION:Results FILE and field definition statements for scatter diagrams,
linear regression analyses, and trend line analyses are identical except for the first
keyword. In all cases, the field definition statements must precede the statement
28–4 VISION:Results Reference Guide

Input into VISION:Results
defining your scatter diagram, linear regression analysis, or trend line analysis
request. The format of these statements is shown in Figure 28-3 through
Figure 28-5.

SCATTER nn XNAME dataname YNAME dataname
[TITLE dataname]
XSCATTER [n] FROM nnnnnnnnnnnnnn BY nnnnnnnnnnnnnn [FOR nn]
YSCATTER [n] FROM nnnnnnnnnnnnnn BY nnnnnnnnnnnnnn [FOR nn]

Figure 28-3 Syntax for SCATTER Statement

LINEAR nn XNAME dataname YNAME dataname
[TITLE dataname]
XSCATTER [n] FROM nnnnnnnnnnnnnn BY nnnnnnnnnnnnnn [FOR nn]
YSCATTER [n] FROM nnnnnnnnnnnnnn BY nnnnnnnnnnnnnn [FOR nn]

Figure 28-4 Syntax for LINEAR Statement

TREND nn XNAME dataname YNAME dataname
[TITLE dataname]
XSCATTER [n] FROM nnnnnnnnnnnnnn BY nnnnnnnnnnnnnn [FOR nn]
YSCATTER [n] FROM nnnnnnnnnnnnnn BY nnnnnnnnnnnnnn [FOR nn]

Figure 28-5 Syntax for TREND Statement

SCATTER
in Figure 28-3
only

Required. Indicates that a scatter diagram is requested. No
abbreviations are allowed. The keywords LINEAR or TREND
can be used instead of SCATTER. The three terms are
interchangeable.

LINEAR
in Figure 28-4
only

Required. Describes the application as a linear regression
analysis. No abbreviations are allowed. The keywords
TREND or SCATTER can be used instead of LINEAR. The
three terms are interchangeable.

TREND
in Figure 28-5
only

Required. Describes the application as trend line analysis. No
abbreviations are allowed. The keywords LINEAR and
SCATTER can be used instead of TREND. The three terms are
interchangeable.

nn Required. A unique application number must be assigned to
each request, even if different commands are used in the
defining statements. This number must be an integer with a
value from 1 to 99.
Using Diagrams and Analyses 28–5

Input into VISION:Results
Note: The remaining fields are required only if you are requesting a scatter
diagram.

XNAME Required. The data name of the field to be used as the
independent (X) variable. Must be previously defined in a
field definition statement. Any valid data name can be used.

YNAME Required. The data name of the field to be used as the
dependent (Y) variable. Must be previously defined in a field
definition statement. Any valid data name can be used.

TITLE The data name of the field containing the report title
presented as a literal. The contents of the title field print at the
top of the linear regression analysis (and scatter diagram, if
also requested). Must be previously defined in a field
definition statement. Any valid data name can be used. The
maximum size of the field is 70 characters.

XSCATTER Required. This value is the scaling factor for the independent
variable (X-axis). The values on the X-axis are divided by this
scaling factor before being printed. If omitted, this value
defaults to 1 unit.

blank
1
2
3
4

1 unit
Thousands
Millions
Billions
Trillions

FROM Required. The FROM starting value is on the X-axis of the
scatter diagram. It is a numeric value. Negative values must
be preceded by a minus sign. A leading dollar sign, a floating
decimal point, and commas are allowed. If a dollar sign and a
minus sign are both used, the dollar sign must precede the
minus sign; therefore, $- is correct. If no decimal point is
specified, right-alignment is assumed. The value (including
digits, any dollar sign, any minus sign, any decimal point, and
any commas) cannot exceed 14 characters. The unit value of
this field is determined by the XSCATTER scaling factor.
Therefore, if 1 is coded following XSCATTER, 1.5 coded after
FROM represents 1,500.
28–6 VISION:Results Reference Guide

Input into VISION:Results
BY Required. The BY value is the unit value on the X-axis of the
scatter diagram. This must be a positive numeric value. A
leading dollar sign, a floating decimal point, and commas are
allowed. The value (including digits, any dollar sign, any
decimal point, and any commas) cannot exceed 14 characters.
The unit value of this field is determined by the XSCATTER
scaling factor. Therefore, if 2 is coded following XSCATTER,
4.15 coded after BY represents 4.15 million.

FOR This value is the number of intervals to be printed on the
X-axis of the scatter diagram. The value of this field must be
an integer between 1 and 30, inclusive. If omitted, this value
defaults to 30.

YSCATTER Required. This value is the scaling factor for the dependent
variable (Y-axis). The values on the Y-axis are divided by this
scaling factor before being printed. If omitted, this value
defaults to 1 unit.

blank
1
2
3
4

1 unit
Thousands
Millions
Billions
Trillions

FROM Required. The FROM starting value is on the Y-axis of the
scatter diagram. It is a numeric value. Negative values must
be preceded by a minus sign. A leading dollar sign, a floating
decimal point, and commas are allowed. If a dollar sign and a
minus sign are both used, the dollar sign must precede the
minus sign; therefore, $- is correct. If no decimal point is
specified, right-alignment is assumed. The value (including
digits, any dollar sign, any minus sign, any decimal point, and
any commas) cannot exceed 14 characters. The unit value of
this field is determined by the YSCATTER scaling factor.
Therefore, if 1 is coded following YSCATTER, 1.5 coded after
FROM represents 1,500.

BY Required. The BY value is the unit value on the Y-axis of the
scatter diagram. This must be a positive numeric value. A
leading dollar sign, a floating decimal point, and commas are
allowed. The value (including digits, any dollar sign, any
decimal point, and any commas) cannot exceed 14 characters.
The unit value of this field is determined by the YSCATTER
scaling factor. Therefore, if 2 is coded following YSCATTER,
4.15 coded after BY represents 4.15 million.

FOR This value is the number of intervals to be printed on the
Y-axis of the scatter diagram. The value of this field must be
an integer between 1 and 20, inclusive. If omitted, this value
defaults to 20.
Using Diagrams and Analyses 28–7

Regression Command
Regression Command
To use linear regression analysis, you must specify the REGRESSION command in
your program procedure logic. If this command is omitted, no regression analysis
is performed.

REGRESSION nn

The REGRESSION command and the application number nn are directly
associated with the LINEAR, TREND, and/or SCATTER definition statements.
The application numbers for each request within a single VISION:Results program
must be unique, even if you use different keywords in your defining statements.

For example, if a single program included requests for a linear regression analysis
and a trend line analysis with a scatter diagram, you must specify two unique
application numbers, one for each report, as shown in Figure 28-6 and Figure 28-7.

When you are requesting a scatter diagram, linear regression analysis, or trend line
analysis, you can use the keywords LINEAR, TREND, and SCATTER
interchangeably in your request statements. The command to use in your
procedure logic is REGRESSION; this command is the same for all three
applications. You can also specify the type of regression analysis (LINEAR,
TREND, or SCATTER) following the REGRESSION command.

If the REGRESSION command is omitted, no scatter diagram, linear regression
analysis, or trend line analysis is performed or produced, even though the
application is defined in your program.

LINEAR 01 XNAME SALES YNAME PROFIT

TREND 02 XNAME YEARS YNAME SALES TITLE HDRTITLE
XSCATTER FROM 1998 BY 1 FOR 12
YSCATTER 1 FROM 0 BY 100 FOR 20

Figure 28-6 Regression Command, Example 1

REGRESSION LINEAR 01
REGRESSION TREND 02
REGRESSION SCATTER 03

Figure 28-7 Regression Command, Example 2
28–8 VISION:Results Reference Guide

Regression Command
Figure 28-8 shows the VISION:Results statements required to generate a linear
regression analysis and scatter diagram to determine if a linear relationship exists
between the values in the fields SALES and PROFIT on the file, INFILE.

The numbers on the right are used to explain the VISION:Results statements.

Statement 1 is the FILE statement, defining INFILE as the input file. Statements 2
and 3 are the field definition statements, defining the fields that contain the
independent data (SALES) and the dependent data (PROFIT).

The FILE and field definition statements must precede the statement defining your
scatter diagram, linear regression analysis, and/or trend line analysis
application(s).

Statements 4–6 are requesting linear regression analysis and a scatter diagram. The
fields defined by the data names SALES and PROFIT are used as independent and
dependent variables, respectively.

For the scatter diagram parameters, a scaling factor of 2 for both the sales and
profit data is specified; therefore, the data for both the independent (X-axis) and
dependent (Y-axis) variables are expressed in millions.

Statements 5 and 6 contain the following information:

� Plotting for both sales and profit data is to begin with zero value because FROM
0 has been coded for both XSCATTER and YSCATTER.

� The interval size on the X-axis (sales data) is to be .5 million; the Y-axis interval
size is .2 million.

� 24 intervals on the X-axis (out of a maximum of 30) and 18 on the Y-axis (out of
a maximum of 20) have been requested.

Statement 7, the REGRESSION command, constitutes the program procedure
logic. This command invokes a linear regression analysis with a scatter diagram,
as defined in statements 4–6.

FILE INFILE 1
SALES 8 1 PD 2 2
PROFIT 8 PD 2 3

LINEAR 01 XNAME SALES YNAME PROFIT 4
XSCATTER 2 FROM 0 BY .5 FOR 24 5
YSCATTER 2 FROM 0 BY .2 FOR 18 6

REGRESSION LINEAR 01 7

Figure 28-8 Linear Regression Analysis and Scatter Diagram Input Statements
Using Diagrams and Analyses 28–9

Output from VISION:Results
To request a linear regression analysis only, you would omit statements 5 and 6
from Figure 28-8 and only code the statement shown in Figure 28-9.

Output from VISION:Results
Figure 28-10 shows an example of the output generated by VISION:Results when
a linear regression analysis without a scatter diagram is requested. Figure 28-11
shows the same with the scatter diagram requested.

LINEAR 01 XNAME SALES YNAME PROFIT

Figure 28-9 Linear Regression Analysis Input Statements

11/30/01 VISION:RESULTS REGRESSION ANALYSIS PAGE 1
APPLICATION 1

LABEL OF INDEPENDENT (X) VARIABLE XVAR
LABEL OF DEPENDENT (Y) VARIABLE YVAR

REGRESSION LINE Y = A + BX
WHERE A = 19.9196-
AND B = 3.8720

STANDARD ERROR OF ESTIMATE 14.6635
CORRELATION COEFFICIENT .7297
COEFFICIENT OF DETERMINATION .5324
COEFFICIENT OF NON-DETERMINATION .4676

NO. OF RECORDS PROCESSED 140
TOTAL OF X VALUES 273.0
TOTAL OF Y VALUES 1,731.69-
MINIMUM X VALUE 5.0-
MAXIMUM X VALUE 8.9
MINIMUM Y VALUE 34.44-
MAXIMUM Y VALUE 46.77

Figure 28-10 Linear Regression Analysis without Scatter Diagram
28–10 VISION:Results Reference Guide

Output from VISION:Results
VISION:Results automatically calculates the following information:

� Y intercept of the regression line (A).

� Slope of the regression line (B).

� Standard error of the estimate.

� Correlation coefficient.

� Coefficient of determination.

� Coefficient of non-determination.

� Sum of the X values.

� Sum of the Y values.

� Minimum and maximum X values.

� Minimum and maximum Y values.

� Total number of records processed.

11/30/01 VISION:RESULTS REGRESSION ANALYSIS PAGE 1
APPLICATION 1

LABEL OF INDEPENDENT (X) VARIABLE XVAR
LABEL OF DEPENDENT (Y) VARIABLE YVAR

X STARTING VALUE 5-
X UNIT VALUE 1
X NO. OF INTERVALS 16

Y STARTING VALUE 40-
Y UNIT VALUE 6
Y NO. OF INTERVALS 20

REGRESSION LINE Y = A + BX
WHERE A = 19.9196-
AND B = 3.8720

STANDARD ERROR OF ESTIMATE 14.6635
CORRELATION COEFFICIENT .7297
COEFFICIENT OF DETERMINATION .5324
COEFFICIENT OF NON-DETERMINATION .4676

NO. OF RECORDS PROCESSED 140
TOTAL OF X VALUES 273.0
TOTAL OF Y VALUES 1,731.69-
MINIMUM X VALUE 5.0-
MAXIMUM X VALUE 8.9
MINIMUM Y VALUE 34.44-
MAXIMUM Y VALUE 46.77

NO. OF RECORDS OUTSIDE OF SCATTERGRAM 0
TOTAL X VALUE OF RECORDS OUTSIDE OF SCATTERGRAM 0.0
TOTAL Y VALUE OF RECORDS OUTSIDE OF SCATTERGRAM 0.00

Figure 28-11 Linear Regression Analysis with Scatter Diagram
Using Diagrams and Analyses 28–11

Output from VISION:Results
When the scatter diagram is requested, the report also includes the following
information, in addition to the information previously listed:

� Starting and unit value for X.

� Number of X intervals.

� Starting and unit value for Y.

� Number of Y intervals.

� Number of values that would not fit into the scatter diagram.

� Sum of the X and Y values not included in the scatter diagram.

If a large number of values are not included in the scatter diagram, the program
can be rerun with more appropriate starting values, unit values, and number of
intervals determined by the minimum and maximum X and Y values.

Figure 28-12 is an example of the VISION:Results scatter diagram.

11/30/01 VISION:RESULTS SCATTERGRAPH
FOR APPLICATION 1

INDEPENDENT (X) VARIABLE - XVAR
DEPENDENT (Y) VARIABLE - YVAR

|
86 +

|
74 +

|
68 +

|
62 +

|
56 +

|
50 +

|
44 + XXX

| X
38 + XX

| X
32 + X

| XXX
26 + X

| XX
20 + X

| XX
14 + XXX

| X
8 + XXX
| X X

2 + XX
| XX

4-+ XX
|X XX

10-+X X X X
| XXXX X X

16-+ X XXX
| XXX X X XX

22-+ XX X X X
| X XX X XXXXX

28-+ XXX X X XXX X
| XXXXXXXX X X XX XX XXX X

34-+ XXXXX XXXXXXX XXX
| X

40-+
.+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
5- 4- 3- 2- 1- 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 28-12 Scatter Diagram
28–12 VISION:Results Reference Guide

Examples of Linear Regression and Trend Line Analyses
Evaluation of Output
The purpose of linear regression analysis is to find and define a straight line that
adequately describes a body of data involving two variables. The coefficient of
determination indicates the following:

� Whether or not the two variables are linearly related.

� The form of the data within the scatter diagram.

In the linear regression analysis shown in Figure 28-11, the coefficient of
determination is .5324. Because it is not close to 1, it is very likely that the data does
not conform to a straight line very well. The scatter diagram in Figure 28-12
reinforces this conclusion. Therefore, in this case, the regression line used to
estimate the dependent variable from the independent variable would not be very
reliable.

Examples of Linear Regression and Trend Line Analyses

Linear Regression Analysis Example
The marketing manager for company ABC would like to determine the
relationship between weekly sales and profit for the last 200 weeks. The data
necessary for this analysis is maintained on an automated file.

Figure 28-13 shows the VISION:Results program that performs this analysis.

Figure 28-14 is the linear regression analysis.

FILE INFILE FB 65 650
SALES 8 1 PD 2
PROFIT 8 PD 2

LINEAR 01 XNAME SALES YNAME PROFIT
XSCATTER 2 FROM 0 BY .5 FOR 24
YSCATTER 2 FROM 0 BY .2 FOR 18

REGRESSION LINEAR 1

Figure 28-13 Linear Regression Analysis Input Statements

11/30/01 VISION:RESULTS REGRESSION ANALYSIS PAGE 1
APPLICATION 1

LABEL OF INDEPENDENT (X) VARIABLE SALES
LABEL OF DEPENDENT (Y) VARIABLE PROFIT

X SCALING FACTOR MILLIONS
X STARTING VALUE 0
X UNIT VALUE 0.5
X NO. OF INTERVALS 24

Figure 28-14 Linear Regression Analysis (Page 1 of 2)
Using Diagrams and Analyses 28–13

Examples of Linear Regression and Trend Line Analyses
Y SCALING FACTOR MILLIONS
Y STARTING VALUE 0
Y UNIT VALUE 0.2
Y NO. OF INTERVALS 18

REGRESSION LINE Y = A + BX
WHERE A = 22,853.7575 E+1
AND B = .3016

STANDARD ERROR OF ESTIMATE 11,800.9206 E+1
CORRELATION COEFFICIENT .9913
COEFFICIENT OF DETERMINATION .9827
COEFFICIENT OF NON-DETERMINATION .0173

NO. OF RECORDS PROCESSED 200
TOTAL OF X VALUES 1,121,897,320.00
TOTAL OF Y VALUES 384,046,724.00
MINIMUM X VALUE 233,910.00
MAXIMUM X VALUE 10,528,290.00
MINIMUM Y VALUE 130,657.00
MAXIMUM Y VALUE 3,509,523.00

NO. OF RECORDS OUTSIDE OF SCATTERGRAM 0
TOTAL X VALUE OF RECORDS OUTSIDE OF SCATTERGRAM 0.00
TOTAL Y VALUE OF RECORDS OUTSIDE OF SCATTERGRAM 0.00

Figure 28-14 Linear Regression Analysis (Page 2 of 2)
28–14 VISION:Results Reference Guide

Examples of Linear Regression and Trend Line Analyses
Figure 28-15 is the scatter diagram.

Because the correlation coefficient of .9827 is close to 1, the regression line
adequately describes the data. The scatter diagram confirms this conclusion.

Trend Line Analysis Example
The marketing manager for Company XYZ would like to determine the trend in
sales over the last 10 years. The sales data is maintained on an automated file.

Figure 28-16 shows the VISION:Results program requesting a trend line analysis.
Note that the title YEARLY SALES TREND, 1988 TO PRESENT prints at the top of
both the linear regression analysis and the scatter diagram. This was obtained by

11/30/01 VISION:RESULTS SCATTERGRAPH
FOR APPLICATION 1

INDEPENDENT (X) VARIABLE - SALES - EXPRESSED IN MILLIONS
DEPENDENT (Y) VARIABLE - PROFIT - EXPRESSED IN MILLIONS

|
4.2 +

|
4.0 +

|
3.8 +

|
3.6 +

| X
3.4 + X

| XXXXX
3.2 + X X XXX X

| XXX X X
3.0 + X X XXX X

| X XX
2.8 + X X X XX

| XX X XX X
2.6 + XXXX X X

| XX XX
2.4 + X X X

| X XXXX X
2.2 + X X X X

| X XX X X
2.0 + XX X X

| X XXXX
1.8 + XX XX X

| XXXX X
1.6 + X X XX X

| XX XXX X X X
1.4 + XX X

| XXXX XX
1.2 + X XX XX

| X X X XX
1.0 + XXXX X X

| X X
0.8 + X XX XXX X

| XXX XX X X
0.6 + XX X XX

| X X
0.4 + X XXX

| XX
0.2 + X

| X
0.0 +

.+---+
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 11.0 12.0

10.5 11.5 12.5

Figure 28-15 Scatter Diagram
Using Diagrams and Analyses 28–15

Examples of Linear Regression and Trend Line Analyses
including the optional keyword, TITLE, in the trend line statement and following
it with a data name. The data name HDRTITLE was chosen and defined with the
literal value YEARLY SALES TREND, 1988 TO PRESENT.

Figure 28-17 is the linear regression analysis.

FILE INFILE INPUT
YEARS 3 1 PD
SALES 8 PD 2

WORKAREA
HDRTITLE 35 1 VALUE 'YEARLY SALES TREND, 1988 TO PRESENT'

TREND 01 XNAME YEARS YNAME SALES TITLE HDRTITLE
XSCATTER FROM 1988 BY 1 FOR 12
YSCATTER 1 FROM 0 BY 100 FOR 12

REGRESSION TREND 1

Figure 28-16 Trend Line Analysis Input Statements

YEARLY SALES TREND, 1988 TO PRESENT
11/30/01 VISION:RESULTS REGRESSION ANALYSIS PAGE 1

APPLICATION 1

LABEL OF INDEPENDENT (X) VARIABLE YEARS
LABEL OF DEPENDENT (Y) VARIABLE SALES
LABEL OF TITLE FIELD (OPTIONAL) HDRTITLE

X STARTING VALUE 1,979
X UNIT VALUE 1
X NO. OF INTERVALS 12

Y SCALING FACTOR THOUSANDS
Y STARTING VALUE 0
Y UNIT VALUE 100
Y NO. OF INTERVALS 12

REGRESSION LINE Y = A + BX
WHERE A = 22,144.8336- E+4
AND B = 11,229.5661 E+1

STANDARD ERROR OF ESTIMATE 2,780.9550 E+1
CORRELATION COEFFICIENT .9963
COEFFICIENT OF DETERMINATION .9926
COEFFICIENT OF NON-DETERMINATION .0074

NO. OF RECORDS PROCESSED 10
TOTAL OF X VALUES 19,775
TOTAL OF Y VALUES 6,164,346.11
MINIMUM X VALUE 1,979
MAXIMUM X VALUE 1,989
MINIMUM Y VALUE 74,776.30
MAXIMUM Y VALUE 1,097,729.38

NO. OF RECORDS OUTSIDE OF SCATTERGRAM 0
TOTAL X VALUE OF RECORDS OUTSIDE OF SCATTERGRAM 0
TOTAL Y VALUE OF RECORDS OUTSIDE OF SCATTERGRAM 0.00

Figure 28-17 Trend Line Linear Regression Analysis
28–16 VISION:Results Reference Guide

Examples of Linear Regression and Trend Line Analyses
Figure 28-18 is the scatter diagram.

YEARLY SALES TREND, 1988 TO PRESENT
11/30/01 VISION:RESULTS SCATTERGRAPH

FOR APPLICATION 1

INDEPENDENT (X) VARIABLE - YEARS
DEPENDENT (Y) VARIABLE - SALES - EXPRESSED IN THOUSANDS

|
1400 +

|
|

1300 +
|
|

1200 +
|
|

1100 +
| X
|

1000 +
| X
|

900 + X
|
|

800 + X
|
|

700 +
|
| X

600 +
| X
|

500 +
|
| X

400 +
|
|

300 + X
|
| X

200 +
|
|

100 +
|X
|

0 +
.+--------+-------+--------+--------+--------+--------+--------+--------+--------+--------+--------+
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Figure 28-18 Trend Line Analysis Scatter Diagram
Using Diagrams and Analyses 28–17

Examples of Linear Regression and Trend Line Analyses
28–18 VISION:Results Reference Guide

Appendix
A R
eserved Words
Reserved Words

VISION:Results uses certain words for its own purposes. You should avoid
choosing them for your own data names. For example, the following is invalid:

FILE ARFILE INPUT FB 100 3000
COUNT 5 PD

COUNT is a VISION:Results reserved word and cannot be used as a data name in
a field definition.

All words starting with DYL are reserved, as well as those in the list beginning on
the next page.

Note: DYLVARP is a DYLINSTL macro parameter that allows the use of data
names prefixed with DYL. It is required only for VISION:Interface for DB2 and
VISION:Interface for SQL/DS. See the VISION:Interface for DB2 Reference Guide for
a definition of DYLVARP.
Reserved Words A–1

Reserved Words
NOTE: You cannot use the
blue reserved words
(marked with a ♥) as data
names if you ever intend to
use OPTION EXCEL. You
can only use the red
reserved words (marked
with a ♣) and blue reserved
words (marked with a ♥) as
data names if the DYLINSTL
parameter RESRWRD is
used, but this disables
certain VISION:Results
capabilities and
Computer Associates does
not recommend doing this.

Symbols

$$DUMP
$$KEYLEVEL
$$PCB
$COBOL
$DEFAULT
$DEND
$ECOBOL
$ELSE ♣
$ENDGDEF ♣
$ENDGSET ♣
$ENDSET ♣
$GDEF ♣
$GSET ♣
$IF
$IFE
$IFVALUE
$PRINT ♣
$SET ♣
$
% ♣
(
)
*
**
+
-
/
@ ♣
@nnn ♣
;
:
,
=
% macroname ♣
#anything

A

ABOVE
ABSOLUTE
ACCEPT
ACCEPTABLE ♥
ACCEPTANCE ♥
ACCTITLE ♥
ADD
ADVANCED ♣

AFTER
AGE ♥
AGEDATE ♥
AGEING ♣
AGING ♣
ALIAS
ALLOCATE
ALPHANUMERIC ♥
AMOUNTFIELD ♥
AND
AREA ♣
ARRAY ♣
ASA
ASCENDING ♣
ASCII
ASIS ♣
AT
ATTRIBUTE ♥
AUDIT ♣

B

BDAM
BEFORE
BELOW
BETWEEN
BI
BINSEARCH ♣
BITS
BLANK
BLANKS
BOOK
BOTH
BY
BYPASS

C

CALL
CALL_ATTACH
CARD
CARDS
CASE
CATPLANID
CATSYSID
CELL ♥
CH

CHANGE
CHnn ♣
CLOSE
COBOL
COLUMNS
COMBINE
COMPAREN ♣
CON ♣
CONFIDENCE ♥
CONTROL
CONVENTIONAL
COPY
COPYC
COPYDB2
COPYE
COPYL
COPYP
COPY260
CORR
CORRELATION ♥
CORRESPONDING
COUNT
CS
CSnn ♣
CTLBRK ♥
CTRLZ
CYLOFL

D

DATA
DATAVER
DATEFIELD ♥
DATEFORMAT ♥
DB2PLANID
DB2SYSID
DD/MM/YY ♥
DD/MM/YYYY ♥
DDMMYY ♥
DDMMYYYY ♥
DDNAME
DELETE ♣
DESCENDING ♣
DETAIL ♥
DIM ♣
DIMENSION ♣
DIRECTORY
DISCOVERY ♥
A–2 VISION:Results Reference Guide

Reserved Words
NOTE: You cannot use the
blue reserved words
(marked with a ♥) as data
names if you ever intend to
use OPTION EXCEL. You
can only use the red
reserved words (marked
with a ♣) and blue reserved
words (marked with a ♥) as
data names if the DYLINSTL
parameter RESRWRD is
used, but this disables
certain VISION:Results
capabilities and
Computer Associates does
not recommend doing this.

DISK
DISKETTE
DISKPASSWORD
DISTFIELD ♥
DLM
DMAP
DOLLAR ♥
DOS
DOUNTIL
DOWHILE
DROPCRLF
DROPERR
DUMMY
DUPLICATE ♣
DYACCEPT
DYL
DYL-SP
DYLCNAME1
DYLCNAME10
DYLCNAME2
DYLCNAME3
DYLCNAME4
DYLCNAME5
DYLCNAME6
DYLCNAME7
DYLCNAME8
DYLCNAME9
DYLCOMMON
DYLCOMRG
DYLCOUNT1
DYLCOUNT10
DYLCOUNT2
DYLCOUNT3
DYLCOUNT4
DYLCOUNT5
DYLCOUNT6
DYLCOUNT7
DYLCOUNT8
DYLCOUNT9
DYLDATE
DYLDATE4
DYLDATEPAG
DYLDATEPG4
DYLDLA
DYLETIME
DYLEXTA
DYLEXTAA
DYLGREG
DYLGREG4
DYLILDATE

DYLJULIAN
DYLJULIAN4
DYLLINE
DYLNOTOT
DYLNRP
DYLONE
DYLPAGE
DYLPAGE1
DYLPAGE2
DYLPAGE3
DYLPAGE4
DYLPAGE5
DYLPAGE6
DYLPAGE7
DYLPARM
DYLPARMLEN
DYLPPAGE
DYLPRCA
DYLPRTCOMM
DYLPRTMAXL
DYLPRTNUMB
DYLPRTPAGE
DYLREMAIN
DYLREPMAXL
DYLRESET
DYLRETURN
DYLSYSDATE
DYLSYSPARM
DYLTIME
DYLTRA
DYLTRAA
DYLTRAN
DYLUPSI
DYL280RA
DYNAM
DYNAMDB2
DYNEXT
DYSTORE

E

EBCDIC
EDIT
EDOS
EJECT ♣
ELSE
END
ENDCASE

ENDDO
ENDIF
ENDLTD ♣
ENDONE
ENTRY ♣
EOS
EQ
EQUAL ♥
ERASE
ERROR
ESDS
ESTIMATION ♥
EXCEL
EXCLUSIVE
EXEC
EXIT
EXITCASE
EXITDO
EXOR
EXT
EXTENSION
EXTENTS

F

F
FB
FBA
FFFF
FFFFEE
FFFFFF
FIELDNAME
FIELDS
FILE
FILENAME
FILES
FILL ♣
FILLER
FINAL
FIRSTDUP ♣
FIXED
FOOTING
FOR ♣
FORMAT
FREE
FREEZE
FREQ ♥
FREQUENCY
Reserved Words A–3

Reserved Words
NOTE: You cannot use the
blue reserved words
(marked with a ♥) as data
names if you ever intend to
use OPTION EXCEL. You
can only use the red
reserved words (marked
with a ♣) and blue reserved
words (marked with a ♥) as
data names if the DYLINSTL
parameter RESRWRD is
used, but this disables
certain VISION:Results
capabilities and
Computer Associates does
not recommend doing this.

FROM
FUTURE ♥

G

GE
GETCOM
GOTO
GROUP1 ♥
GROUP10 ♥
GROUP2 ♥
GROUP3 ♥
GROUP4 ♥
GROUP5 ♥
GROUP6 ♥
GROUP7 ♥
GROUP8 ♥
GROUP9 ♥
GT

H

HEX
HEXPRINT
HIDDEN
HIGHAMT ♥
HIGHVALUES
HISTOGRAM ♥
HTAB
HOLD

I

IDLEN ♣
IDLENGTH ♣
IDMSMOVE
IF
INDENT ♣
INPUT
INTERPRET
INTERVAL ♥
INTERVALNO ♥
INTERVALSIZE ♥
INTO
INTSEL

INW
INX
INY
INZ
IO
IS
ISAM
ITEMFIELD ♥
ITEMNO ♥
ITERATE

J

JCL

K

KEY ♥
KEYLEN
KEYLOC
KEYn ♣
KSDS

L

LASERnn ♣
LASTDUP ♣
LCPRINT
LE
LEFT
LEFTSAVE ♣
LENGTH
LETTER ♣
LIB ♣
LIBNAME
LIBPASSWORD
LINEAR ♥
LIST
LISTAG
LISTAUD
LISTINS
LIST26
LOGARITHMIC ♥
LOGIC
LONG

LOWAMT ♥
LOWER
LOWVALUES
LT
LTD ♣
LTDnn ♣
LTH ♣
L2U

M

MASTER
MASTERUP ♣
MATCH ♣
MATCHED ♣
MAXIMUM ♥
MEAN ♥
MEMBER
MERGE ♣
MIXED
MM/DD/YY ♥
MM/DD/YYYY ♥
MMDDYY ♥
MMDDYYYY ♥
MODIFY
MONETARY ♥
MOVE
MSGCSECT

N

NAMED
NE
NEGATIVE
NEW
NEWEXT
NEWEXTENSION
NEWFILENAME
NEWNAME
NEWPAGE
NEWPARA ♣
NEXT
NL
nn
NO ♥
NOCDLOAD
NOCOB2NR
A–4 VISION:Results Reference Guide

Reserved Words
NOTE: You cannot use the
blue reserved words
(marked with a ♥) as data
names if you ever intend to
use OPTION EXCEL. You
can only use the red
reserved words (marked
with a ♣) and blue reserved
words (marked with a ♥) as
data names if the DYLINSTL
parameter RESRWRD is
used, but this disables
certain VISION:Results
capabilities and
Computer Associates does
not recommend doing this.

NODYL4YEAR
NOEDIT ♣
NOEJECT ♣
NOERROR
NOEXCEL
NOFEED
NOLE
NONUMPD
NOOPTIMIZE ♣
NOPRINTD
NOPRINTDIGITS
NOPRINTEP
NOSYSBLOCK
NO_PRINT_ENTRY_PO
INTS
NOQLF
NOQUALIFIERS
NORETAIN
NORMALIZED
NORWD
NOSPOOL
NOSQL2DBC
NOSUM
NOT
NOTOTAL
NOXREF
NU
NULL
NULLOFF
NULLON
NUMERIC
NUMFILES
NUMPD

O

OFFSET
ON
ONE
ONEBUFF
ONES
OPTIMIZE ♣
OPTION
OPTIONS
OR
ORIGINAL
OS
OTHERWISE

OUTPUT
OVERAUDITING ♥

P

PAD
PAN ♣
PARM
PARTKEY
PASSWORD
PAST ♥
PATCHES
PATHNAME
PATHNAME01
PATHNAME02
PATHNAME03
PATHNAME04
PATHNAME05
PATHNAME06
PATHNAME07
PATHNAME08
PATHNAME09
PATHNAME1
PATHNAME10
PATHNAME11
PATHNAME2
PATHNAME3
PATHNAME4
PATHNAME5
PATHNAME6
PATHNAME7
PATHNAME8
PATHNAME9
PCFILE
PCWRITE
PD
PDS
PERCENTAGE ♥
PERFORM
PICNSAVE
PLANID
PLUnnn
POPULATION ♥
POSITION
POSITIVE
PRECISION
PRINT
PRINTD

PRINTDIGITS
PRINTEP
PRINT_ENTRY_POINT
S
PRINTERR
PRINTERROR
PRINTGEN ♣
PRINTNOGEN ♣
PRIOR
PROPORTIONAL ♥
PROTECT
PUTCOM

Q

QLF
QUALIFIERS
QUIKJOB
QUIT
QUITALL

R

RANDOM
RANDOMX
RANDPROG ♥
RANDPROGSIZE ♥
READ
READBOOK
READDIR
READIR
READMEM
READONLY
RECFM
REDEF
REDEFINE
REGRESSION ♣
REINIT
REJECT
RELBLK
RELBYTE
RELBYTEX
RELIABILITY ♥
RELREC
RELSORT
RELTRK
REPLACE
Reserved Words A–5

Reserved Words
NOTE: You cannot use the
blue reserved words
(marked with a ♥) as data
names if you ever intend to
use OPTION EXCEL. You
can only use the red
reserved words (marked
with a ♣) and blue reserved
words (marked with a ♥) as
data names if the DYLINSTL
parameter RESRWRD is
used, but this disables
certain VISION:Results
capabilities and
Computer Associates does
not recommend doing this.

REPLACING
REPLICA ♣
REPORT
REPORTFILE
REPORTn
REPORTnn
REPORTnnn
REPTITLE
RESTART
RESTORE
RETAIN
RETRIEVE ♣
RETSORT
REUSE
REWIND
RIGHT
ROUND
ROUNDED
RRDS

S

SAMPLE ♥
SAMPLING
SB
SCATTER ♣
SCRATCH
SEARCH ♣
SECURE
SEED ♥
SELECT
SEQUENTIAL
SETREAD ♣
SIZE
SKIP
SKIPX
SL
SMALL ♥
SORT
SORTING
SPACE
SPACES
SPn ♣
SPOOL
SQL2DBC
SSL
STANDARD ♥
START ♥

STATEOFF
STATEON
STATSQL
STATUS
STATUSFLAG
STDREPT ♥
STOP
STOPALL
STORE ♣
STRATIFIED ♥
STRATUM1 ♥
STRATUM10 ♥
STRATUM2 ♥
STRATUM3 ♥
STRATUM4 ♥
STRATUM5 ♥
STRATUM6 ♥
STRATUM7 ♥
STRATUM8 ♥
STRATUM9 ♥
STRUCTURED
STRUCTURED2
SUBDIR
SUBTOTAL
SUM
SUMMARY ♥
SUM1
SUM2
SUM3
SUM4
SUM5
SUM6
SUM7
SUPPRESS
SWITCH ♣
SYSBLOCK
SYSnnn
SYSTEMID
SYS280RA
S2R

T

TABAREA
TABLE ♣
TAPE
TEST
TEXT

THEN
THROUGH
THRU
TITLE ♣
Tn
TO
TOTAL
TPRINT
TRAN
TRANSLATE
TREND ♣
TSIZE ♣
TSO_ATTACH
TSORT ♣
TWOUP ♣

U

UDTL
UNIT ♥
UNLOAD
UNSIGNED
UNTIL
UNWARRANTED ♥
UPPER
USE
USERDEFAULT
USERINX
USING

V

V
VAL
VALUE
VARYING
VB
VCLOSE
VDELETE
VERIFY
VFILE
VOLVER
VOPEN
VREAD
VREADDIR
VREADIR
VRENAME
A–6 VISION:Results Reference Guide

Definitions
NOTE: You cannot use the
blue reserved words
(marked with a ♥) as data
names if you ever intend to
use OPTION EXCEL. You
can only use the red
reserved words (marked
with a ♣) and blue reserved
words (marked with a ♥) as
data names if the DYLINSTL
parameter RESRWRD is
used, but this disables
certain VISION:Results
capabilities and
Computer Associates does
not recommend doing this.

VSAMEC
VSAMRC
VWRITE

W

WHEN
WIDE
WITH
WORK
WORKAREA
WORKSHEET ♥
WRITE
WRITEALL ♣
WRITEDIR
WRITEMEM

X

XLATE
XNAME ♣
XREF
XREFA
XSCATTER ♣

Y

YES ♥
YNAME ♣
YSCATTER ♣
YY/MM/DD ♥
YYDDD ♥
YYMMDD ♥
YYYY/MM/DD ♥
YYYYMMDD ♥
YYYYDDD ♥

Z

ZERO ♥
ZONE

Numbers

2311
2314
260
3330
3340
3350
3375
3380

Definitions

Name Type Length Data Type Edit Decimals

BLANK or BLANKS 1 CH

One space. Can be used to space fill any size character field because a character
field is space-filled to the right after a value is moved into it.

DYLCENTRY1 DYLCENTRY2 2 CH

Use to assign a century prefix for 2-digit years to produce a 4-digit output. If
DYLCENTRY1 or DYLCENTRY2 parameters are not set, VISION:Results
defaults to the values set in the DYLINSTL parameters CENTRY1 and
CENTRY2, respectively. If no values are set in CENTRY1 and CENTRY2, the
system defaults to the DYLINSTL parameter CENTNEW.

DYLCNAME1 through
DYLCNAME10

20 CH

Ten 20-byte label fields that you can set to identify the corresponding
DYLCOUNT1 through DYLCOUNT10 counters when they are printed. If you
do not move your own labels into these fields, the standard identifiers are to the
left of the counters as TOTAL NUMBER 01, TOTAL NUMBER 02, and so on.
Reserved Words A–7

Definitions
DYLCOMMON 4 BI

This field contains the address of the VISION:Results common area. It is used
as a parameter that is passed using CALL to a user module. You might need this
if you had to gain access to VISION:Results’ DTF/DCBs.

DYLCOMRG 11 CH

The value of this field is a copy of bytes 12-22 of the VSE partition
communications region. Changing the value in DYLCOMRG has no effect on
the actual value in the communications region.

DYLCOUNT1 through
DYLCOUNT10

10 PD A 0

Ten 10-byte packed counters that you can use to maintain your own totals. If
you reference any of these counters, the series is printed as part of the end-of-run
file statistics.

DYLDATE 8 CH

The initial value is the current date in MM/DD/YY format.

DYLDATE4 10 CH

The initial value is the current date in MM/DD/YYYY format.

DYLDATEPAG 30 CH

The current date and page number edited and ready for insertion in report titles.
The format is:

DATE MM/DD/YY PAGE NNNNNNN.

DYLDATEPG4 32 CH

The current date and page number edited and ready for insertion in report titles.
The format is:

DATE MM/DD/YYYY PAGE NNNNNNN.

DYLDLA 4 BI

The first parameter in a CALL statement when invoking DYLTDLI (IMS/DLI
database interface option). DYLDLA should never be modified in your
program.

DYLETIME 8 CH

Value is VISION:Results's execution start time in HH.MM.SS format.

DYLGREG 4 PD D

The current Gregorian date in packed format. Packed format is 0MMDDYYs.

Name Type Length Data Type Edit Decimals
A–8 VISION:Results Reference Guide

Definitions
DYLGREG4 5 PD D

The current Gregorian date in packed format. Packed format is 0MMDDYYYYs.

DYLILDATE 4 BI

The current Lilian date in binary format.

DYLJULIAN 3 PD

The current Julian date in packed format. The format is YYDDD.

DYLJULIAN4 4 PD

The current Julian date in packed format. The format is YYYYDDD.

DYLLINE 2 PD A

The line count of the current report page in packed format.

DYLNOTOT 1 CH

Control total inhibit. Can be set by the user.

� /b = Not used (initial setting).

� 1 = Do not increment control break totals on this entrance to the report writer.

DYLNRP 1 CH

A detail line inhibit switch that you can set (enter a 2) before the first detail line
LIST statement is issued.

DYLONE 1 PD

Value 1. Useful for counting.

DYLPAGE 13 CH

The literal PAGE followed by the edited page number.
The format is: PAGE NNNNNNN.

DYLPAGE1 1 CH

Edited 1-character page number.

DYLPAGE2 2 CH

Edited 2-character page number.

DYLPAGE3 3 CH

Edited 3-character page number.

Name Type Length Data Type Edit Decimals
Reserved Words A–9

Definitions
DYLPAGE4 4 CH

Edited 4-character page number.

DYLPAGE5 5 CH

Edited 5-character page number.

DYLPAGE6 6 CH

Edited 6-character page number.

DYLPAGE7 7 CH

Edited 7-character page number.

DYLPARM 60 CH

Variable data provided by either the PARM parameter in the EXEC statement
(OS/390 only) or the DATA xxxx phrase in the OPTION statement.

DYLPARMLEN 2 PD

The length of the data stored in DYLPARM.

DYLPPAGE 6 PD A

The current report page number. Can be reset.

DYLPRTCOMM 10 CH

This field can be set to hold an identifier to print to the left of a record or field
being printed using the print (PRINT, HEXPRINT, and so on) commands. If you
do not move anything in before printing, the file name or data name will appear.

DYLPRTMAXL 2 PD

The maximum lines per page to be allowed for file printing. It is set either by
default or using the LONG keyword of the OPTION statement.

DYLPRTNUMB 4 PD

The count of records file printed by VISION:Results.

DYLPRTPAGE 3 PD

The page number for the file print listing.

DYLREPMAXL 2 PD

The maximum lines per page allowed for the report.

Name Type Length Data Type Edit Decimals
A–10 VISION:Results Reference Guide

Definitions
DYLRESET 1 BI

Reset report page number after break indicator.

DYLRETURN 2 BI

Set this before a run terminates to cause a condition code to be passed to the next
step or to cause an ABEND to occur. Setting DYLRETURN does not cause the
run to terminate. Processing continues until all files are at end, or a STOP or a
QUIT command is executed.

DYLSYSDATE 9 NU

VSE only. The system date from the partition communication region (offset
X`4F'). The first 6 bytes contain the Gregorian date (MMDDYY or DDMMYY),
and the last 3 bytes contain the Julian day number (DDD). This date is not
affected by the // DATE statement.

DYLSYSPARM 8 CH

VSE only. Contains 0-8 bytes of data from the // OPTION SYSPARM=
statement in your JCL, padded on the right with blanks.

DYLTIME 4 PD A

Value is VISION:Results's execution start time. Packed format is 0HHMMSS.

DYLTRAN 1 CH

DYLTRAN refers to the first byte of a 256-byte translate table. If you do not want
to use the FROM and TO option of the TRANSLATE command, you can specify
your own translate table by moving values to the appropriate offset from
DYLTRAN.

DYLUPSI 1 BI

Value is a copy of the VSE UPSI byte. Changing this value will have no effect on
the actual UPSI byte.

INW 2 BI A

An index used to manipulate a table or fields and loop through records.

INX 2 BI A

An index used to manipulate a table or fields and loop through records.

Name Type Length Data Type Edit Decimals

0 = Not used (initial setting).
1-6 = Reset report page number to 1 after break 1-6.

0 = Normal completion.
1-99 = Condition code value to be passed.
100-4095 = ABEND with system dump when processing terminates.
Reserved Words A–11

Definitions
INY 2 BI A

An index used to manipulate a table or fields and loop through records.

INZ 2 BI A

An index used to manipulate a table or fields and loop through records.

SPACE or SPACES 1 CH

One space. Can be used to space fill any size character field because a character
field is space-filled to the right after a value is moved into it. Same as BLANK or
BLANKS.

TALLY 8 PD Z

The total of records printed or accepted in the report since the last control break.

Name Type Length Data Type Edit Decimals
A–12 VISION:Results Reference Guide

Appendix
B J
ob Control Language
OS/390 JCL
//RESULTS JOBaccounting information
//STEP01 EXEC PGM=DYL280,REGION=600K
//STEPLIB DD DSN=your.results.loadlib,DISP=SHR
//SYSPRINT DD SYSOUT=A
//SYS280R DD SYSOUT=A
//SYS004 DD UNIT=3380,SPACE=(TRK,5)
//xxxxxx DD DSN=your.input.file,DISP=SHR
//SYSIN DD *

your VISION:Results statements
/*
//

If the SORT command is coded in your program, you also need:

//SYSOUT DD SYSOUT=A
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SORTWK01 DD UNIT=3380,SPACE=((CYL,5),,CONTIG)
//SORTWK02 DD UNIT=3380,SPACE=((CYL,5),,CONTIG)
//SORTWK03 DD UNIT=3380,SPACE=((CYL,5),,CONTIG)

If the COPY command is coded in your program, you also need the following to
tell VISION:Results what library contains the member(s).

//SYSCOPY DD DSN=your.copylib,DISP=SHR

VSE JCL
// JOB RESULTS

1 // ASSGN SYS004,X’cuu’
// DLBL IJSYS04,’VISION:Results work file’,0
// EXTENT SYS004,......,.,.,...

2 // ASSGN SYSxxx,X’nnn’
// DLBL filename,’your.input file’
// EXTENT SYSxxx,......,extent information

// EXEC DYL280,SIZE=600K

your VISION:Results statements

/*
/&
Job Control Language B–1

VM/CMS
1. Assign only if IJSYS04 is not standard label.
2. Defines the input file JCL if disk (see the Definition of Terms appendix in the

VISION:Results Getting Started Guide).

If the SORT command is used in your program, you also need:

VM/CMS
File definition statements:

ERASE SYSPRINT LISTING
ERASE SYS280R LISTING
ERASE SYS004 DATA
FILEDEF SYSPRINT DISK SYSPRINT LISTING A (DISP MOD)
FILEDEF SYS280R DISK SYS280R LISTING A
FILEDEF SYS004 DISK SYS004 DATA A

1 FILEDEF EMPMSTR DISK DYLDATA DATA A
2 FILEDEF SYSIN DISK DYLPROG DATA A

DYL280

1. Informs CMS that a disk file with the file name DYLDATA and the file type
DATA is referred to as EMPMSTR in your VISION:Results program. In this
example, this would be your input file.

2. Informs CMS that a disk file with the file name DYLPROG and the file type
DATA is referred to as SYSIN by VISION:Results. This file contains your
program statements.

// DLBL SORTWK1,’results sort work 1’,0
// EXTENT SYS001,...extent information
// DLBL SORTWK2,’results sort work 2’,0
// EXTENT SYS002,...extent information
// DLBL SORTWK3,’results sort work 3’,0
// EXTENT SYS003,...extent information

Only if WORK N
keyword is coded on
the SORT statement
B–2 VISION:Results Reference Guide

Index
Symbols

#dataname, 15-1

$$DUMP option, 4-3, 4-17

$$KEYLEVEL option, 4-3, 4-18

$$PCB option, 4-3, 4-18

$COBOL command, 15-19

$DEFAULT command, 15-3, 15-15

$DEND command, 15-3, 15-15

$ECOBOL command, 15-19

$ELSE command, 15-4

$IF command, 15-3

$IFE command, 15-3

* multiply arithmetic operator, 11-1

** exponentiation arithmetic operator, 11-1

+ add arithmetic operator, 11-1

- subtract arithmetic operator, 11-1

/ divide arithmetic operator, 11-1

@ followed by a data name, 27-14

@ sign, 27-14, 27-20

@(ASIS), 27-11

@(ASIS) line, 27-20

@(ASIS) quotation marks, 27-21

@(CSnn), 27-11

@(Eject), 27-10

@(NEWPARA), 27-12

@(SPn) line spacing keyword, 27-10

@dataname variable information, 27-9

@LTDnn detail text statement, 27-9

@nnn, 27-11

@nnn positioning, 27-21

Numerics

260 option for VISION:Sixty, 4-4

628E unable to allocate work area
error message, 6-35

A

A edit code, 14-22, 27-16

ABEND
0C4 (unpredictable results), 14-7

ABSOLUTE field, 10-12

ACCEPT, 8-1, 8-5, 8-20, 8-23

ACCEPT FILE PRINT option, 4-5, 4-13

access methods, 21-3
random access, 21-3
sequential access, 21-3

Adding a field to a report, 9-31

aligning data names and literals
at detail time, 16-50
at ON CHANGE IN, 16-52
at ON FINAL, 16-52

ALLOCATE command, 6-24, 14-25, 14-31

allocation, dynamic, 6-24, 14-24
Index–1

AMODE(31), 13-18

analysis, trend line, 28-1, 28-4

areas, problem, 12-35

ARFILE input file statement, 27-25

arithmetic operations
exponentiation, 11-3
indexing, 11-2
order of computation, 11-3
processing priorities, 11-3
restrictions, 11-5
rounding, 11-2

arithmetic operators, 11-1
* multiply, 11-1
** exponentiation, 11-1
+ add, 11-1
- subtract, 11-1
/ divide, 11-1

array
allocating memory, 26-1
Array Element Field Definition(s), 26-17
arrayname, 26-16
DIM (DIMENSION), 26-17
error return codes, 26-19
F element-length, 26-17
FILL fillchar, 26-17
handling, 26-1
loading of, 26-17
RETAIN|NORETAIN, 26-17
retrieval from, 26-18
STATUS, 26-16
syntax, 26-16
USE, 26-18
user return codes, 26-19

Array Element Field Definition(s), 26-17

arrayname, 26-16

ASA carriage control, 27-1, 27-6, 27-41

ASIS (@ASIS), 27-25

assembler
example, 13-11
subroutine considerations, 13-10

asterisks (*) used for comments, 3-1

at detail time, aligning data names and literals,
16-50

at ON CHANGE IN, aligning data names and
literals, 16-52

at ON FINAL, aligning data names and literals,
16-52

AUDPRINT/SYS009, 27-6, 27-41

AUTOLINK link editor feature, 13-8, 13-9

automatic cycle, 8-18
In the structured mode, 8-18
ON END OF INPUT, 8-20
with SORT, 8-20
without SORT, 8-18

B

B edit code, 14-23, 27-17

Backus-Naur-Form (BNF)
notation, 4-2, 6-4
rules, 4-2

BDAM, 21-1, 21-34
example, 21-37, 21-38, 21-40, 21-41, 21-42, 21-44,
21-45, 21-46
file create, 21-10
I/O statistics, 21-4
numeric keys, 21-35, 21-36
packed keys, 21-35, 21-36
random read, 21-17
random update, 21-27
record access, 21-2
record addressing schemes, 21-2
sequential create, 21-10
sequential read, 21-23
skipping blocks, 21-16
skipping records, 21-14
syntax, 21-1
undefined record length, 21-12
variable-length records, 21-34

BETWEEN in TWOUP keyword, 27-7, 27-36

BI (binary data), 2-4, 6-28, 11-2
Index–2 VISION:Results Reference Guide

binary data (BI), 6-28, 11-2

BINSEARCH
binary search, 26-8

BITS, COMBINE, 10-8, 10-9, 10-10, 19-48, 20-27

BLANK or BLANKS, 2-15

Block size, 9-3

blocked and unblocked files in ISAM, 20-25
random update, 20-26
sequential load or extend, 20-25
sequential or skip-sequential read, 20-25

BNF (Backus-Naur-Form), 4-2, 6-4

break, control, 16-56

BY statement, 28-7

BYyyy in DYLTRxx keyword, 27-6

C

CA-Librarian, 9-26, 9-28, 15-1, 15-13, 15-15, 15-17

CA-Panvalet, 9-26, 9-28, 15-1, 15-13, 15-15, 15-17

CALL, 2-16, 2-17

CALL command, 13-1
amode(31), 13-18
assembler subroutine considerations, 13-10
COBOL subroutine considerations, 13-6
example starting a PL/I external subroutine,
13-13
EXIT module writing, 13-16
external subroutine considerations, 13-5
MODIFY module writing, 13-15
nK (size) parameter (VSE only), 13-2
parameters examples, 13-3
PL/I subroutine considerations, 13-12
subroutine name position, 13-1

carriage control
ASA keyword, 27-1, 27-6, 27-41

CASE, 8-9, 8-11, 8-12, 8-13
ENDCASE, 8-13
EXITCASE, 8-13
nesting, 8-13
restrictions, 8-13

structure, 8-2

CATPLANID option example, 4-27

CATSYSID option, 4-27

CDLOAD option statement, 4-3
(VSE only), 4-21

CH (character data), 2-4

CHANGE IN, aligning data names and literals at
ON, 16-52

CHANGE IN, ON, 14-4, 16-57

characters per input line, number of, 3-4

class tests, 7-5
MIXED (bits mixed), 7-8
negative value, 7-6
numeric value, 7-6
ONES (bits on), 7-7
positive value, 7-5

CLOSE filename, 14-7

COB2NR keyword in OPTION statement example,
4-22

COBOL, 1-1, 9-27

COBOL program, 13-9
0C1 problem, 13-9
0C4 problem, 13-9
COPY and COPYE examples, 15-18
example ANSI, 13-7
EXIT module, writing one, 13-16
MODIFY module, writing one, 13-15
OS/390 example, 13-8
problem areas, 13-9
subroutine called by VISION:Results, 13-8
subroutine considerations, 13-6
USING upon entering example, 13-6

coding standards in structured programming, 8-5

Column headings
Overriding defaults, 9-16

COLUMNS keyword in the OPTION statement
example, 3-4, 4-8

COMBINE BITS, 10-8, 10-9, 19-48, 20-27
example, 10-10
using AND, 10-9
Index–3

using EXOR, 10-10
using OR, 10-8

combine fields using EXOR, 10-10

combined range and series compares, 7-5

combining compound compares, 7-10

command
LETTER, 27-7, 27-19
REGRESSION, 28-9

command LETTER, 27-19

Commands
CONTROL, 9-11
COPY, 9-26, 9-28, B-1
FILE, 9-2
IF, 9-20
IF-OR, 9-21
LIST, 9-4
SORT, 9-10, B-1
TITLE, 9-18

commands
$COBOL, 15-19
$DEFAULT, 15-3, 15-15
$DEND, 15-3, 15-15
$ECOBOL, 15-19
$ELSE, 15-4
$IF, 15-3
$IFE, 15-3
ACCEPT, 14-3
ALLOCATE, 6-24, 14-25, 14-31
CLOSE, 14-7
COPY, 15-1, 15-2, 15-3, 15-18, 27-21
COPYC, 15-1, 15-17, 27-21
COPYDB2, 15-24
COPYE, 15-1, 15-2, 15-3, 15-18
COPYL, 15-1, 15-17, 27-21
COPYP, 15-1, 15-18, 27-21
DELETE, 26-11
GOTO, 4-13, 14-3
LETTER, 27-3, 27-14, 27-18, 27-19, 27-25, 27-32
LIST, 16-26
MOVE CORRESPONDING, 5-4
NEXT, 14-3

PERFORM, 8-8, 14-5
QUIT, 14-5
QUITALL, 14-5
READ, 14-7
REGRESSION, 28-8
REJECT, 14-4
RETAIN, 6-31
REUSE, 6-27
STOP, 14-4
STOPALL, 14-5
TRANSLATE, 14-16
WRITE, 14-7

commands for printing, 18-4

comments
including remarks, 3-1

compares
combined range and series, 7-5
combining compound or multiple compares,
7-10
compound, 7-8
multiple, 7-8
range, 7-4
series, 7-5

comparing fields, rules for
binary to binary, 3-5
character to binary, 3-4
character to character, 3-4
character to numeric or packed, 3-4
numeric to binary, 3-4
numeric to numeric, 3-4
numeric to packed, 3-5
packed to binary, 3-5
packed to packed, 3-5

compile phase error messages, 14-31

compound compares, 7-8
combining, 7-10
selecting and processing if all of several
conditions are true, 7-10
selecting and processing if any of several
conditions are true, 7-9

concatenated input file (OS/390 only), 6-41
Index–4 VISION:Results Reference Guide

CONDOR, 9-26, 9-28

CONDOR library, 15-1

confirmation notice, reserved words
DYLCNxxID field value, 27-6
DYLCNxxLNC, 27-32
DYLCNxxSW, 27-7
DYLEXTxx, 27-4
DYLEXTxx keyword, 27-5

contacting Computer Associates, e-mail, 1-2

contacting Computer Associates, web page, 1-2

continuation rules
LIST, 3-2
literals, 3-2
TITLE, 3-2
VALUE, 3-2

CONTROL, 9-11, 9-13

control break levels, 16-56

CONTROL statement, 16-56

CONVENTIONAL mode, 8-4

CONVENTIONAL mode option, 4-3, 4-13

conventions, naming data names and field names,
3-3

coordinates, 26-18

COPY, 9-26, 9-28, B-1
Using COBOL with, 9-28

COPY command, 27-21
placement, 4-2

COPY or COPYE command, 15-1, 15-2, 15-3, 15-18
COBOL example, 15-20
COBOL record descriptions, 15-18
COBOL rules, 15-19, 15-20
constraints, 15-11
COPYC, 15-1, 15-17
COPYDB2, 15-24
COPYDB2 example, 15-28
COPYL, 15-1, 15-17
COPYP, 15-1, 15-18
example, 15-4, 15-5, 15-6, 15-8, 15-9
limitations, 15-11
OS/390 $DEFAULT command requirements,

15-15
OS/390 command requirements, 15-13
OS/390 JCL requirements, 15-15
replacing character strings, 15-19
rules, 15-11
VSE $DEFAULT command requirements, 15-16
VSE command requirements, 15-16
VSE JCL requirements, 15-16

COPYC command, 15-1, 15-17, 27-21

COPYDB2 command, 15-24
example, 15-28
JCL DB2 overrides, 15-25
requirements, 15-25
retrieving fields of a DB2 table, 15-25

COPYL command, 15-1, 15-17, 27-21

COPYP command, 15-1, 15-18, 27-21

CORRESPONDING, MOVE command, 5-4

COUNT keyword, 21-4

count of records, 21-4

create, sequential BDAM file, 21-10

cross-reference option, 4-11

CURRENCY option statement, 4-4, 4-23

currency symbol substitution, 4-23

cuu defined, 12-38

CYLOFL keyword, optional for VSE, 20-3

D

D edit code, 14-24

D4 edit code, 14-24

DA edit code, 14-22

data
interval selection of, 7-12
random selection of, 7-12

DATA keyword option, 4-9
DYLPARM reserved word, 4-9
PARM (OS/390 users), 4-9

data name
number of decimals, 2-5
Index–5

data names
and literals at detail time, aligning, 16-50
and literals at ON CHANGE IN, aligning, 16-52
and literals at ON FINAL, aligning, 16-52
indexed, 16-27
qualification of, 4-14, 5-1
sorting of, 12-22

data set, PDS (partitioned data set), 15-1

data types
binary (BI), 6-28, 11-2
numeric (NU), 6-28, 11-2
packed (PD), 6-28, 11-2

dataname
characters allowed, 2-2
VALUE, 2-5

dataname qualification, 2-11

DATAVER diskette option, 6-24

DD statement, 27-19

ddnames, 27-6, 27-19

DE edit code, 14-21

decimal data position, PD (packed data), 6-28, 11-2

DELETE command, 26-11

descriptor word, record, 18-8

detail time, aligning data names and literals at,
16-50

diagram, scatter, 28-1

DIMENSION, 26-17

DIMENSION|DIM, 26-17

directing program execution, 14-1
ACCEPT, 14-3
ALLOCATE, 14-25
CLOSE filename, 14-7
commands, 14-3
ENDONE, 14-9
example, 14-2
GOTO, 14-3
indices, 14-13
NEXT, 14-3
ON END OF INPUT, 14-10

ON ONE, 14-9
PERFORM, 14-5
QUIT, 14-5
QUITALL, 14-5
READ filename, 14-7
REJECT, 14-4
STOP, 14-4
STOPALL, 14-5
TRANSLATE, 14-16
WRITE filename, 14-7

DISK nnnn supported values, 6-23

DISK type option, 4-3, 4-15, 6-23, 20-3, 21-6, 21-7

DISK xxxx in DYLTRxx keyword, 27-6

DISKETTE
DATAVER (data verified), 6-24
NOFEED (not placed in collector’s bin), 6-24
NUMFILES dynamically specified, 6-22
options of 3540, 6-24
PROTECT (cannot be overwritten), 6-24
SECURE (data is secured), 6-24
VERIFY (perform operations specified), 6-24
VOLVER (volume verified), 6-24

DLBL name keyword, 27-6

DMAP option (data name map), 4-3, 5-5, 5-7
XREF option, 4-12
XREFA option, 4-12

DNA edit code, 14-23

DNE edit code, 14-21

DOUNTIL, 8-3, 8-7, 8-15, 8-22
ENDDO, 8-15
EXITDO, 8-17
ITERATE, 8-17
nesting, 8-16
restrictions, 8-16

DOWHILE, 8-2, 8-7, 8-14, 8-22
ENDDO, 8-15
EXITDO, 8-17
ITERATE, 8-17
nesting, 8-16
restrictions, 8-16
Index–6 VISION:Results Reference Guide

DY282MAT (match statement), 23-1
example, 23-9, 23-10, 23-11
match subroutine, 23-31
replacement routine, 23-41
USING DY282MAT, 23-7

DY282MER (merge statement), 23-1
parameters passed to, 23-49
replacement routine, 23-51
rule for, 23-25
USING DY282MER, 23-26

DYCHANEL copy member, 27-22

DYL280Rx phase name, 16-76

DYL4YEAR option (4-digit year), 4-4, 4-23

DYLCENTRY1, 2-15

DYLCENTRY2, 2-15

DYLCNAMEn, 2-16

DYLCNxxID keyword, 27-6

DYLCNxxLNC special reserved word, 27-32

DYLCNxxSW 1-byte field, 27-7

DYLCOMMON, 2-16

DYLCOMRG, 2-16

DYLCOUNTn, 2-17

DYLDATE, 2-17

DYLDATE reserved word, 27-25

DYLDATE4, 2-17

DYLDATEPAG, 2-17

DYLDATEPG4, 2-17

DYLDLA, 2-17
DYLTDLI (IMS/DL/I database interface option),
2-17

DYLETIME, 2-18

DYLEXTxx keyword, 27-4, 27-5

DYLGREG, 2-18

DYLGREG4, 2-18

DYLJULIAN, 2-18

DYLJULIAN4, 2-18

DYLLINE, 2-18

DYLNOTOT, 2-19

DYLNRP, 2-19

DYLONE, 2-19

DYLPAGE, 2-20

DYLPAGEn, 2-20

DYLPARM, 2-20

DYLPARMLEN, 2-21

DYLPPAGE, 2-21

DYLPRCx subroutine module, 16-76

DYLPRTCOMM, 2-21

DYLPRTCOMM 10-byte comment field, 18-8

DYLPRTMAXL, 2-21

DYLPRTNUMB, 2-21

DYLPRTPAGE, 2-22

DYLREPMAXL, 2-22

DYLRESET, 2-22

DYLRETURN, 2-23

DYLSYSDATE, 2-23

DYLSYSPARM, 2-23

DYLTIME, 2-23

DYLTRAN, 2-24

DYLTRAN modify translate table, 14-18

DYLTRxx specified in WIDE keyword, 27-4, 27-6

DYLUPSI, 2-24

DYNAM (dynamically allocated file name), 6-24,
14-25

DYNAMDB2 option, 4-26

dynamic allocation, 6-24, 14-24
CALL, 14-30
diagnostic output, 14-31
error messages, 14-31
example, 14-28
JCL considerations, 14-26
LTH, 14-30
PICNSAVE, 14-30
REPORT, 14-30
rules for, 14-25
Index–7

dynamically allocating HTML PDS, 16-14

dynamically allocating HTML uisng HFS path,
16-13

E

E edit code, 14-21

e-mail
contacting Computer Associates, 1-2

edit codes, 14-21, 27-15, 27-18
A, 14-22, 27-16
B, 14-23, 27-17
D, 14-24, 27-18
D4, 14-24
DA, 14-22
DE, 14-21
DNA, 14-23
DNE, 14-21
E, 14-21, 27-15
F, 14-21, 27-15
G, 14-21, 27-15
H, 14-22, 27-16
J, 14-22, 27-16
K, 14-22, 27-15
L, 14-23, 27-16
NA, 14-22
NB, 14-23
NDA, 14-22
NDE, 14-21
NE, 14-21
NP, 14-24
NZ, 14-23
override defaults, 14-21, 27-15, 27-18
P, 14-23, 27-17
Q, 14-23, 27-17
S, 14-24, 27-18
U, 14-23, 27-17
V, 14-24, 27-18
W, 14-24, 27-18
X, 14-22, 27-16
Y, 14-21, 27-15
Z, 14-23, 27-17

EDIT command, 14-18, 14-19
listed fields edited automatically, 14-18
non-standard edits, 14-19
standard edits, 14-20

EJECT (@EJECT) parameter, 27-38

eject, page, 27-19, 27-32

ELSE, 8-6, 8-7, 8-9, 8-10, 8-12

END OF INPUT, ON, 14-10, 14-11, 14-12

END OF SORTING, ON, 12-9

ENDCASE, 8-13

ENDDO, 8-15

ENDIF, 8-6, 8-7, 8-10

ENDLTD, 27-12

ENDLTD keyword, 27-14, 27-20, 27-25

ENDLTH keyword, 27-3

ENDONE (terminate statement), 14-9
example, 14-9

ENTRY keyword, 26-3

ENTRY table keyword, 26-3

equation, straight line, 28-2

ERASE keyword, 19-28

error messages
628E unable to allocate work area, 6-35
in compile phase, 14-31

error of the estimate, standard, 28-3

EXCEL option statement
VISION:Excel commands, 4-17

EXCLUSIVE OR (EXOR) command, 10-10

execution, directing program, 14-1

EXIT module, 6-34, 14-7
PARM, 13-17
STATUS, 13-17
writing, 13-16

EXIT modulename, 6-32, 13-17
restrictions, 6-33

exit point, 16-75
considerations, 16-77
Index–8 VISION:Results Reference Guide

exit subroutine letter writing, 27-1

EXIT-processed, 6-33

EXITCASE, 8-13

EXITDO, 8-17

EXOR (EXCLUSIVE OR), 10-10

exponentiation (double asterisk (**)), 11-3

express an EXOR command, 10-10

EXPRTERR option statement, 4-3, 4-10

extended format of field definition, 2-7

EXTENTS extent type code, 20-3

F

F edit code, 14-21, 27-15

F element-length, 26-17

F entrylen keyword, 26-3

FCB DD parameter, 27-19

Field
Adding to a report, 9-31

Field definition statements, 9-7

Field definitions, 9-3
Size/length, 9-3

field definitions, 2-1
character values, 2-5
column heading, 2-9
data type, 2-4
dataname, 2-2
edit code, 2-8
extended format, 2-7
field length, 2-3
FILLER keyword, 2-4
hexadecimal values, 2-6
NOSUM, 2-10
number of decimals, 2-4
numeric values, 2-5
REDEFINE, 2-13
redefining a field, 2-4
REINIT, 2-7
report output field size, 2-8

RIGHT, 2-10
ROUND or ROUNDED, 2-9
special fields and reserved words, 2-14
starting location, 2-3
SUM, 2-10
VALUE ALL, 2-6
VALUE HIGHVALUES, 2-7
VALUE LOWVALUES, 2-7
VALUE nnn, 2-5
VALUE NULL, 2-6
WORKAREA, 2-11

field for MOVE
ABSOLUTE, 10-12
NORMALIZED, 10-12
UNSIGNED, 10-12

field, moving to a subtotal, 10-6

FILE, 9-2, 9-6, 20-28

file (OS/390 only), concatenated input, 6-41

file print
commands, 18-1
dataname, 18-6
example, 18-6
example of printing in hex and graphics, 18-2
filename, 18-6
HEX, 18-5
HEXPRINT, 18-4
LCPRINT, 18-5
LENGTH, 18-6
literal, 18-6
other print features, 18-8
PRINT, 18-4
REPORTFILE, 18-5
using the OPTION statement, 18-3
using the PRINT immediate commands, 18-4

FILE PRINT option, 4-5
ACCEPT, 4-5, 4-13
HEXPRINT, 4-5
REJECT, 4-5

FILE statement, 6-1, 27-3, 27-14, 27-25
BDAM (or DAM) files, 6-5
BNF notation, 6-4
Index–9

EXIT and MODIFY, 6-31
EXIT files, 6-5
I/O area, 6-34
IOU-processed files, 6-35
ISAM files, 6-6
ISAM/VSAM syntax definitions, 6-25
MODIFY, 6-31
PDS files, 6-6
placement, 6-1
processing variable-length records, 6-36
RETAIN, 6-31
sequential files, 6-7
SIZE nnnnn, 6-34
SSL files, 6-7
supported access methods, 6-4
syntax definitions, 6-10
syntax rules, 6-4
unblocked ISAM files in VSE, 6-39
VSAM ESDS files, 6-7
VSAM KSDS files, 6-9
VSAM RRDS files, 6-9
when required, 6-3
WORK, 6-35

files in ISAM, blocked and unblocked, 20-25

files, letter, 27-1

FILL fillchar, 26-17

FILLER, 9-7

FINAL, aligning data names and literals at ON,
16-52

FINAL, ON, 14-4, 16-59

fixed print position reporting, 16-54
dataname, 16-54
nnn (print location), 16-55

FOOTING statement, 16-18, 16-19
additional information, 16-20
example, 16-20, 16-21
FIXED keyword, 16-18
modification statement, 16-21
Tn (1-9) statement, 16-18
WITH n AFTER keyword, 16-19

FOR statement, 28-7

form letters, 27-1

FORMAT letter writing examples, 27-24

FREEZDD keyword, 4-8

FREEZE keyword, 4-7

FROM filename keyword, 26-3

FROM statement, 28-6, 28-7

G

G edit code, 14-21, 27-15

GETCOM, 2-24

GOTO, 8-1, 8-5, 8-25

GOTO command, 4-13, 14-3
ON CHANGE and ON FINAL, 14-3

H

H edit code, 14-22, 27-16

HEX keyword, 4-5

HEXPRINT FILE PRINT option, 4-5

HTML
dynamic allocation of PDS, 16-14
dynamic allocation using HFS path, 16-13
using with VISION:Results, 16-7

HTML document
web browser, 16-16

HTML documents
using HFS path, 16-8
using HTML PDS, 16-10

HTML member names, 16-6

HTML report, 16-5

I

ICCF/INCLUDE COBOL example, 15-22

IDCAMS IBM program, 19-4, 19-6

IDLENGTH (length of identification field), 27-6,
27-25

IDLENGTH nn keyword, 27-6
Index–10 VISION:Results Reference Guide

IF, 8-6, 8-7, 8-9, 8-10, 9-19, 9-30
nested, 8-10
restrictions, 8-11

IF command, 7-2
class or status tests, 7-5
combined range and series compares, 7-5
combining compound compares, 7-10
compound compares, 7-8
dataname, 7-2, 7-3
ENDIF terminates IF statement, 7-4
false condition imperatives, 7-4
interval selection of data, 7-12
literal or dataname, 7-3
multiple compares, 7-8, 7-11
random selection of data, 7-12
range compares, 7-4
SAMPLING command, 7-12
true condition imperatives, 7-3

IF-OR, 9-21

IF-THEN-ELSE-ENDIF, 8-10

IMS/DL/I database interface option, 2-17

INCLUDE
ICCF/INCLUDE, 15-22

INDENT keyword, 27-5
example of no values specified, 27-25

indexed data name, 16-27

indexes
arithmetic, 14-15
COMBINE, 14-15
EDIT, 14-18
four types, 14-13
IF, 14-14, 14-15
INW,INX,INY,INZ, 14-13
MOVE, 14-13, 14-15
restrictions, 14-15

input file
concatenated (OS/390 only), 6-41

input line, number of characters per, 3-4

Input Output Unlimited
(IOU), 6-35

INPUT, ON END OF, 14-10, 14-11, 14-12

interval selection
example, 24-4, 24-5, 24-6
interval size, 24-1, 24-2
SAMPLE, 24-2
selection criteria, 24-2

interval selection of data, 7-12

IO keyword, 20-14, 21-28

IOAREA keyword (I/O area), 6-35

IOU (Input Output Unlimited), 6-35

IQBATCH option statement, 4-22

ISAM
example, 20-29

ISAM and VSAM files syntax definitions
CYLOFL keyword, 6-30
ERASE keyword, 6-27
EXTENTS keyword, 6-31
KEYLEN keyword, 6-25
KEYLOC keyword, 6-25
MASTER keyword, 6-31
PARTKEY keyword, 6-26
POSITION keyword, 6-26
RELBYTE keyword, 6-29
RELBYTEX keyword, 6-29
RETAIN command, 6-31
REUSE command, 6-27
STATUS keyword, 6-25
STATUS return codes listing, 6-26

ISAM file
blocked and unblocked files, 20-25
creating a file, 20-2
example, 20-28, 20-29, 20-30
generic search, 20-8
ISAM-indexed sequential access method, 20-1
numeric keys, 20-26
OS/390 considerations, 20-3
packed keys, 20-26
random read, 20-10
random update, 20-17, 20-26
sequential insert or extend, 20-20
sequential load or extend, 20-25
Index–11

sequential or skip-sequential read, 20-25
sequential read, 20-4
sequential update, 20-13
skip-sequential read, 20-6
syntax format, 20-1
unblocked files, 20-25
VSE considerations, 20-3

ISC subparameter on a DLBL statement, 20-4

ITERATE, 8-17

iterative structures, 8-14
DOUNTIL, 8-3, 8-15, 8-17
DOWHILE, 8-3, 8-14, 8-17
ENDDO, 8-15
EXITDO, 8-17
ITERATE, 8-17

J

J edit code, 14-22, 27-16

JCL
OS/390, B-1
VM/CMS, B-2
VSE, B-1

K

K edit code, 14-22, 27-15

KEYLEN keyword, 20-2, 20-5, 20-7, 21-2, 26-3, 26-8

KEYLOC keyword, 20-2, 20-5, 26-3, 26-8

Keywords
NOSUM, 9-5, 9-32
SUM, 9-5
SUPPRESS, 9-15
THRU, 9-22

keywords
ASA, 27-1, 27-6, 27-41
COUNT, 21-4
CYLOFL, 6-30, 20-3
DATA, 4-9
DYLEXT, 27-4, 27-5
DYLTR, 27-4, 27-6

DYNAM, 14-25
ENDLTD, 27-3, 27-14, 27-25
ENDLTH, 27-3
ENTRY, 26-3
ERASE, 6-27, 19-28
EXTENTS, 6-31
F entrylen, 26-3
FILLER, 2-4
FIXED, 16-18
FREEZDD, 4-8
FREEZE, 4-7
FROM filename, 26-3
HEX, 4-5
IDLENGTH, 27-6, 27-25
INDENT, 27-5
IO, 20-14, 21-28
IOAREA, 6-35
KEYLEN, 6-25, 20-2, 20-5, 20-7, 21-2, 26-3, 26-8
KEYLOC, 6-25, 20-2, 20-5, 26-3, 26-8
LASER, 27-4, 27-5
LCPRINT, 4-5
LEFT, 2-10
LEFTSAVE, 27-7, 27-36, 27-38
LENGTH, 26-3
LONG, 27-4, 27-29, 27-36
MASTER, 6-31
NOEJECT, 27-4, 27-29, 27-32
NOOPTIMIZE, 27-7
NOSUM, 2-10
OPTIMIZE, 27-7, 27-22, 27-23
PARTKEY, 6-26
PLUnnn (programmer logical unit), 16-16
POSITION, 6-26
PRIOR, 16-32
REDEFINE, 2-13
REINIT, 2-7
RELBYTE, 6-29
RELBYTEX, 6-29
RIGHT, 2-10
ROUND, 2-9
ROUNDED, 2-9
STATUS, 6-25, 26-3
SUM, 2-10, 16-29
Index–12 VISION:Results Reference Guide

SUPPRESS, 16-31
SWITCH, 27-7, 27-38
tablename, 26-3
TALLY, 16-44
TWOUP, 27-7, 27-21, 27-36, 27-38
V maxlen, 26-3
WIDE, 27-4, 27-36
WITHn AFTER, 16-19

L

L edit code, 14-23, 27-16

label, TAPE options, 6-21

LASER keyword, 27-5

LASERnn used with AUDPRINT/SYS009, 27-7

LCPRINT keyword, 4-5

LEFT, 2-10

LEFTSAVE keyword, 27-7, 27-36, 27-38

LENGTH keyword, 26-3

length records, variable, 6-36, 21-34, 21-35

LETTER command, 27-3, 27-14, 27-18, 27-19, 27-25,
27-32

FROM-TO, 27-19

letter writing, 27-1
@LTDnn, 27-9
ASA, 27-1, 27-6, 27-41
ASA keyword, 27-6, 27-41
BETWEEN optional factor, 27-7
BY yyy optional factor, 27-6
detail statements, 27-3
DISK optional factor, 27-6
DYLEXT keyword, 27-4, 27-5
DYLEXTxx keyword, 27-5
DYLTR keyword, 27-4, 27-6
DYLTRxx keyword, 27-6
ENDLTD keyword, 27-3, 27-14, 27-25
ENDLTH keyword, 27-3
example, 27-24, 27-26, 27-28, 27-30, 27-31, 27-32,
27-34, 27-36, 27-37, 27-41
exit subroutine, 27-1
header statement, 27-3

IDLENGTH keyword, 27-6, 27-25
INDENT keyword, 27-5
Laser JCL, 27-19
LASER keyword, 27-4, 27-5
LEFTSAVE keyword, 27-7, 27-36, 27-38
LETTER command, 27-3, 27-7, 27-18, 27-19,
27-25, 27-32
letter files, 27-1
LONG keyword, 27-4, 27-29, 27-36
LTD definition statement, 27-3, 27-7, 27-8, 27-14,
27-18, 27-22, 27-25, 27-32
LTH definition statement, 27-3, 27-4, 27-7, 27-8,
27-19, 27-23, 27-25
nnnK in DYLEXT keyword, 27-5
NOEJECT keyword, 27-4, 27-29, 27-32
NOOPTIMIZE keyword, 27-7
OPTIMIZE keyword, 27-7, 27-22, 27-23
quotation marks use, 27-13
SWITCH keyword, 27-7, 27-38
syntax, 27-4, 27-8
SYS number, 27-6
TAPE optional factor, 27-6
TWOUP keyword, 27-7, 27-21, 27-36, 27-38
WIDE keyword, 27-4, 27-36
WRITEALL option, 27-4, 27-5, 27-6

letter writing considerations
@ sign, 27-20
@(ASIS), 27-20, 27-21
@(CSnn), 27-11
@(Eject), 27-10
@(NEWPARA), 27-12
@(SPn), 27-10
@dataname, 27-9
@nnn, 27-11, 27-21
ENDLTD, 27-12
ENDLTD keyword, 27-20
FILE, 27-14
LETTER, 27-14
literals, 27-20
LTD statement, 27-9, 27-21
LTH statement, 27-14
quotation marks, 27-20

letters
Index–13

form, 27-1
two-up, 27-7, 27-36

LETTERxx command, 27-7

library, SSL (source statement library), 22-23

limitations, punctuation, 3-1

line analysis, trend, 28-1, 28-4

line equation, straight, 28-2

line spacing, 16-48
WITH EJECT AFTER, 16-49
WITH EJECT BEFORE, 16-49
WITH n AFTER, 16-49
WITH n BEFORE, 16-49

line, number of characters per input, 3-4

linear regression, 28-1, 28-2, 28-10
analysis, 28-5, 28-10, 28-13
best-fitting line, 28-2
coefficient of determination, 28-4, 28-13
coefficient of non-determination, 28-4
correlation coefficient, 28-4
dependent variable, 28-13
example, 28-13, 28-15
independent variable, 28-13
REGRESSION, 28-8
REGRESSION command, 28-8, 28-9
regression line, 28-3, 28-11
slope, 28-11
x-axis, 28-7
y-axis, 28-7
y-intercept, 28-11

linear regression, syntax, 28-5, 28-7
BY statement, 28-7
FOR statement, 28-7
FROM statement, 28-6, 28-7
LINEAR statement, 28-5
TITLE statement, 28-6, 28-16
XNAME statement, 28-6
XSCATTER statement, 28-5, 28-6
YNAME statement, 28-6
YSCATTER statement, 28-7

LINEAR statement, 28-5

LIST, 9-4, 9-8

LIST statement, 3-2, 16-26
column heading, 16-46
dataname, 16-28, 16-35
dataname AT dataname2, 16-39
dataname AT dataname2 +n, 16-40
indexed data names with, 16-27
keywords used, 16-28
literal use, 16-42
minimum requirements for, 16-27
placement of list, 16-26
PRIOR keyword, 16-32
SUM keyword, 16-29
SUM1 through SUM6 keywords, 16-34
SUPPRESS keyword, 16-31
TALLY keyword, 16-44

literals, 3-8, 27-20
assigning character values to fields, 3-10
assigning values to fields using hexadecimal
notation, 3-13
assigning values to numeric, packed, or binary
fields, 3-12
at detail time, aligning data names and, 16-50
at ON CHANGE IN, aligning data names and,
16-52
at ON FINAL, aligning data names and, 16-52
character or alphanumeric, 3-9
comparing characters, 3-9
comparing numerics, 3-12
file or record print, 3-11
hexadecimals, 3-12
moving characters, 3-9
moving hexadecimals, 3-13
moving numerics, 3-11
numeric literals, 3-11
numerics in arithmetic expressions, 3-12

logical unit, 17-2

LONG, 4-3, 27-4, 27-29, 27-36

LTD, 27-3, 27-8, 27-14, 27-25, 27-32
first command, 27-9
statement, 27-21
text of letter, 27-3
Index–14 VISION:Results Reference Guide

LTH, 27-3, 27-4, 27-7, 27-14, 27-18, 27-23, 27-25
letter heading, 27-3

M

macros
SPIE, 13-10
STXIT/PC, 13-10

maintaining a count of records, 21-4

MASTER, 20-3

MATCH
COMPAREN, 23-7, 23-9
DY282MAT, 23-1, 23-7, 23-10, 23-11
DY282MAT invocation of, 23-31
DY282MAT match subroutine, 23-31, 23-32,
23-35
DY282MAT parameters passed to, 23-39, 23-40
DY282MAT replacement routine, 23-41, 23-42,
23-43, 23-44, 23-45
example, 23-18, 23-19, 23-20, 23-21, 23-22
features, 23-4
functions, 23-1
IF ADVANCED, 23-12, 23-37
IF DUPLICATE, 23-14, 23-37
IF FIRSTDUP, 23-16, 23-37
IF LASTDUP, 23-17, 23-37
IF MATCHED, 23-13, 23-37
MASTERUP, 23-7, 23-9
ON ONE logic, 23-36
ORIGINAL, 23-7, 23-9
recommendations and requirements, 23-8
SETREAD, 23-7, 23-9
subroutines, 23-2
syntax, 23-5
user statements, 23-37

member names, HTML, 16-6

MERGE, 23-23
DY282MER, 23-1, 23-24, 23-26
DY282MER parameters passed to, 23-49
DY282MER replacement routine, 23-51, 23-52,
23-53
DY282MER rule for, 23-25

error handling, 23-29
features, 23-5
IF REPLICA, 23-27, 23-48
logic, 23-1
merge conditions, 23-25
recommendations and requirements, 23-25
subroutines, 23-2
syntax, 23-23

methods, access, 21-3

mletter writing considerations
@(ASIS), 27-11

mode
CONVENTIONAL, 4-3, 4-13
STRUCTURED, 4-3, 4-13
STRUCTURED2, 4-3, 4-13
USERDEFAULT, 4-3, 4-13

modification statement, title/footing, 16-21

MODIFY, 6-34

MODIFY module, writing, 13-15
PARM, 13-16
SIZE, 13-16

MODIFY modulename, 6-31
restrictions, 6-32

modulename, EXIT, 6-32

modulename, MODIFY, 6-31

MOVE, 10-1
ABSOLUTE fields, 10-12
blanks to a character field, 10-6
character literal to a field, 10-4
CORRESPONDING, 5-4, 10-11
field or literal to a subtotal field, 10-6
field to a field, 10-3
field to field, 10-3
fields, 10-3
hexadecimal literal to a field, 10-5
IF statements, 10-1
NUMERIC, 10-6
numeric literal to a field, 10-4
OFFSET, 10-7

moving fields, rules for
Index–15

binary to binary, 3-8
binary to character, 3-7
binary to numeric, 3-8
binary to packed, 3-8
character to binary, 3-6
character to character, 3-6
character to numeric, 3-6
character to packed, 3-6
numeric to binary, 3-7
numeric to character, 3-6
numeric to numeric, 3-6
numeric to packed, 3-6
packed to binary, 3-7
packed to character, 3-7
packed to numeric, 3-7
packed to packed, 3-7

moving to a subtotal field, 10-6
ON CHANGE IN, 10-6
ON FINAL, 10-6

MSGCSECT, 4-3, 4-18

multiple compares, 7-8
selecting or processing if all of several conditions
are true, 7-10
selecting or processing if any of several
conditions are true, 7-9

Multiple records
Using IF to select, 9-30

multiple reports, 17-1
OS/390 example, 17-7, 17-12
OS/390 JCL for example, 17-11, 17-14
PICNSAVE, 17-3
REPORTnnn, 17-1
USE, 17-2
VSE example, 17-15, 17-20, 17-21
VSE JCL for example, 17-19, 17-21

multiple requests, 17-1, 17-5
LINEAR, 17-5
LTH, 17-5
PICNSAVE, 17-3
REPORTnnn, 17-1
SAMPLE, 17-5
SCATTER, 17-5

USE, 17-2

N

NA edit code, 14-22

name, indexed data, 16-27

names and literals
at detail time, aligning data, 16-50
at ON CHANGE IN, aligning data, 16-52
at ON FINAL, aligning data, 16-52

naming conventions, 3-3
data names, 3-3
file names, 3-3
tagnames, 3-3

NB edit code, 14-23

NDA edit code, 14-22

NDE edit code, 14-21

NE edit code, 14-21

NEWPAGE, 8-5

NEWPARA, 27-36

NEXT, 14-3
ENDIF, 14-3

nnnn, DISK, 6-23

nnnnn, SIZE, 6-34

no INDENT, 27-25

NOCDLOAD, 4-3, 4-21

NOCOB2NR, 4-22

NODYL4YEAR, 4-4, 4-23

NOEJECT, 27-4, 27-29, 27-32

NOERROR, 4-2

NOEXPRTERR, 4-10

NOEXPRTERR option statement, 4-3

NOFEED diskette option, 6-24

NOOPTIMIZE, 27-7, 27-22

NOOPTLIST, 4-11

NOPRINTDIGITS, 4-3, 4-17

NOPRINTEP, 4-3, 4-18
Index–16 VISION:Results Reference Guide

NOQLF, 4-3, 4-14, 5-1, 5-8

NOQUALIFIERS, 4-3, 4-14, 5-1, 5-8

NORETAIN, 26-4

NORMALIZED, 10-12

NORMALIZED field, 10-12

NOSORTAB, 4-3, 4-21

NOSPOOL, 4-3, 4-16

NOSUM, 2-10, 9-5, 9-33

NOSUM keyword, 9-32

notation
Backus-Naur-Form (BNF), 4-2, 6-4
BNF, 4-2

notation, Backus-Naur-Form (BNF), 4-2, 6-4

NOTOTAL, 4-3, 4-10

NOVSAMCAT, 4-20

NOVSEALL, 4-22

NOVSEDISK, 4-22

NOVSETAPE, 4-22

NOXREF, 4-3, 4-12

NP edit code, 14-24

NU (numeric data), 2-4, 6-28, 11-2

NULLOFF, 4-3, 4-19

NULLON, 4-3, 4-19

number of characters per input line, 3-4
COLUMNS, 3-4

numeric data (NU), 6-28, 11-2

NUMFILES, DISKETTE, 6-22

NUMFILES, TAPE, 6-22

NZ edit code, 14-23

O

OFFSET, 26-3

ON CHANGE IN, 8-9, 9-5, 14-4, 16-57
dataname, 16-57
example, 16-57, 16-58

ON END OF INPUT, 14-10, 14-11, 14-12

ACCEPT, 14-10, 14-11
considerations, 14-12
example, 14-10
ON CHANGE IN, 14-10, 14-11, 14-12
ON FINAL, 14-10, 14-11, 14-12
REJECT, 14-10
STOP, 14-11
SUM, 14-12
VSAM, 14-12

ON END OF SORTING, 12-9
example, 12-9, 12-10, 12-11
ON CHANGE IN, 12-9
ON FINAL, 12-9

ON FINAL, 8-9, 9-5, 14-4, 16-59
example, 14-10, 16-59

ON ONE, 14-9, 14-10
considerations, 14-10
SORT, 14-10

ON ONE example, 14-9

ONE, ON, 14-9, 14-10

ONEBUFF
one buffer, 6-24

operators, arithmetic, 11-1

operators, relational, 7-2

OPTCD, 20-15

OPTIMIZE, 27-7, 27-22, 27-23

OPTION, 4-1, 9-6
$$DUMP, 4-3
$$KEYLEVEL, 4-3, 4-18
$$PCB, 4-3
260, 4-4
BNF notation rules, 4-2
CATPLANID, 4-27
CATSYSID, 4-27
CDLOAD, 4-3, 4-21
COB2NR, 4-22
COLUMNS, 3-4, 4-8
CONVENTIONAL, 4-3, 4-13, 8-4
cross-reference, 4-11
CURRENCY, 4-4, 4-23
Index–17

DATA, 4-9
DISK, 4-3, 4-15
DMAP, 4-3, 4-12, 5-5, 5-7
DYL4YEAR, 4-4, 4-23
DYNAMDB2, 4-26
example, 4-6, 4-27, 4-28, 4-30
EXCEL, 4-17
EXPRTERR, 4-3, 4-10
extended arithmetic list, 4-17
extended error, 4-9
FILE PRINT, 4-5
FREEZDD, 4-8
FREEZE, 4-7
HEX, 4-5, 18-3
HEXPRINT, 4-5, 18-3
IQBATCH, 4-22
LCPRINT, 4-5, 18-3
LONG, 4-3
MSGCSECT, 4-3, 4-18
multiple keywords, 4-2
multiple OPTION statements, 4-2
NOCDLOAD, 4-3, 4-21
NOCOB2NR, 4-22
NODYL4YEAR, 4-4, 4-23
NOERROR, 4-2
NOEXCEL, 4-17
NOEXPRTERR, 4-3, 4-10
NOOPTLIST, 4-11
NOPRINTDIGITS, 4-3, 4-17
NOPRINTEP, 4-3, 4-18
NOQLF, 4-3, 4-14, 5-1, 5-8
NOQUALIFIERS, 4-3, 4-14, 5-1, 5-8
NOSORTAB, 4-3, 4-21
NOSPOOL, 4-3, 4-16
NOTOTAL, 4-3, 4-10
NOVSAMCAT, 4-20
NOVSEALL, 4-22
NOVSEDISK, 4-22
NOVSETAPE, 4-22
NOXREF, 4-3, 4-12
null output file, 4-19
NULLOFF, 4-3, 4-19
NULLON, 4-3, 4-19

OPTLIST, 4-11
PATCHES, 4-24
PDSREPA, 4-20
PDSREPN, 4-20
placement, 4-2
PRINT, 4-5, 18-2, 18-3
print entry point address, 4-18
PRINTDIGITS, 4-3, 4-17
PRINTEP, 4-3, 4-18
PRINTERR, 4-2, 4-10
PRINTERROR, 4-2, 4-10
programming mode, 4-13
QLF, 2-11, 4-3, 4-14, 5-1, 5-8
QUALIFIERS, 4-3, 4-14, 5-8
REPORTFILE, 4-3, 4-16, 18-3
RESTART, 4-13
RESTORE, 4-7, 4-13
SPOOL, 4-3, 4-16
STATEOFF, 4-10
STATSQL, 4-27
STRUCTURED, 4-3, 4-13, 8-4, 23-8, 23-25
STRUCTURED2, 4-3, 4-13, 8-4
suppress control totals, 4-10
SYSnnn, 4-3, 4-15
TIMECOLON, 4-21
TIMEDOT, 4-21
TOTAL, 4-10
TSIZE, 4-14
USERDEFAULT, 4-3, 4-13, 8-4
VERIFY, 4-9
VISION:Excel, 4-16
VSAMCAT, 4-20
VSEALL, 4-22
VSEDISK, 4-22
VSETAPE, 4-22
when used, 4-2
workfile, 4-15
XREF, 4-3, 4-12, 5-5
XREFA, 4-3, 4-12, 5-5, 5-6
ZDIVAB, 4-19
ZDIVORG, 4-20
ZDIVRC, 4-19
Index–18 VISION:Results Reference Guide

option
$$DUMP, 4-3, 4-17, 4-18
$$KEYLEVEL, 4-3, 4-18
$$PCB, 4-3, 4-18
260, 4-4

OPTLIST, 4-11

OR (EXOR), EXCLUSIVE, 10-10

OS/390, 1-1

OS/390 JCL, B-1

OUTPUT, 21-5

Output Unlimited (IOU), Input, 6-35

P

P edit code, 14-23, 27-17

packed decimal (PD), 6-28, 11-2

page eject, 27-19, 27-32

PARM, 6-34

Partitioned Data Set (PDS), 9-26, 9-28, 15-1

PARTKEY, 19-14

PATCHES, 4-24

PD (packed decimal), 2-4, 6-28, 11-2

PDS (Partitioned Data Set), 15-1
ADD, 22-7
ALIAS, 22-7
CHANGE, 22-8
directory, 22-22, 22-23
example, 22-9, 22-10, 22-12, 22-13, 22-14, 22-15,
22-16, 22-17, 22-18, 22-19, 22-20
READDIR, 22-5
READMEM, 22-5
recommendations, 22-6
REPLACE, 22-8
SCRATCH, 22-9
WRITEDIR, 22-6
WRITEMEM, 22-6

PDSREPA, 4-20

PDSREPN, 4-20

per input line, number of characters, 3-4

PERFORM, 8-1, 8-8, 14-5, 14-6
BY, 14-5
considerations, 14-6
example, 14-5
ON CHANGE IN, 8-9, 14-6
ON FINAL, 8-9, 14-6
VARYING, 8-8, 14-5

PICNSAVE, 17-3
BY nnnnn, 17-5
idname, 17-4
SYSnnn, 17-5
TAPE, 17-5
temporary file, 17-3
USING, 17-4

PL/I, 1-1
example (invoking a PL/I external subroutine),
13-13
OS/390 and VSE JCL example, 13-12
OS/390 link edit example, 13-12
PLIEXIT (an Assembler subroutine), 13-12
PLIEXIT source program, 13-14, 13-15
VSE link edit example, 13-13

PL/I subroutine, 13-12

PLUnnn, 16-16
programmer logical unit, 16-16

point, exit, 16-75

POSITION, 20-7

position reporting, fixed print, 16-54

PRINT, 4-5
record number, 18-9

print commands, 18-4
HEX, 18-4
HEXPRINT, 18-4
LCPRINT, 18-4
PRINT, 18-4
REPORTFILE, 18-4

print file, 4-5, 18-1

PRINT immediate command, 18-4

print position reporting, fixed, 16-54

PRINTDIGITS, 4-3, 4-17
Index–19

PRINTEP, 4-3, 4-18

PRINTERR, 4-10

PRINTERROR, 4-10

problem areas, 12-35
OS/390, 12-35
VSE, 12-35

Procedure logic, 9-4

procedure termination, 14-9

program execution, directing, 14-1

programming tips
continuation rules, 3-2
naming conventions, 3-3
number of characters per line, 3-4
punctuation limitations, 3-1

PROTECT diskette option, 6-24

punctuation limitations, 3-1

PUTCOM, 2-24

Q

Q edit code, 14-23, 27-17

QLF, 4-3, 4-14, 5-1, 5-8

qualification of data name, 4-14, 5-1
COUNT, 5-2
DMAP, 5-5, 5-7
Format, 5-2
LENGTH, 5-2
MOVE CORRESPONDING, 5-4
no qualified data names option, 5-8
NOQLF, 5-1, 5-8
NOQUALIFIERS, 5-1, 5-8
QLF, 5-1, 5-8
QUALIFIERS, 5-8
qualifying keywords, 5-2
qualifying multiple reports, 5-4
qualifying work areas, 5-3
XREF, 5-5
XREFA, 5-5, 5-6

QUALIFIERS, 4-3, 4-14, 5-8

QUIT, 14-5

QUITALL, 14-5

quotation marks, 27-20

R

RANDOM, 6-27, 21-2

random read, 21-17
relative block number, 21-21

random selection
example, 25-5, 25-6, 25-7, 25-8
IF SAMPLING, 25-5
known universe, 25-2
RANDOM, 25-2, 25-3
reserved words, 25-7
SAMPLE, 25-2, 25-3
SEED, 25-2, 25-4

random selection of data, 7-12

random update, 21-27
relative block number, 21-33
relative track number and actual key, 21-28
relative track number and actual record number,
21-30

RANDOMX, 6-27

range and series compares, combined, 7-5

range compares, 7-4

RBA, 19-24

RDW, 19-47, 20-24

READ, 14-7

read
random, 21-17
sequential, 21-23

record addressing schemes
relative block, 21-3
relative track and actual record number, 21-2

record descriptor word, 18-8

Record format, 9-2

Record size, 9-2

record size, 27-24

records, variable length, 6-36, 21-34, 21-35
Index–20 VISION:Results Reference Guide

REDEFINE, 2-13

REGRESSION, 28-8, 28-9

regression, linear, 28-1, 28-2, 28-10

REINIT, 2-7, 14-14

REJECT, 4-13, 8-1, 8-5, 8-20, 8-25, 14-4

REJECT FILE PRINT option, 4-5

relational operators, 7-2
EQ, 7-2
GE, 7-2
GT, 7-2
LE, 7-2
LT, 7-2
NE, 7-2

RELBLK, 21-3

RELBYTE, 19-6, 19-10, 19-31, 19-44

RELBYTEX, 19-6, 19-10, 19-44

RELREC, 19-7, 19-11, 19-32

RELSORT
example, 12-29, 12-30, 12-31, 12-32, 12-33

RELTRK, 21-2

REPLACE, 22-8

REPORT, 16-1, 16-75
aligning data names and literals at detail, 16-50
aligning data names and literals at ON
CHANGE IN, 16-52
aligning data names and literals at ON FINAL,
16-52
AND, 16-17
ASA, 16-5
BETWEEN, 16-4
CONTROL, 16-56
control break, 16-56
example, 16-17, 16-60
exit routines, 16-75
fixed print position, 16-54
HTML, 16-5
line spacing, 16-48
LIST, 16-26
LONG, 16-3
modulename, 16-4

ON CHANGE IN, 16-57
ON FINAL, 16-59
placement, 4-2, 16-2
PLUnnn, 16-16
SUBTOTAL, 16-56
SYS280Rx, 16-5
TITLE and FOOTING statements, 16-18
title/footing modification statement, 16-21
when required, 16-2
WIDE, 16-3

REPORTFILE, 4-3, 4-16

reporting, fixed print position, 16-54

REPORTnnn, 17-1
PLUnnn, 17-2
SYS280Rx, 17-2

Reports
Suppressing subtotals, 9-32

reports, multiple, 17-1

requests, multiple, 17-1, 17-5

Reserved words, 9-7
FILLER, 9-7

reserved words
BLANK or BLANKS, 2-15
DYLCENTRY1, 2-15
DYLCENTRY2, 2-15
DYLCNAMEn, 2-16
DYLCNxxID, 27-6
DYLCNxxLNC, 27-32
DYLCNxxSW, 27-7
DYLCOMMON, 2-16
DYLCOMRG, 2-16
DYLCOUNT 1-10, 2-17
DYLDATE, 2-17
DYLDATE4, 2-17
DYLDATEPAG, 2-17
DYLDATEPG4, 2-17
DYLDLA, 2-17
DYLETIME, 2-18
DYLEXTxx, 27-4
DYLEXTxx keyword, 27-5
DYLGREG, 2-18
Index–21

DYLGREG4, 2-18
DYLJULIAN, 2-18
DYLJULIAN4, 2-18
DYLLINE, 2-18
DYLNOTOT, 2-19
DYLNRP, 2-19
DYLONE, 2-19
DYLPAGE, 2-20
DYLPAGEn, 2-20
DYLPARM, 2-20
DYLPARMLEN, 2-21
DYLPPAGE, 2-21
DYLPRTCOMM, 2-21
DYLPRTMAXL, 2-21
DYLPRTNUMB, 2-21
DYLPRTPAGE, 2-22
DYLREPMAXL, 2-22
DYLRESET, 2-22
DYLRETURN, 2-23
DYLSYSDATE, 2-23
DYLSYSPARM, 2-23
DYLTIME, 2-23
DYLTRAN, 2-24
DYLTRxx, 27-4, 27-6
DYLTRxx keyword, 27-6
DYLUPSI, 2-24
GETCOM, 2-24
PUTCOM, 2-24
SPACE or SPACES, 2-24

RESTART, 4-13

RESTORE, 4-7, 4-13
DATA, 4-7
DISK, 4-7
NOTOTAL, 4-7
PRINTERROR, 4-7
RESTARTnn, 4-7
SYSnnn, 4-7

RETAIN, 26-4

RETAIN|NORETAIN, 26-17

RETRIEVE, 26-6

RETSORT, 12-28

example, 12-31, 12-32, 12-33

REUSE, 19-5, 19-7

RIGHT, 2-10

RMODE, 13-18

ROUND, 2-9

ROUNDED, 2-9

rounding, 11-2

S

S edit code, 14-24

scatter diagram, 28-1

scatter diagrams
BY, 28-7
FOR, 28-7
FOR statement, 28-7
SCATTER nn statement, 28-5
syntax, 28-5
TITLE, 28-16
TITLE statement, 28-6
XNAME statement, 28-6
XSCATTER statement, 28-6
YNAME statement, 28-6
YSCATTER statement, 28-7

SCATTER statement, 28-5

SEARCH, 26-7, 26-8

SECURE diskette option, 6-24

SELECT, 6-19

selection of data
interval, 7-12
random, 7-12

semicolons (;) used for comments, 3-1

SEQUENTIAL, 21-2

sequential create
BDAM file, 21-10
relative block number, 21-15

sequential read, 21-23
relative block number, 21-26
relative track and actual record number, 21-25
Index–22 VISION:Results Reference Guide

relative track number and actual key, 21-23

series compares, 7-5
combined range, 7-5

SIZE nnnnn, 6-34

size, record, 27-24

SKIP, 6-28, 20-7

SKIPX, 6-28

SORT, 9-9, 12-1, B-1
considerations, 12-36
example, 12-9, 12-10, 12-11
ON END OF SORTING, 12-9
OS/390 JCL requirements, 12-37
problem areas, 12-35
SORTing a dataname...UNTIL, 12-22
VM FILEDEF requirements, 12-38
VSE sort considerations, 12-36

SORTing a dataname...UNTIL, 12-22
example and flowcharts, 12-24, 12-26, 12-28
record size, 12-22
UNTIL, 12-23
UNTIL dataname, 12-28
USING, 12-23

sorting a file
ascending, 12-6
descending, 12-6
example, 12-7, 12-8, 12-9
filename, 12-2
nK, 12-3
USING dataname, 12-3
WORK n, 12-7

SORTing a file...UNTIL
example and flowcharts, 12-12, 12-14, 12-17,
12-19
UNTIL, 12-12
UNTIL dataname, 12-17
UNTIL filename, 12-12

SORTING, ON END OF, 12-9

SORTREC, 9-24
, 9-24

Source Statement Library (SSL), 22-23

SPACE or SPACES, 2-24

spacing, line, 16-48

special fields
BLANK or BLANKS, 2-15
DYLCENTRY1, 2-15
DYLCENTRY2, 2-15
DYLCNAMEn, 2-16
DYLCOMMON, 2-16
DYLCOMRG, 2-16
DYLCOUNT 1-10, 2-17
DYLDATE, 2-17
DYLDATE4, 2-17
DYLDATEPAG, 2-17
DYLDATEPG4, 2-17
DYLDLA, 2-17
DYLETIME, 2-18
DYLGREG, 2-18
DYLGREG4, 2-18
DYLJULIAN, 2-18
DYLJULIAN4, 2-18
DYLLINE, 2-18
DYLNOTOT, 2-19
DYLNRP, 2-19
DYLONE, 2-19
DYLPAGE, 2-20
DYLPAGEn, 2-20
DYLPARM, 2-20
DYLPARMLEN, 2-21
DYLPPAGE, 2-21
DYLPRTCOMM, 2-21
DYLPRTMAXL, 2-21
DYLPRTNUMB, 2-21
DYLPRTPAGE, 2-22
DYLREPMAXL, 2-22
DYLRESET, 2-22
DYLRETURN, 2-23
DYLSYSDATE, 2-23
DYLSYSPARM, 2-23
DYLTIME, 2-23
DYLTRAN, 2-24
DYLUPSI, 2-24
GETCOM, 2-24
Index–23

PUTCOM, 2-24
SPACE or SPACES, 2-24

SPOOL, 4-3, 4-16

SSL (Source Statement Library), 22-23
BOOK, 22-24
COUNT, 22-24
example, 22-25, 22-26
FILE, 22-23
READBOOK, 22-24
STATUS, 22-24

standard error of the estimate, 28-3

Statement
CONTROL, 9-11, 9-13
COPY, 9-26, 9-28
COPY with COBOL, 9-28
FILE, 9-2, 9-6
IF, 9-19, 9-30
IF-OR, 9-21
LIST, 9-4, 9-8
OPTION, 9-6
SORT, 9-9
Title, 9-18

statement
DD, 27-19
FILE, 6-1
title or footing modification, 16-21

Statement Library), SSL (Source, 22-23

statement types
FILE, 27-3, 27-14, 27-25

STATEOFF, 4-2, 4-10

STATEON, 4-2

STATSQL, 4-27

STATSQL option, 4-27

STATUS, 20-7, 26-16

STATUS keyword, 26-3

status tests, 7-5
MIXED (bits mixed), 7-8
negative value, 7-6
numeric value, 7-6
ONES (bits on), 7-7

positive value, 7-5

STOP, 14-4, 20-15, 21-15

STOPALL, 14-4

STORE, 26-5

straight line equation, 28-2

STRUCTURED mode, 4-3, 4-13, 8-4

structured programming, 8-1
ACCEPT, 8-1, 8-5
automatic cycle, 8-18
CASE, 8-2
coding standards, 8-5, 8-7
CONVENTIONAL, 8-4
DOUNTIL, 8-3, 8-7, 8-24
DOWHILE, 8-2, 8-7
ELSE, 8-9
ENDIF, 8-10
EXITCASE, 8-5
EXITDO, 8-5
GOTO, 8-5
IF, 8-9
IF-THEN-ELSE-ENDIF, 8-1, 8-9
invoking, 8-4
ITERATE, 8-5
iteration, 8-2
iterative structures, 8-14
PERFORM, 8-1, 8-8
recommendations with SORT, 8-22
recommendations without SORT, 8-20
REJECT, 8-1, 8-5
restrictions, 8-5
selection, 8-1, 8-9
STRUCTURED, 8-4
STRUCTURED2, 8-4
techniques, 8-22
USERDEFAULT, 8-4

STRUCTURED2 mode, 4-3, 4-13, 8-4

subroutine, exit, 27-1

SUBTOTAL, 16-56

subtotal field, moving to a, 10-6

SUM, 2-10, 9-5, 16-29
Index–24 VISION:Results Reference Guide

example, 16-29, 16-30

SUPPRESS, 9-15, 16-31
example, 16-32

Suppressing subtotals in reports, 9-32

SWITCH, 27-7, 27-38

syntax definitions
block size, 6-14
BYPASS, 6-19
CARD/CARDS, 6-17
device specifications, 6-21
DROPERR, 6-20
DUMMY, 6-20
DYNAM, 6-24
file organization, 6-11
filename, 6-10
FROM filename, 6-12
input/output type, 6-11
INTERPRET, 6-18
ISAM/VSAM syntax definitions, 6-10
JCL, 6-18
LENGTH dataname, 6-15
NULL, 6-20
ONEBUFF, 6-24
processing mode, 6-11
record format, 6-13
record size, 6-13
SELECT dataname, 6-19
STATUS dataname, 6-15
SYSnnn, 6-21

SYSnnn, 4-3, 4-15

SYSOUT, 27-19

T

TABLE, 26-1

table keywords
ENTRY, 26-3
F entrylen, 26-3
FROM filename, 26-3
LENGTH, 26-3
STATUS, 26-3

tablename, 26-3
V maxlen, 26-3

tablename keyword, 26-3

tables
allocating memory, 26-1
binary search, 26-8
deleting a table, 26-11
error return codes, 26-13
example, 26-13, 26-14, 26-15
fixed-length entries, 26-6, 26-7, 26-9, 26-10
loading, 26-4
logical deletion, 26-12
number allowed, 26-1
physical deletion, 26-11
random replacement, 26-10
random retrieval, 26-9
sequential retrieval from, 26-6
sequential SEARCH, 26-7
sorting, 26-9
space required, 26-1
syntax, 26-2, 26-3
USE, 26-13
user return codes, 26-13
variable length entries, 26-5, 26-7, 26-10, 26-11

tagnames, 3-3

TALLY, 16-44
example, 16-44, 16-45, 16-46

TAPE, 6-22, 27-6

TAPE LABEL, 6-21
NL, 6-21
SL, 6-21
T, 6-21

TAPE NUMFILES, 6-22

technical support, contacting Computer Associates,
1-2

terminate a procedure, 14-9

tests
class, 7-5
status, 7-5

THRU, 9-22
Index–25

time, aligning data names and literals at detail,
16-50

TIMECOLON, 4-21

TIMEDOT, 4-21

TITLE, 3-2, 16-1, 16-18, 28-6, 28-16
additional information, 16-20
example, 16-20, 16-21
FIXED, 16-18
FOOTING, 16-19
modification statement, 16-21
title contents, 16-18
Tn (1-9), 16-18
WITH n AFTER, 16-19

Title statements (Tn), 9-18

title/footing modification statement, 16-21
additional information, 16-23
alphanumeric literal, 16-22
data names, 16-23
example, 16-24
limitations and constraints, 16-25
numeric literal, 16-22
reserved words, 16-23
tn (1-9), 16-21

TOTAL, 4-10

TRANSLATE, 14-16
dataname1, 14-18
dataname1 FROM, 14-16
EBCDIC, 14-17, 14-18
INTO dataname2, 14-17
UPPER, LOWER, 14-17

trend line analysis, 28-1, 28-4
dependent variable, 28-4
example, 28-15
independent variable, 28-4
TITLE statement, 28-6, 28-16
TREND, 28-5

trend line analysis, syntax, 28-5
BY statement, 28-7
FOR statement, 28-7
FROM statement, 28-6, 28-7
TITLE, 28-16

TITLE statement, 28-6
TREND nn statement, 28-5
TREND statement, 28-5
XNAME statement, 28-6
XSCATTER statement, 28-6
YNAME statement, 28-6

TREND statement, 28-5

TSIZE, 4-14, 26-1, 26-2

TSORT, 26-9

two-up letters
two letters are produced side-by-side, 27-36
using the defaults example, 27-36

TWOUP, 27-7, 27-36, 27-38
two-up letter processing, 27-21

U

U edit code, 14-23, 27-17

unit, logical, 17-2

Unlimited (IOU), Input Output, 6-35

unpredictable results
0C4 ABEND, 14-7

UNSIGNED field, 10-12

update, random, 21-27

USE, 17-2, 26-13
STATUS dataname, 17-3

USERDEFAULT mode, 4-3, 4-13, 8-4
Invoking, 9-1

V

V edit code, 14-24, 27-18

V maxlen keyword, 26-3

VALUE, 3-2
All, 2-6
character, 2-5
hexadecimal, 2-6
HIGHVALUES, 2-7
LOWVALUES, 2-7
null, 2-6
Index–26 VISION:Results Reference Guide

variable-length records, 6-36, 21-34, 21-35
block size, 19-46
file printing variable files, 19-47
ISAM

block size, 20-23
file printing variable files, 20-24
length of current record, 20-23
location of data within record, 20-23
output from an input file, 20-24
output from itself, 20-23
record size, 20-23
sorting a variable file, 20-24

length of current record, 19-46
output from itself, 19-46
sorting a variable file, 19-47

variable-length records VSAM AND ISAM
output from an input file, 19-46
record size, 19-46

VERIFY, 4-9

VERIFY diskette option, 6-24

VISION:Excel, 4-16

VISION:Excel commands, 4-17

VISION:Interface for DB2
VARCHAR data type support, 15-27

VISION:Report QUIKJOB option, 4-4

VM, 1-1

VM/CMS JCL, B-2

VOLVER diskette option, 6-24

VSAM, 19-1
creating a file, 19-3
generic search, 19-15
numeric keys, 20-26
packed keys, 20-26
random read, 19-20
sequential insert/extend, 19-42
sequential read, 19-8
sequential update, 19-27
skip sequential read, 19-11
syntax, 19-2

VSAM ESDS
entry sequence create, 19-6

entry sequence random read, 19-23
entry sequence random update, 19-37
entry sequence sequential read, 19-9
entry sequence sequential update, 19-30
entry sequence skip sequential read, 19-16
example, 19-52, 19-54
files, 19-2
key sequence sequential update, 19-30
RELBYTE, 19-31

VSAM KSDS
example, 19-49, 19-50, 19-51, 19-52
key sequence create, 19-4
key sequence random read, 19-21
key sequence sequential update, 19-27
key sequence skip sequential read, 19-12

VSAM RRDS
key sequence sequential update, 19-32
relative record create, 19-7
relative record random read, 19-25
relative record sequential read, 19-10
relative record sequential update, 19-32
relative record skip sequential read, 19-18

VSAMCAT, 4-20

VSE, 1-1, 27-6

VSE JCL, B-1

VSE only in DYLTRxx keyword, 27-6

VSEALL, 4-22

VSEDISK, 4-22

VSETAPE, 4-22

W

W edit code, 14-24, 27-18

web page
Computer Associates, 1-2

WHEN, 8-12

WIDE, 27-4

WIDE keyword, 27-36

word, record descriptor, 18-8

WORK, 6-35
Index–27

WORKAREA
examples, 2-11, 2-13
multiple work areas, 2-13
naming of, 2-11
QLF, 2-11
QUALIFIERS, 2-11

WORKAREA data name, 27-29, 27-30

WORKAREA statement, 3-10

WRITE, 14-7, 20-15

WRITEALL, 27-4

WRITEALL in DYLEXT keyword, 27-5

WRITEALL option in ASA keyword, 27-6

writing, letter, 27-1

X

X edit code, 14-22, 27-16

XNAME statement, 28-6

XREF, 4-3, 5-5

XREFA, 4-3, 4-12, 5-5, 5-6

XSCATTER statement, 28-6

Y

Y edit code, 14-21, 27-15

YNAME statement, 28-6

YSCATTER statement, 28-7

Z

Z edit code, 14-23, 27-17

ZDIVAB, 4-19

ZDIVORG, 4-20

ZDIVRC, 4-19
Index–28 VISION:Results Reference Guide

	Reference Guide
	Contents
	Chapter 1: Introduction
	Contacting Computer�Associates

	Chapter 2: Field and Work Area Definitions
	Field Definitions
	Dataname
	Field Length
	Starting Location
	Redefining a Field
	Data Type
	Number of Decimals
	VALUE nnn |`xxx'|X`nn'|ALL|NULL|LOWVALUES|HIGHVALUES
	REINIT

	Extended Format
	Edit Code
	Report Output Field Size
	ROUND or ROUNDED
	Column Heading
	LEFT or RIGHT
	SUM or NOSUM

	Work Areas
	REDEFINE
	Special Fields and Reserved Words

	Chapter 3: Syntax Rules
	Using Punctuation
	Continuation Rules
	Naming Conventions
	Number of Characters per Input Line
	Rules for Comparing Fields
	Rules for Moving Fields
	Literals

	Chapter 4: Using the OPTION Command
	260 Option (VISION:Sixty Users Only)
	QUIKJOB Option (VISION:Report Users Only)
	FILE PRINT Options
	Module Options
	Specification of Default FREEZE ddname
	Free-form COLUMNS Option
	VERIFY Option
	DATA Option
	Extended Error Option
	Enhanced Error Analysis
	Suppress VISION:Results Control Totals Option
	Number of Lines per Page Option
	OPTLIST and NOOPTLIST
	Cross-Reference Option
	XREF and XREFA Options
	DMAP Option

	Programming Mode Option
	RESTART and RESTORE Options (Multiple�Reports)
	Qualification of Data Name Option
	Allocating Memory for Tables and Arrays
	Work File Option
	Symbolic Unit and File Name Option
	REPORTFILE Option
	Spooling Option
	VISION:Excel OPTION NOEXCEL (VISION:Excel Users Only)
	Extended Arithmetic List Option
	$$DUMP Option
	$$PCB Option
	$$KEYLEVEL Option
	MSGCSECT Option
	Print Entry Point Address Option
	Null Output File Option
	Options Useful for Technical Support
	Divide by Zero Condition Keyword
	Characteristics of VSAM Files
	PDS Replace
	DYLETIME Format Change
	Premature Sort Termination Without Abend
	CDLOAD Facility
	IQBATCH
	COBOL II Environment
	Match File Attributes for VSE Sequential Files
	Currency Symbol Substitution
	Four-Digit Year Support
	Program Fixes Employed
	IBM Language Environment (LE) Support
	User-Defined Index Fields
	System-Determined Block Size Support for OS/390
	IF NUMERIC Test for PD Fields
	Modifying IF NUMERIC Test
	TABLE or ARRAY Allocation Above the 16M Line
	Options for VISION:Interface
	Examples

	Chapter 5: Data Name Qualification
	Qualification Format
	Qualifying of Keywords and Self-Defining Data Names
	Qualifying Work Areas
	Qualifying with Multiple Reports
	MOVE CORRESPONDING and OPTION QLF
	Options XREF/XREFA and DMAP with QLF
	XREFA Option
	DMAP Option

	No Qualified Data Names Option

	Chapter 6: Using the FILE Command
	Supported Access Methods
	BDAM (or DAM) Files
	EXIT Files
	ISAM Files
	PDS Files
	SEQUENTIAL Files
	SSL Files
	VSAM ESDS Files
	VSAM KSDS Files
	VSAM RRDS Files

	Syntax Definitions (General)
	Filename
	File Organization
	Input/Output Type
	Processing Mode
	FROM filename
	Record Format
	Record Size
	Block Size
	STATUS dataname
	LENGTH dataname
	COUNT dataname
	CARD or CARDS
	JCL
	INTERPRET
	SELECT dataname
	INTSEL dataname
	BYPASS nn
	DUMMY
	NULL
	DROPERR
	SYSnnn
	Device Specifications
	Multiple File Input
	ONEBUFF
	DYNAM

	ISAM and VSAM Syntax Definitions
	KEYLEN nnn
	KEYLOC nnnn
	STATUS dataname
	POSITION dataname
	PARTKEY nnn
	REUSE
	ERASE dataname
	RELBYTE dataname and RELBYTEX dataname
	PASSWORD ‘password’
	PASSWORD dataname
	CYLOFL nn
	EXTENTS nn
	MASTER

	RETAIN
	EXIT and MODIFY
	MODIFY modulename [nK]
	EXIT modulename [nK]
	SIZE nnnnn
	MODIFY
	EXIT
	PARM (dataname)
	IOAREA
	WORK

	IOU-Processed Files
	Considerations for Processing Variable-Length�Records
	Record Size
	Block Size
	Location of Data Within Record
	Length of Current Record
	Output from Itself
	Output from an Input File
	File Printing Variable Files
	Sorting a Variable File
	Exceptions to the Above Rules

	Considerations for Unblocked ISAM Files
	Sequential Read
	Sequential Load/Extend
	Random Retrieval
	Random Update

	Considerations for Concatenated Input Files

	Chapter 7: Using the IF Command
	Comparing and Selecting Data
	IF
	NOT
	Relational Operators
	Dataname or Literal
	True Condition-1 Imperatives
	False Condition Imperatives
	ENDIF

	Range Compares
	Series Compares
	Combined Range and Series Compares
	Class or Status Tests
	Test for Positive Value
	Test for Negative Value
	Test for Numeric Value
	Test for Bits On
	Test for Bits Mixed

	Compound Compares
	Select or Process if Any of Several Conditions Is True
	Select or Process if All of Several Conditions Are True

	Combining Compound Compares
	Interval and Random Selection of Data

	Chapter 8: Structured Programming
	Structured Option
	Sequence
	Selection
	Iteration

	Invoking Structured Mode
	Restrictions
	Suggested Coding Standards
	Sequence Structure
	PERFORM

	Selection Structure
	IF
	Placement of ENDIF
	Nesting IF
	IF Restrictions
	CASE
	Nesting and CASE
	CASE Restrictions
	EXITCASE

	Iterative Structure
	DOWHILE
	DOUNTIL
	Placement of ENDDO
	Nesting and DOWHILE or DOUNTIL
	DOWHILE or DOUNTIL Restrictions
	EXITDO
	ITERATE

	Automatic Cycle
	Cycle Without SORT
	Cycle with SORT

	Structured Programming Techniques
	Select Records for SORT
	ACCEPT
	REJECT
	GOTO

	Structured Programming Examples

	Chapter 9: USERDEFAULT Mode Programming
	USERDEFAULT Option
	Invoking USERDEFAULT Mode
	FILE
	Record Format
	Record Size
	Block Size

	Field Definitions
	Size/Length

	Procedure Logic
	LIST
	USERDEFAULT Considerations
	Examples of Programming in USERDEFAULT Mode

	Chapter 10: Using the MOVE Command
	Move Field to Field
	Move Field to Field — Variable Length
	Move Literal to Field
	Move Numeric Literal to a Field
	Move Character Literal to a Field
	Move Hexadecimal Literal to a Field

	Move Blanks to Character Field
	Move Field or Literal to a Subtotal Field
	MOVE NUMERIC
	MOVE ZONE
	MOVE with OFFSET
	COMBINE BITS Using OR
	AND a Field or Literal with a Field
	COMBINE BITS Using EXOR
	MOVE CORRESPONDING Qualifier to Qualifier
	MOVE UNSIGNED|ABSOLUTE|NORMALIZED

	Chapter 11: Using Arithmetic Commands
	Valid Arithmetic Operators
	Indexing
	Rounding
	Exponentiation
	Order of Computation
	Arithmetic Restrictions

	Chapter 12: Using the SORT Command
	Sorting a File
	Filename
	nK
	USING dataname
	USING dataname for Y2K Formats
	A or D
	WORK n

	ON END OF SORTING
	SORT A FILE�... UNTIL
	UNTIL
	UNTIL filename
	UNTIL dataname

	Sorting a Dataname�... UNTIL
	Record Size
	USING
	UNTIL
	UNTIL filename
	UNTIL dataname

	RELSORT and RETSORT Commands
	Limitations and Constraints
	Problem Areas
	Sort Considerations
	OS/390 JCL Requirements
	VSE JCL Requirements
	CMS FILEDEF Requirements

	Chapter 13: Using the CALL Command
	Subroutine Name
	nK
	CDLOAD, NOCDLOAD
	USING
	Parameters
	Return Code RETCODE
	External Subroutine Considerations
	Language Environment Considerations
	COBOL Subroutine Considerations
	COBOL Problem Areas
	Assembler Subroutine Considerations
	PL/I Subroutine Considerations
	PL1EXIT Source Program

	Writing a Modify Module
	PARM
	SIZE

	Writing an EXIT Module
	PARM
	STATUS

	Subroutines Link Edited as AMODE(31)

	Chapter 14: Using Procedural Commands
	Commands
	GOTO
	NEXT
	ACCEPT
	REJECT
	STOP
	STOPALL
	QUIT
	QUITALL
	PERFORM
	READ filename
	WRITE filename
	CLOSE filename

	Procedures
	ON ONE, ENDONE
	ON END OF INPUT

	Indexing
	Commands Used with Indexing
	Indexing Restrictions

	TRANSLATE
	Dataname1 FROM
	INTO dataname2
	UPPER, LOWER
	ASCII, EBCDIC
	TRANSLATE dataname1 [INTO dataname2]

	EDIT
	Non-Standard Edits
	Standard Edits

	Edit Codes
	Dynamic Allocation
	Rules for Dynamically Allocating Files
	JCL Considerations

	Procedural Command Examples
	Example 1. The Allocate Facility
	Example 2. The Allocate Facility and MOVE Command in the OUTJCL Fields

	Other Commands Affected by Dynamic Allocation
	PICNSAVE Command
	REPORT Statement
	LTH Statement
	CALL Command
	Diagnostic Output and Error Messages

	Chapter 15: Using the COPY or COPYE Command
	Formats
	Examples
	Rules, Limitations, and Constraints
	OS/390 COPY or COPYE Command Requirements
	OS/390 $DEFAULT Command Requirements
	OS/390 JCL Requirements
	VSE COPY or COPYE Command Requirements
	VSE $DEFAULT Command Requirements
	VSE JCL Requirements
	COPYC Considerations
	COPYL Considerations
	CA-Librarian OS/390 JCL
	CA-Librarian VSE JCL

	COPYP Considerations
	CA-Panvalet OS/390 JCL
	CA-Panvalet VSE JCL

	Using COBOL Record Descriptions
	Replacing of Character Strings
	Instream COBOL Facility
	Rules for Using COBOL Record Descriptions
	COBOL Examples
	COBOL Replacing Literal
	COBOL Replacing Pseudo-text

	Prefixing Data Names
	Using DB2 Tables
	COPYDB2 Requirements
	VARCHAR Data Type Support
	Generating Null Indicator Fields
	COPYDB2 Example
	JCL DB2 Overrides Example

	Chapter 16: Using Report Statements
	Report Statement
	OS/390
	VSE
	nnn WIDE
	DELIM
	nnn LONG
	nn BETWEEN
	Modulename|ASA
	SYS280Rx
	HTML ddname
	PLUnnn
	AND

	Title and Footing Statements
	Tn
	Title Contents
	FIXED
	FOOTING
	WITH n AFTER
	Additional Information

	Title or Footing Modification Statement
	Tn
	Alphanumeric Literal
	Numeric Literal
	Data Names
	Reserved Words
	Additional Information
	Limitations and Constraints

	LIST Statement
	LIST
	Dataname
	Keyword
	Dataname
	dataname AT dataname2
	Dataname AT dataname2 +n
	Literal
	TALLY / TALLYn
	Column Heading

	Print Line Spacing
	WITH n BEFORE and WITH EJECT BEFORE
	WITH n AFTER and WITH EJECT AFTER

	Alignment of Data Names and Literals at�Detail�Time (Multi-line)
	Alignment of Data Names and Literals at ON CHANGE IN and ON FINAL Time
	Fixed Print Position Reporting
	dataname
	nnn (Print Location)

	CONTROL or SUBTOTAL Statement
	ON CHANGE IN
	ON FINAL
	Report Examples
	Report Print Line Exit — Your Exit Routines
	Procedure
	Considerations for Writing Your Report Line Exit

	Chapter 17: Multiple Reports and Multiple Requests
	REPORTnnn Statement
	SYS280Rx

	USE Statement
	STATUS dataname

	PICNSAVE Statement
	idname
	USING dataname
	BY nnnnn
	SYSnnn
	DISK nnnn
	TAPE

	Multiple Requests
	Freezing and Restoring Multiple Reports
	Multiple-Report Examples
	OS/390
	VSE

	Chapter 18: File Print Commands
	Printing Using the Option Statement
	Printing Using the Print Immediate Commands
	Filename, Dataname, Indexed Dataname, or Literal
	LENGTH n or dataname

	Other Print Features
	Comments
	Record Number

	Chapter 19: VSAM Processing
	Syntax Format
	Creating a File
	Key Sequence VSAM (KSDS) Create
	Entry Sequence VSAM (ESDS) Create
	Relative Record VSAM (RRDS) Create

	Sequential Read
	Key Sequence VSAM (KSDS) Sequential Read
	Entry Sequence VSAM (ESDS) Sequential Read
	Relative Record VSAM (RRDS) Sequential Read

	Limited (Skip) Sequential Read
	Key Sequence VSAM (KSDS) Skip Sequential Read
	Entry Sequence VSAM (ESDS) Skip Sequential Read
	Relative Record VSAM (RRDS) Skip Sequential Read

	Random Read
	Key Sequence VSAM (KSDS) Random Read
	Entry Sequence VSAM (ESDS) Random Read
	Relative Record VSAM (RRDS) Random Read

	Sequential Update
	Key Sequence VSAM (KSDS) Sequential Update
	Entry Sequence VSAM (ESDS) Sequential Update
	Using the RELBYTE or RELBYTEX dataname
	Relative Record VSAM (RRDS) Sequential Update

	Random Update
	Key Sequence VSAM (KSDS) Random Update
	Entry Sequence VSAM (ESDS) Random Update
	Using the RANDOM/RANDOMX dataname
	Relative Record VSAM (RRDS) Random Update

	Sequential Insert and Extend
	Key Sequence VSAM (KSDS) Sequential Insert/Extend
	Entry Sequence VSAM (ESDS) Sequential Insert/Extend
	Relative Record VSAM (RRDS) Sequential Insert/Extend

	Considerations for Processing Variable-Length�Records
	Record Size
	Block Size
	Location of Data within Record
	Length of Current Record
	Output from Itself
	Output from an Input file
	File Printing of Variable Files
	Sorting a Variable File

	Numeric and Packed Key Considerations
	KSDS Examples
	ESDS Examples

	Chapter 20: ISAM Processing
	Syntax Format
	Creating a File
	ISAM Create

	Sequential Read
	ISAM Sequential Read

	Skip Sequential Read
	ISAM Skip Sequential Read

	Random Read
	ISAM Random Read

	Sequential Update
	ISAM Sequential Update

	Random Update
	ISAM Random Update

	Sequential Insert or Extend
	ISAM Sequential Extend

	Considerations for Processing Variable-Length�Records
	Record Size
	Block Size
	Location of Data within Record
	Length of Current Record
	Output from Itself
	Output from an Input file
	File Printing of Variable Files
	Sorting a Variable File

	Unblocked ISAM Files in VSE Considerations
	Sequential or Skip Sequential Read
	Sequential Load or Extend
	Random Retrieval
	Random Update

	Numeric and Packed Key Considerations
	ISAM Examples

	Chapter 21: BDAM Processing
	Syntax Format
	Record Addressing Schemes
	Relative Track and Actual Key
	Relative Track and Actual Record Number
	Relative Block

	Access Methods
	Sequential Access
	Random Access

	I/O Statistics
	Random Create
	Relative Track Number and Actual Key
	Relative Track Number and Actual Record Number
	Relative Block Number

	Sequential Create
	Relative Track Number and Actual Key
	Relative Track Number and Actual Record Number
	Relative Block Number

	Random Read
	Relative Track Number and Actual Key
	Relative Track Number and Actual Record Number
	Relative Block Number

	Sequential Read
	Relative Track Number and Actual Key
	Relative Track Number and Actual Record Number
	Relative Block Number

	Random Update
	Relative Track Number and Actual Key
	Relative Track Number and Actual Record Number
	Relative Block Number

	Other Considerations
	Processing Variable-Length Records
	Numeric and Packed Key

	BDAM Examples

	Chapter 22: Using PDS and SSL Support
	Using the PDS Function
	FILE filename
	PDS dataname
	MEMBER dataname
	STATUS dataname
	FB|VB|F|V|U recordsize blocksize
	LENGTH dataname
	COUNT dataname
	NEWNAME dataname
	INPUT
	OUTPUT FROM filename

	READMEM and READDIR Commands
	WRITEMEM and WRITEDIR Commands
	ADD Keyword
	ALIAS Keyword
	CHANGE Keyword
	REPLACE Keyword
	SCRATCH Keyword

	PDS Examples
	PDS Directory Format
	Source Statement Library Support
	Input to VISION:Results
	FILE filename
	BOOK dataname
	STATUS dataname
	COUNT dataname
	Defining the File
	Reading a Book

	SSL Examples

	Chapter 23: Using MATCH and MERGE
	General Flow of Execution Diagram
	MATCH and MERGE Features
	Syntax for the MATCH Operation
	SETREAD MASTERUP, COMPAREN, and ORIGINAL
	USING DY282MAT

	Recommendations and Requirements for Matching
	Match Conditions in the Procedure Logic
	SETREAD MASTERUP
	SETREAD COMPAREN
	SETREAD ORIGINAL
	DY282MAT
	IF ADVANCED file1
	IF MATCHED
	IF MATCHED file1 file2
	IF DUPLICATE file1
	IF FIRSTDUP file1
	IF LASTDUP file1

	MATCH Examples
	MERGE
	Syntax for the MERGE Operation
	Recommendations and Requirements for Merging
	Merge Conditions in the Procedure Logic
	IF REPLICA

	Merge Example
	Error Analysis During Match and Merge
	Writing Your Own MATCH Subroutine
	DY282MAT Invocation
	The DY282MAT MATCH Subroutine
	Generated from Your Special MATCH Logic Statements
	ON ONE Logic
	VISION:Results Cycle For MATCH Run Before Your Statements
	User Statements With Other Special MATCH Logic
	Parms Passed to DY282MAT

	Writing Your Own MERGE Subroutine
	MERGE Subroutine
	MERGE Logic (Automatic Cycle)
	ON ONE Logic
	VISION:Results Cycle for MERGE Run Before Your�Statements
	User Statements with Other Special MERGE Logic
	Parms Passed to DY282MER

	Chapter 24: Using Interval Selection
	Defining Interval Selection
	Internal Selection Criteria
	IF SAMPLING Command
	IF SAMPLING Command Examples

	Chapter 25: Using Random Selection
	Input to VISION:Results
	Known Universe
	Unknown Universe
	IF SAMPLING Command
	Random Selection Examples
	VISION:Results Reserved Words

	Chapter 26: Table and Array Handling
	Allocating Memory
	Working with Tables
	Syntax for Defining a Table
	RETAIN | NORETAIN
	Table Entry Field Definition(s)
	Loading a Table
	Sequential Retrieval
	Sequential Search
	Binary Search
	Sorting
	Random Retrieval
	Random Replacement
	USE Command
	Error Return Codes
	Table Examples

	Working with Arrays
	Syntax for Defining an Array
	Loading an Array
	Retrieving from an Array
	Deleting an Array
	USE Command
	Error Return Codes
	Array Example

	Chapter 27: Using Letter Writing
	Using the Letter Writing Function
	Implementing Letter Writing
	Input to VISION:Results

	LTH Statements and Keywords
	LTD Statements and Keywords
	Additional LTD Statement Information
	LTD Edit Codes
	LETTER Command

	Laser JCL
	Letter Writing Considerations
	Channel Skipping With Two-up Letter Processing
	Optimize and Nooptimize
	Letter Writing Examples

	Chapter 28: Using Diagrams and Analyses
	Defining Scatter Diagrams, Linear Regression Analyses, and Trend Line Analyses
	Scatter Diagram
	Linear Regression Analyses
	Trend Line Analyses
	Further Sources of Information

	Input into VISION:Results
	Regression Command
	Output from VISION:Results
	Evaluation of Output

	Examples of Linear Regression and Trend Line Analyses
	Linear Regression Analysis Example
	Trend Line Analysis Example

	Appendix A: Reserved Words
	Reserved Words
	Definitions

	Appendix B: Job Control Language
	OS/390 JCL
	VSE JCL
	VM/CMS

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

